+ All Categories
Home > Documents > Low-Noise Amplifier.ppt

Low-Noise Amplifier.ppt

Date post: 02-Jun-2018
Category:
Upload: aar-kay-gautam
View: 231 times
Download: 0 times
Share this document with a friend

of 115

Transcript
  • 8/10/2019 Low-Noise Amplifier.ppt

    1/115

    1

    Low-Noise Amplifier

  • 8/10/2019 Low-Noise Amplifier.ppt

    2/115

    2

    RF Receiver

    BPF1 BPF2LNA

    LO

    Mixer BPF3 IF Amp

    Demodulator

    Antenna

    RF front end

  • 8/10/2019 Low-Noise Amplifier.ppt

    3/115

    3

    Low-Noise Amplifier

    First gain stage in receiverAmplify weak signal

    Significant impact on noise performance

    Dominate input-referred noise of front end

    Impedance matching

    Efficient power transfer Better noise performance

    Stable circuit

    LNA

    subsequent

    LNAfrontendG

    NFNFNF

    1

  • 8/10/2019 Low-Noise Amplifier.ppt

    4/115

    4

    LNA Design Consideration

    Noise performance

    Power transfer

    Impedance matching

    Power consumption

    Bandwidth

    Stability Linearity

  • 8/10/2019 Low-Noise Amplifier.ppt

    5/115

    5

    Noise Figure

    Definition

    As a function of device

    G: Power gain of the device

    outout

    inin

    out

    in

    NS

    NS

    SNR

    SNRNF

    source

    sourcedevice

    NG

    NGNNF

  • 8/10/2019 Low-Noise Amplifier.ppt

    6/115

    6

    NF of Cascaded Stages

    Overall NF dominated by NF1

    [1] F. Friis, Noise Figure of Radio Receivers,

    Proc. IRE, Vol. 32, pp.419-422, July 1944.

    Sin/Nin

    G1, N1,

    NF1

    Gi, Ni,

    NFi

    GK, NK,

    NFK

    Sout/Nout

    12121

    3

    1

    21

    11111

    K

    K

    ...GGG

    NF...GG

    NF

    G

    NFNFNF

  • 8/10/2019 Low-Noise Amplifier.ppt

    7/1157

    Simple Model of Noise in MOSFET

    fWLC

    k

    fVox

    g )(

    2

    Flicker noise Dominant at low frequency

    Thermal noise

    g: empirical constant2/3 for long channel

    much larger for short channel

    PMOS has less thermal noise

    Input-inferred noise

    md gkTfI g4)(2

    Vg

    Id

    Vi

    fWLC

    k

    gkTfV

    oxm

    i g

    4)(2

  • 8/10/2019 Low-Noise Amplifier.ppt

    8/1158

    Noise Approximation

    Thermal noise

    1/f noise

    Band of interestFrequency

    Noise spectral

    density

    Thermal noise

    dominant

  • 8/10/2019 Low-Noise Amplifier.ppt

    9/1159

    Power Transfer and Impedance Matching

    L

    LLss

    sdel R

    jXRjXR

    VP

    2

    s

    ss

    XXRRL R

    VVPP

    LsLs 4

    *

    0,max

    Power delivered to load

    Maxim available power

    Rs

    Vs

    jXs jXL

    RLI V

    Impedance matching Load and source impedances conjugate pair

    Real part matched to 50 ohm

  • 8/10/2019 Low-Noise Amplifier.ppt

    10/11510

    Available Power

    Equal power on load

    and source resistors

  • 8/10/2019 Low-Noise Amplifier.ppt

    11/11511

    Reflection Coefficient

    ***

    max4

    ))((4

    aaR

    IZVIZVRVVP

    s

    ss

    s

    ss

    s

    s

    R

    IZVa

    2

    ****

    max4

    ))((bb

    R

    ZIVIZVPPP

    s

    ssdelref

    Rs

    Vs

    jXs jXL

    RLI V

    s

    s

    R

    IZVb

    2

    *

    sL

    sL

    ZZ

    ZZ

    a

    b

    *

    2

    )( ** LLdel

    ZZIIP

    LIZV

  • 8/10/2019 Low-Noise Amplifier.ppt

    12/11512

    Reflection Coefficient

    No reflection

    Maximum power transfer

  • 8/10/2019 Low-Noise Amplifier.ppt

    13/11513

    S-Parameters

    Parameters for two-port system analysis Suitable for distributive elements

    Inputs and outputs expressed in powers

    Transmission coefficients Reflection coefficients

  • 8/10/2019 Low-Noise Amplifier.ppt

    14/11514

    S-Parameters

    2221212

    2121111

    aSaSb

    aSaSb

    a1

    b1

    b2

    a2

    S11

    S12

    S22

    S21

  • 8/10/2019 Low-Noise Amplifier.ppt

    15/115

    15

    S-Parameters S11input reflection coefficient with

    the output matched

    S21forward transmission gain or

    loss

    S12reverse transmission or

    isolation

    S22output reflection coefficient with

    the input matched012

    222

    012

    112

    021

    221

    021

    111

    a

    a

    a

    a

    abS

    a

    bS

    a

    bS

    abS

  • 8/10/2019 Low-Noise Amplifier.ppt

    16/115

    16

    S-Parameters

    SZ1 Z2

    Vs1 Vs2

    I1

    V1

    I2

    V2

    0222

    *

    22222

    01

    2

    222

    *

    11112

    02

    1

    111

    *

    22221

    0111

    *

    11111

    11

    22

    )Re(

    )Re(

    )Re(

    )Re(

    ss

    ss

    VV

    VV

    ZIV

    ZIVS

    Z

    Z

    ZIV

    ZIVS

    Z

    Z

    ZIV

    ZIVS

    ZIV

    ZIVS

  • 8/10/2019 Low-Noise Amplifier.ppt

    17/115

    17

    Stability Condition

    Necessary condition

    where

    Stable iff

    where

    1||2

    ||||||1

    2112

    22

    11

    2

    22

    SS

    SSK S

    21122211 SSSSS

    1|| 2 LLS

    2

    ||||||

    2

    22

    2

    112112

    SSSSL

  • 8/10/2019 Low-Noise Amplifier.ppt

    18/115

    18

    A First LNA Example

    Assume

    No flicker noise

    ro= infinity

    Cgd = 0 Reasonable for appropriate

    bandwidth

    Effective transconductance

    Rs

    Vs

    Vs

    Rs 4kTRs

    VgsgmVgs 4kTggm ins

    inm

    s

    omeff

    ZR

    Zg

    V

    iG

    io

  • 8/10/2019 Low-Noise Amplifier.ppt

    19/115

    19

    Power Gain

    Voltage input Current output

    2

    22

    2

    22

    2

    2

    *

    *

    1

    )(1

    1)(1

    )(1

    ||

    s

    T

    gss

    m

    gss

    m

    gss

    gsm

    ins

    inm

    meffss

    oo

    RCR

    g

    CRj

    g

    CjR

    Cjg

    ZR

    ZgG

    VV

    iiG

  • 8/10/2019 Low-Noise Amplifier.ppt

    20/115

    20

    Noise Figure Calculation

    Power ratio @ output

    Device noise + input-induced noise

    Input-induced noise

    2

    2

    222

    22

    2

    )/(1

    )1(1

    )(14

    41

    gsm

    ms

    ms

    gss

    ms

    gss

    ms

    m

    in

    indevice

    CggR

    gR

    CRgR

    CRgkTR

    gkT

    NG

    NGNNF

    g

    g

    g

    g

    gs

    mT

    C

    g

  • 8/10/2019 Low-Noise Amplifier.ppt

    21/115

    21

    Unity Current Gain Frequency

    Device ioutiin

    1

    Tin

    Touti

    in

    outi

    i

    iA

    i

    iA

    T

    0dB

    fT

    Ai

    ffrequency

  • 8/10/2019 Low-Noise Amplifier.ppt

    22/115

    22

    Small-Signal Model of MOSFET

    Cgs

    Cgd

    rds Cdb

    Rg: Gate resistance

    ri: Channel chargingresistance

    Vgs

    gmVgs

    Cgdi1 i2

    ri

    Cgs

    i1

    i2

    Cdb

    rds

    Rg

    V1 V2

    V1V2

  • 8/10/2019 Low-Noise Amplifier.ppt

    23/115

    23

    TCalculation

    gdgsiggsiggdgs

    gdgsigdgs

    V CCrRsCsrRCCs

    CCrsCCs

    V

    IY

    2

    2

    01

    111

    )(1

    )(

    2

    Vgs

    gmVgs

    Cgdi1 i2

    ri

    CgsCdb

    rds

    Rg

    V1

    Vgs

    gmVgs

    Cgdi1 i2

    ri

    Cgs

    Rg

    V1

    gdgsiggsiggdgs

    gdgsigdgsim

    V CCrRsCsrRCCs

    CCrssCCsrg

    V

    IY

    2

    2

    01

    221

    )(1

    )1(

    2

  • 8/10/2019 Low-Noise Amplifier.ppt

    24/115

    24

    Tof NMOS and PMOS

    0.25um CMOS Process*

    [2] Tajinder Manku, Microwave CMOS - Device Physics and Design,

    IEEE J. Solid-State Circuits, vol. 34, pp. 277 - 285, March 1999.

    mgdgsm

    T gCC

    g

    1)(

    )(

    21

    11 T

    T

    jY

    jY

    Set:

    Solve for T

  • 8/10/2019 Low-Noise Amplifier.ppt

    25/115

    25

    Noise Performance

    Low frequency

    Rsgm >> g~ 1

    gm>> 1/50 @ Rs= 50 ohm

    Power consuming

    CMOS technology

    gm/IDlower than other tech Tlower than other tech

    2

    2

    1T

    ms

    msgRgRNF

    g

    g

  • 8/10/2019 Low-Noise Amplifier.ppt

    26/115

    26

    Review of First Example

    No impedance matching Capacitive input impedance

    Output not matched

    Power transfer S11=(1-sRCgs)/(1+sRCgs)

    S21=2Rgm/(1+sRCgs), R=Rs=RL

    Power consumption High power for NF

    High power for S21

  • 8/10/2019 Low-Noise Amplifier.ppt

    27/115

    27

    Impedance Matching for LNA

    Resistive termination Series-shunt feedback

    Common-gate connection

    Inductor degeneration

  • 8/10/2019 Low-Noise Amplifier.ppt

    28/115

    28

    Resistive Termination

    2

    /1/1 gsIs

    m

    CjRR

    gG

    Current-current power gain

    Noise figure

    Rs

    Vs Is Rs

    4kT/Rs

    VgsgmVgs

    io

    RI RI

    4kT/RI 4kTggm

    2

    22

    111

    T

    sm

    Ism

    s

    I

    s RgRRg

    R

    R

    RNF

    g

    g

  • 8/10/2019 Low-Noise Amplifier.ppt

    29/115

    29

    Comparison with Previous Example

    Previous example

    Resistive-termination

    2

    22

    11T

    sm

    I

    s

    smI

    s RgR

    R

    RgR

    RNF

    g

    g

    2

    2

    1T

    ms

    ms

    gRgR

    NF

    g

    g

    Introduced by input

    resistance Signal attenuated

  • 8/10/2019 Low-Noise Amplifier.ppt

    30/115

    30

    Summary - Resistive Termination

    Noise performance

    Low-frequency approximation

    Input matched Rs= RI= R

    Broadband input match

    Attenuate signal

    Introduce noise due to RI

    NF > 3 dB (best case)

    RgNF m

    g4

    2

  • 8/10/2019 Low-Noise Amplifier.ppt

    31/115

    31

    Series-Shunt Feedback

    Broadband matching

    Could be noisy

    Rs

    VsRa

    RF

    RL

    Vgs gmVgs

    RFiout

    Ra

    Cgs

    Rs

    Vs

    RL

    gsLFaaLm

    gsaamLF

    inCRRRsRRg

    CsRRgRRR

    )()(1

    )1)((

    ))((1

    )(

    ))((1))(1(

    asgsm

    saFsFags

    asgsm

    sFamout

    RRsCg

    RRRRRRsC

    RRsCgRRRgR

  • 8/10/2019 Low-Noise Amplifier.ppt

    32/115

    32

    Common-Gate Structure

    Rs RL

    Vs

    Rs 4kTRs

    VgsgmVgs

    RL

    4kTggm

    Vs

    Rs 4kTRs

    Vgs gmVgs

    RL

    4kTggm

    gmgsssm

    m

    s

    outeff

    CsRRgg

    V

    IG

    1

  • 8/10/2019 Low-Noise Amplifier.ppt

    33/115

    33

    Input Impedance of CG Structure

    Input impedanceYin=gm+sCgs

    Input-impedance matching Low frequency approximation

    Direct without passive components

    1/gm=Rs=50 ohm

  • 8/10/2019 Low-Noise Amplifier.ppt

    34/115

    34

    Noise Performance of CG Structure

    2

    2

    2222

    222

    2

    41

    )1(1

    )()1(4

    41

    T

    gsssm

    ms

    gsssm

    ms

    m

    in

    indevice

    CRRggR

    CRRggkTR

    gkT

    NG

    NGNNF

    gg

    g

    g

    222

    22

    )()1( gsssmm

    effCRRg

    gGG

    Signal attenuated

  • 8/10/2019 Low-Noise Amplifier.ppt

    35/115

    35

    Power Transfer of CG Structure

    Rs= RL= R = 50 ohm

    S11=0, S21=1 @ Low frequency

    gss

    gss

    gsssm

    gsssm

    sin

    sin

    CsR

    CsR

    CsRRg

    CsRRg

    ZZ

    ZZS

    2

    1

    1*

    11

    gs

    gsssm

    mLeffL

    sC

    CsRRg

    gRGRS

    2

    2

    1

    2221

  • 8/10/2019 Low-Noise Amplifier.ppt

    36/115

    36

    SummaryCG Structure

    Noise performance

    No extra resistive noise source

    Independent of power consumption

    Impedance matching

    Broadband input matching

    No passive components

    Power consumption

    gm=1/50 Power transfer

    Independent of power consumption

  • 8/10/2019 Low-Noise Amplifier.ppt

    37/115

    37

    Inductor Degeneration Structure

    Rs

    VsLs

    Lg

    Vgs gmVgs

    iout

    Cgs

    Rs

    Vs

    Lg

    Ls

    Zin

    Vin

    iin

    gs

    sm

    gs

    sgin

    sgs

    inmings

    ingin

    sgsmin

    gs

    inginin

    C

    Lg

    sCLLsI

    sLsCIgIsCIsLI

    sLVgIsC

    IsLIV

    1)(

    )

    1

    (

    1

    )(1

    Zin

  • 8/10/2019 Low-Noise Amplifier.ppt

    38/115

    38

    Input Matching for ID Structure

    Zin=Rs

    IM{Zin}=0

    RE{Zin}=Rs

    gs

    sm

    gs

    sginCLg

    sCLLsZ 1)(

    gssg CLL )(

    120

    s

    gs

    sm RC

    Lg

    Vgs gmVgs

    iout

    Cgs

    Rs

    Vs

    LgLs

    Zin

    gmLs/Cgs

  • 8/10/2019 Low-Noise Amplifier.ppt

    39/115

    39

    Effective Transconductance

    Vgs gmVgs

    iout

    Cgs

    Rs

    Vs

    LgLsZin

    gmLs/Cgs

    )()(1

    )(

    2

    sggssmgss

    m

    ins

    gsm

    s

    outeff

    LLCsLgCRsg

    ZR

    sCg

    V

    IG

  • 8/10/2019 Low-Noise Amplifier.ppt

    40/115

    40

    Noise Factor of ID Structure

    Calculate NF at 0

    22

    22

    2

    )(1

    )(4

    41

    0

    smgss

    ms

    smgss

    ms

    m

    in

    indevice

    LgCRgR

    LgCR

    gkTR

    gkT

    NG

    NGNNF

    g

    g

    2222

    2

    2

    )()](1[ smgsssggs

    meff

    LgCRLLCgGG

    = 0 @ 0

  • 8/10/2019 Low-Noise Amplifier.ppt

    41/115

    41

    Input Quality Factor of ID Structure

    CRRII

    CII

    powerLost

    powerStoredQ

    1*

    *

    Cgs

    Rs

    Vs

    LgLs

    gmLs/Cgs

    C

    R

    V

    L

    gsssmgss

    gssmsgs

    in

    CRLgCR

    CLgRCCRQ

    2

    1

    )(

    1

    )/(

    11

    I

  • 8/10/2019 Low-Noise Amplifier.ppt

    42/115

    42

    Noise Factor of ID Structure

    2

    22

    11

    )(1

    0

    inms

    smgss

    ms

    QgR

    LgCRgR

    NF

    g

    g

    )(

    1

    smgss

    inLgCR

    Q

    Increase power transfer

    gmLs/Cgs= Rs

    Decrease NF

    gmLs/Cgs= 0

    Conflict between

    Power transfer

    Noise performance

  • 8/10/2019 Low-Noise Amplifier.ppt

    43/115

    43

    Further Discussion on NF

    sg

    s

    sggsms

    sm

    smgss

    ms

    LL

    L

    LLCgR

    Lg

    LgCRgR

    NF

    g

    g

    g

    41

    )(

    1)(41

    )(1

    2

    22

    0

    Frequency @ 0

    2~= 1/Cgs/(Lg+Ls)

    Input impedance

    matched to Rs

    RsCgs=gmLs

    Suitable for hand

    calculation and design Large Lgand small Ls

    Tss RL

    gsgs CLL 2

    01

  • 8/10/2019 Low-Noise Amplifier.ppt

    44/115

    44

    Power Transfer of ID Structure

    Rs= RL= R = 50 ohm

    @

    )()(1

    )(1

    )(1

    )(1

    2

    2

    2

    2*

    11

    sggsgsssm

    sggs

    gsssmsggs

    gsssmsggs

    sin

    sin

    LLCsCRLgs

    LLCs

    CsRLsgLLCs

    CsRLsgLLCs

    ZZ

    ZZS

    )()(1

    22

    221

    sggssmgss

    LmLeff

    LLCsLgCRs

    RgRGS

    )(1

    smgss

    inLgCR

    Q

    gssg CLL )(

    120

    s

    LTinLm

    smgss

    Lm

    R

    RjQRgj

    LgCRj

    RgSS

    00

    2111 2

    )(

    2;0

  • 8/10/2019 Low-Noise Amplifier.ppt

    45/115

    45

    Computing Avwithout S-Para

    Rs

    VsLs

    Lg

    )(

    2/122

    ;2

    :matchimputandresonanceAt

    0

    00

    0

    oos

    T

    s

    ov

    sTssgssmo

    gsinmgsmossin

    sin

    YYRj

    V

    VA

    RjVRCjVgI

    CjIgVgIRVI

    RZ

  • 8/10/2019 Low-Noise Amplifier.ppt

    46/115

    46

    Power Consumption

    DDTgs

    ox

    DDD VVVL

    WCVIP 2)(

    2

    WLCC oxgs3

    2)( Tgsoxm VV

    L

    WCg

    222

    2

    3Tgsox

    gs

    m VVL

    WC

    C

    Lg

    gs

    sms

    C

    LgR

    s

    gss

    mL

    CRg

    )/1(3

    1

    )(3

    1

    3

    )(333

    32

    0

    2222

    0

    22

    202

    22

    2

    2222

    sgs

    DDs

    sg

    DDTDDgs

    T

    sg

    DD

    s

    sDDgs

    s

    sDD

    gs

    m

    LLL

    VRL

    LL

    VLVC

    LP

    LL

    V

    L

    RLVC

    L

    RLV

    C

    LgP

  • 8/10/2019 Low-Noise Amplifier.ppt

    47/115

    47

    Power Consumption

    )/1(

    132

    0

    22

    sgs

    s

    LLL

    RLP

    Technology constant

    L: minimum feature size

    : mobility, avoid mobility saturation region

    Standard specification

    Rs: source impedance

    0: carrier frequency

    Circuit parameter

    Lg, Ls: gate and source degeneration inductance

    sg

    s

    LL

    LNF

    g

    410

  • 8/10/2019 Low-Noise Amplifier.ppt

    48/115

    48

    Summary of ID Structure

    Noise performance

    No resistive noise source

    Large Lg

    Impedance matching Matched at carrier frequency

    Applicable to wideband application, S11

  • 8/10/2019 Low-Noise Amplifier.ppt

    49/115

    49

    Cascode

    Isolation to improve S12

    @ high frequency Small range at Vd1

    Reduced feedback effectof Cgd

    Improve noise

    performance

    Rs

    VsLs

    Lg

    Vbias

    LL

    M2

    M1

    Vd1

    Vo

  • 8/10/2019 Low-Noise Amplifier.ppt

    50/115

    50

    Rs

    Vs

    Ls

    Lg

    LL

    M1

    Vo

    Vgs gmVgsCgs

    Rs

    Vs

    Lg

    Ls LL

    Vo

  • 8/10/2019 Low-Noise Amplifier.ppt

    51/115

    51

    LNA Design Example (1)

    Rs

    Vs

    Ls

    Lg

    Ld

    M2

    M1

    Lvdd

    Vbias

    M4

    Lb1

    Cb1

    Tm

    Cm

    M3

    Lgnd

    Lout

    Input

    bias Off-chip

    matching

    [3] D. Shaeffer and T. Lee, A 1.5-V, 1.5-GHz CMOS low noise amplifier,IEEE J. Solid-

    State Circuits, vol. 32, pp. 745759, May 1997.

    Lb2

    Cb2Vout

    Output

    bias

    Vdd

  • 8/10/2019 Low-Noise Amplifier.ppt

    52/115

    52

    LNA Design Example (1)

    Rs

    Vs

    Ls

    Lg

    Ld

    M2

    M1

    Lvdd

    Vbias

    M4

    Lb1

    Cb1

    Tm

    Cm

    M3

    Lgnd

    Lout

    [3] D. Shaeffer and T. Lee, A 1.5-V, 1.5-GHz CMOS low noise amplifier,IEEE J. Solid-

    State Circuits, vol. 32, pp. 745759, May 1997.

    Unwanted

    parasitics

    Supply

    filtering

  • 8/10/2019 Low-Noise Amplifier.ppt

    53/115

    53

    Circuit Details

    Two-stage cascoded structure in 0.6 m

    First stage

    W1= 403 m determined from NF

    Ls

    accurate value, bondwire inductance

    Ld= 7nH, resonating with cap at drain of M2

    Second

    4.6 dB gain

    W3= 200 m

  • 8/10/2019 Low-Noise Amplifier.ppt

    54/115

    54

    ( )

  • 8/10/2019 Low-Noise Amplifier.ppt

    55/115

    55

    LNA Design Example (2)

    [4] A. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer,IEEE J. Solid-State

    Circuits, vol. 31, pp 19391944, Dec. 1996.

    Cs

    M2

    M1

    M3

    Off-chip

    matching

    Ns

    RB

    VRF

    CB

    IREF

    IB1

    VB1M4M5

    M7

    M6

    Vout1

    RX

    CX

    NL

    Off-chip

    matching

    NF = 1 + K/gmg

    m= g

    m1+ g

    m2

    Si lifi d i

  • 8/10/2019 Low-Noise Amplifier.ppt

    56/115

    56

    Simplified view

    LNA D i E l (2)

  • 8/10/2019 Low-Noise Amplifier.ppt

    57/115

    57

    LNA Design Example (2)

    [4] A. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer, IEEE J. Solid-State

    Circuits, vol. 31, pp 19391944, Dec. 1996.

    Cs

    M2

    M1

    M3Bias

    feedback

    Ns

    RB

    VRF

    CB

    IREF

    IB1

    VB1M4M5

    M7

    M6

    Vout1

    RX

    CX

    NL

    M8

    LNA D i E l (2)

  • 8/10/2019 Low-Noise Amplifier.ppt

    58/115

    58

    LNA Design Example (2)

    [4] A. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer, IEEE J. Solid-State

    Circuits, vol. 31, pp 19391944, Dec. 1996.

    Cs

    M2

    M1

    M3Bias

    feedback

    Ns

    RB

    VRF

    CB

    IREF

    IB1

    VB1M4M5

    M7

    M6

    Vout1

    RX

    CX

    NL

    M8

    LNA D i E l (2)

  • 8/10/2019 Low-Noise Amplifier.ppt

    59/115

    59

    LNA Design Example (2)

    [4] A. Karanicolas, A 2.7-V 900-MHz CMOS LNA and Mixer, IEEE J. Solid-State

    Circuits, vol. 31, pp 19391944, Dec. 1996.

    Cs

    M2

    M1

    M3Bias

    feedback

    Ns

    RB

    VRF

    CB

    IREF

    IB1

    VB1M4M5

    M7

    M6

    Vout1

    RX

    CX

    NL

    M8VA

    DC output = VB1

  • 8/10/2019 Low-Noise Amplifier.ppt

    60/115

    60

  • 8/10/2019 Low-Noise Amplifier.ppt

    61/115

    61

    LNA Design Example (3)

    Objective is to design tunable RF LNA that

    would:

    Operate over very wide frequency range with very fineselectivity

    Achieve a good noise performance

    Have a good linearity performance

    Consume minimum power

  • 8/10/2019 Low-Noise Amplifier.ppt

    62/115

    62

    LNA Architecture The cascode architecture

    provides a good inputoutput isolation

    Transistor M2isolates the

    Miller capacitance

    Input Impedance is obtained

    using the sourcedegeneration inductor Ls

    Gate inductor Lgsets the

    resonant frequency

    The tuning granularity isachieved by the output

    matching network

    VDD

    LSLG

    M1

    M2

    LD

    R2

    R1

    M3

    Output to

    Mixer

    Input to LNA

    Matching

    Network

  • 8/10/2019 Low-Noise Amplifier.ppt

    63/115

    63

    Matching Network The output matching tuning

    network is composed of avaractor and an inductor.

    The LC network is used to

    convert the load impedance

    into the input impedance of

    the subsequent stage.

    A well designed matching

    network allows for a

    maximum power transfer to

    the load. By varying the DC voltage

    applied to the varactor, the

    output frequency is tuned to

    a different frequency.

  • 8/10/2019 Low-Noise Amplifier.ppt

    64/115

    64

    Simulation Results - S11 The input return loss

    S11 is less than10dBat a frequency range

    between 1.4 GHz and

    2GHz

    Input return loss

  • 8/10/2019 Low-Noise Amplifier.ppt

    65/115

    65

    Simulation results - NF The noise figure is 1.8

    dB at 1.4 GHz and risesto 3.4 dB at 2 GHz.

    Noise Figure

  • 8/10/2019 Low-Noise Amplifier.ppt

    66/115

    66

    Simulation Results - S22

    S22 at 1.7725 GHzS22 at 1.77 GHz

    By controlling the voltage applied to the varactor the output frequency

    is tuned by 2.5 MHz.The output return loss at 1.77 GHz is 44.73 dB and the output return

    loss at 1.7725 GHz 45.69 dB.

  • 8/10/2019 Low-Noise Amplifier.ppt

    67/115

    67

    Simulation Results - S22

    S22 at 1.9975 GHzS22 at 2 GHz

    The output return loss at 2 GHz is 26.47 dB and the output return

    loss at 1.9975 GHz

    26.6 dB.

  • 8/10/2019 Low-Noise Amplifier.ppt

    68/115

    68

    Simulation Results - S21 The overall gain of

    the LNA is 12 dB

    S21 at 1.4025 GHz

    Simulation Results Linearity

  • 8/10/2019 Low-Noise Amplifier.ppt

    69/115

    69

    Simulation Results - Linearity

    -1dB compression pointIIP3

    The third order input intercept is 3.16 dBm

    -1 dB compression point ( the output level at which the actual gaindeparts from the theoretical gain) is 12 dBm

    From an earlier slide:

  • 8/10/2019 Low-Noise Amplifier.ppt

    70/115

    70

    From an earlier slide:

    fWLC

    kfV

    ox

    g )(2

    Flicker noise Dominant at low frequency

    Thermal noise

    g: empirical constant

    2/3 for long channel

    much larger for short channel

    PMOS has less thermal noise

    Input-inferred noise

    md gkTfI g4)(2

    Vg

    Id

    Vi

    fWLC

    k

    gkTfV

    oxm

    i g

    4)(2

    Not accurate for low voltage short channel devices

    Modifications

  • 8/10/2019 Low-Noise Amplifier.ppt

    71/115

    71

    Modifications

    gis called excess noise factor

    = 2/3 in long channel

    = 2 to 3 (or higher!) in short

    channel NMOS (less in PMOS)

    gg

    mdod

    gkTgkTfI 44)(2

    Thermonoise

    g vs g in short channel

  • 8/10/2019 Low-Noise Amplifier.ppt

    72/115

    72

    gdovs gmin short channel

    g vs g in short channel

  • 8/10/2019 Low-Noise Amplifier.ppt

    73/115

    73

    gdovs gmin short channel

    Fliker noise

  • 8/10/2019 Low-Noise Amplifier.ppt

    74/115

    74

    Fliker noise Traps at channel/oxide interface randomly

    capture/release carriers

    Parameterized by Kf and n

    Provided by fab (note n 1)

    Currently: Kf of PMOS

  • 8/10/2019 Low-Noise Amplifier.ppt

    75/115

    75

    Induced Gate Noise Fluctuating channel potential couples

    capacitively into the gate terminal, causing anoise gate current

    dis gate noise coefficient

    Typically assumed to be 2g

    Correlated to drain noise!

    2

    2

    5

    4

    d

    T

    dong gkTi

  • 8/10/2019 Low-Noise Amplifier.ppt

    76/115

    76

    Input impedance

    Set to be real and equal to source resistance:

    real

    gs

    m

    gs

    ginC

    Lg

    sCLLssZ

    deg

    deg

    1)()(

    gsg CLL )(

    1

    deg

    2

    0

    s

    gs

    mR

    C

    Lgdeg

    Output noise current

  • 8/10/2019 Low-Noise Amplifier.ppt

    77/115

    77

    Output noise current

    )14(21)(

    222

    QcgkTfIdddod g

    Noise scaling factor:

    )14(214

    1 22 Qc dd

    Where for 0.18 process

    c=-j0.55, g=3, d=6, gdo=2gm,

    d= 0.32

    g

    d

    5do

    md

    g

    g

    s

    g

    gss R

    LL

    CRQ

    2

    )(

    2

    1 deg0

    0

    Noise factor

  • 8/10/2019 Low-Noise Amplifier.ppt

    78/115

    78

    Noise factor

    Noise factor scaling coefficient:

    22 )14(212

    dd

    m

    donf Qc

    g

    g

    QK

    g

    22 )14(2121 ddmdo

    T

    o Qcg

    g

    QF g

    42

    1)(41 02200 Q

    CRgRNG

    NGNNF

    T

    gss

    msin

    indevice g

    g

    Compare:

    Noise factor scaling coefficient versus Q

  • 8/10/2019 Low-Noise Amplifier.ppt

    79/115

    79

    Noise factor scaling coefficient versus Q

    Example

  • 8/10/2019 Low-Noise Amplifier.ppt

    80/115

    80

    Example

    Assume Rs = 50 Ohms, Q = 2, fo = 1.8 GHz, ft = 47.8 GHz

    From

    gss CRQ

    02

    1

    fFeQR

    Cs

    gs 442)2(98.12)50(2

    12

    10

    nH

    e

    R

    g

    CRL

    T

    s

    m

    gss17.0

    98.472

    50deg

    nHLC

    LCLL gs

    g

    gsg

    5.171

    )(

    1deg2

    0deg

    2

    0

    Have We Chosen the Correct Bias Point?

  • 8/10/2019 Low-Noise Amplifier.ppt

    81/115

    81

    Have We Chosen the Correct Bias Point?

    IIP3 is also a function of Q

    If we choose Vgs=1V

  • 8/10/2019 Low-Noise Amplifier.ppt

    82/115

    82

    If we choose Vgs=1V

    Idens= 175 A/m

    From Cgs= 442 fF, W=274m

    Ibias= IdensW = 48 mA, too large!

    Solution 1: lower Idens=> lower power,

    lower fT, lower IIP3

    Solution 2: lower W => lower power, lowerCgs, higher Q, higher NF

    Lower current density to 100

  • 8/10/2019 Low-Noise Amplifier.ppt

    83/115

    83

    Lower current density to 100

    Need to verify that IIP3 still OK (once we know Q)

    Lower current density to 100

  • 8/10/2019 Low-Noise Amplifier.ppt

    84/115

    84

    We now need to re-plot the Noise Factor scaling coefficient

    - Also plot over a wider range of Q

    Lower current density to 100

    43.05

    2

    68.0568.015.1

    78.0

    d

    do

    m

    d

    do

    m

    g

    g

    g

    g

    GHz8.4229.2

    78.0

    fF

    mS

    C

    g

    gs

    mT

    22 )14(212

    11 dd

    m

    do

    T

    o QcQg

    gF g

  • 8/10/2019 Low-Noise Amplifier.ppt

    85/115

    85

  • 8/10/2019 Low-Noise Amplifier.ppt

    86/115

    86

    Recall

    We previously chose Q = 2, lets now choose Q = 6

    - Cuts power dissipation by a factor of 3!- New value of W is one third the old one

    mm

    W

    913

    274

    R = 50 Ohms Q = 6 f = 1 8 GHz ft =

  • 8/10/2019 Low-Noise Amplifier.ppt

    87/115

    87

    Rs 50 Ohms, Q 6, fo 1.8 GHz, ft42.8 GHz

    Ibias= IdensW =100A/m*91m=9.1mA Power = 9.1 * 1.8 = 16.4 mW

    Noise factor scaling coeff = 10

    Noise factor = 1+ wo/wt* 10= 1+ 1.8G/42.8G *10 = 1.42

    Noise figure = 10*log(1.42) = 1.52 dB

    Cgs=442/3=147fF Ldeg=Rs/wt=0.19nH

    Lg=1/(wo^2Cgs)Ldeg = 53 nH

    Other architectures of LNAs

  • 8/10/2019 Low-Noise Amplifier.ppt

    88/115

    88

    Other architectures of LNAs

    Add output load to achieve voltage gain

    In practice, use cascode to boost gain

    Added benefit of removing Cgd effect

  • 8/10/2019 Low-Noise Amplifier.ppt

    89/115

    89

    Differential LNA

    Value of Ldeg is now much better controlled

    Much less sensitivity to noise from other circuits

    But: Twice the power as the single-ended version

    Requires differential input at the chip

    LNA Employing Current Re-Use

  • 8/10/2019 Low-Noise Amplifier.ppt

    90/115

    90

    LNA Employing Current Re Use

    PMOS is biased using a current mirrorNMOS current adjusted to match the PMOS current

    Note: not clear how the matching network is achieving a 50 Ohm match

    Perhaps parasitic bondwire inductance is degenerating the PMOS or

    NMOS transistors?

    C bi i i d ti

  • 8/10/2019 Low-Noise Amplifier.ppt

    91/115

    91

    Combining inductive

    degeneration and current reuse

    Current reuse to save power

    Larger area due to two degeneration

    inductor if implemented on chip

    NF: 2dB, Power gain: 17.5dB, IIP3: -

    6dBm, Id: 8mA from 2.7V power supply

    Can have differential version

    F. Gatta, E. Sacchi, et al, A 2-dB Noise Figure 900MHz Differential CMOS LNA,

    IEEE JSSC, Vol. 36, No. 10, Oct. 2001 pp. 1444-1452

  • 8/10/2019 Low-Noise Amplifier.ppt

    92/115

    92

    At DC, M1 and M2 are in cascode

    At AC, M1 and M2 are in cascade

    S of M2 is AC shortedGm of M1 and M2 are multiplied.

    Same biasing current in M1 & M2

    LIANG-HUI LI AND HUEY-RU CHUANG, MICROWAVE JOURNALfrom the February 2004 issue.

    IM3 components in the drain

    current of the main transistor has

  • 8/10/2019 Low-Noise Amplifier.ppt

    93/115

    93

    bao

    bmb

    amamama

    iii

    vgi

    vgvgvgi

    3

    3

    3

    3

    2

    21

    current of the main transistor has

    the required information of its

    nonlinearity

    Auxiliary circuit is used to tune the

    magnitude and phase of IM3

    components

    Addition of main and auxiliary

    transistor currents results innegligible IM3 components at

    output

    Sivakumar Ganesan, Edgar Snchez-sinencio, And Jose Silva-martinezIEEE Transactions On Microwave Theory And Techniques, Vol. 54, No. 12, December 2006

  • 8/10/2019 Low-Noise Amplifier.ppt

    94/115

    94

    MOS in weak inversion has speed problem

    MOS transistor in weak inversion acts like bipolar

    Bipolar available in TSMC 0.18 technology (not a parasitic BJT)Why not using that bipolar transistor to improve linearity ?

    Inter-stage Inductor gain boost

  • 8/10/2019 Low-Noise Amplifier.ppt

    95/115

    95

    Inter stage Inductor gain boost

    Inter-stage inductor with

    parasitic capacitance form

    impedance match network between

    input stage and cascoded stage

    boost gain lower noise figure.

    Input match condition will be

    affected

    Folded cascode

  • 8/10/2019 Low-Noise Amplifier.ppt

    96/115

    96

    Low supply voltage

    Ld reduces or eliminates

    Effect of Cgd1

    Good fT

    Design Procedure for InductiveS D t d LNA

  • 8/10/2019 Low-Noise Amplifier.ppt

    97/115

    97

    Source Degenerated LNA

    Noise factor equations:

    22 )14(212

    11 dd

    m

    do

    T

    o QcQg

    gF g

    22 )14(212

    1dd

    m

    donf Qc

    Qg

    gK g

    Targeted Specifications

  • 8/10/2019 Low-Noise Amplifier.ppt

    98/115

    98

    a ge ed Spec ca o s

    Frequency 2.4 GHz ISM Band

    Noise Figure 1.6 dB

    IIP3 -8 dBm

    Voltage gain 20 dB

    Power < 10mA from 1.8V

    Step 1: Know your process

  • 8/10/2019 Low-Noise Amplifier.ppt

    99/115

    99

    p y p

    A 0.18um CMOS Process

    Process related

    tox= 4.1e-9 m

    e= 3.9*(8.85e-12) F/m

    = 3.274e-2

    m^2/V.s Vth= 0.52 V

    Noise related

    = gm/gdo

    d/g~ 2

    g~ 3

    c = -j0.55

    Step 2: Obtain design guide plots

  • 8/10/2019 Low-Noise Amplifier.ppt

    100/115

    100

    p g g p

    Insights:

  • 8/10/2019 Low-Noise Amplifier.ppt

    101/115

    101

    g

    gdoincreases all the way with current

    density Iden gmsaturates when Idenlarger than

    120A/m

    Velocity saturation, mobility degradation ----short channel effects

    Low gm/current efficiency

    High linearity

    deviates from long channel value (1)with large Iden

    Obtain design guide plots

  • 8/10/2019 Low-Noise Amplifier.ppt

    102/115

    102

    g g p

    Insights:

  • 8/10/2019 Low-Noise Amplifier.ppt

    103/115

    103

    g

    fTincreases with Vodwhen Vodis small and

    saturates after Vod> 0.3V --- short channeleffects

    Cgs/W increases slowly after Vod> 0.2V

    fTbegins to degrade when Vod> 0.8V

    gmsaturates

    Cgsincreases

    Should keep Vod~0.2 to 0.4 V

    Obtain design guide plots

  • 8/10/2019 Low-Noise Amplifier.ppt

    104/115

    104

    g g p

    3-D plot for visual

    inspection

    2-D plots for

    design reference

    knfvs input Q and current density

    Design trade-offs

  • 8/10/2019 Low-Noise Amplifier.ppt

    105/115

    105

    g

    For fixed Iden, increasing Q will reduce the

    size of transistor thus reduce total power ---- noise figure will become larger

    For fixed Q, reducing Idenwill reduce

    power, but will increase noise factor

    For large Iden, there is an optimal Q for

    minimum noise factor, but power may be

    too high

    Obtain design guide plots

  • 8/10/2019 Low-Noise Amplifier.ppt

    106/115

    106

    g g p

    Linearity plots :IIP3 vs. gate overdrive and transistor size

    Insights:

  • 8/10/2019 Low-Noise Amplifier.ppt

    107/115

    107

    g

    MOS transistor IIP3 only, when embedded into

    actual circuit: Input Q will degrade IIP3

    Non-linear memory effect will degrade IIP3

    Output non-linearity will degrade IIP3

    IIP3 is a very weak function of device size

    Generally, large overdrive means large IIP3

    But the relationship between IIP3 and gate overdrive

    is not monotonic There is a local maxima around 0.1V overdrive

    Step 4: Estimate fT

  • 8/10/2019 Low-Noise Amplifier.ppt

    108/115

    108

    p T

    Small current budget ( < 10mA )

    does not allow large gate over drive :

    Vod~ 0.2 V ~ 0.4 V

    fT~ 40 ~ 44 GHz

    Step 4: Determine Iden, Q andCalculate Device Size

  • 8/10/2019 Low-Noise Amplifier.ppt

    109/115

    109

    Calculate Device Size

    Select Iden= 70 A/m, =>Vod~0.23V

    Gm/W~0.4

  • 8/10/2019 Low-Noise Amplifier.ppt

    110/115

    110

    If Q = 4, IIP3 will have enough margin:

    Estimated IIP3:

    IIP3(from curve) 20log(Q) = 8-12 = -4dBm

    Specs require: -8 dBm

  • 8/10/2019 Low-Noise Amplifier.ppt

    111/115

    111

    Q=4 and Iden= 70A/m meet the

    noise factor requirement

  • 8/10/2019 Low-Noise Amplifier.ppt

    112/115

    112

    Gm=0.4*128 ~ 50 mS fT = gm/(Cgs*2pi) = 48 GHz

    Step 6: Simulation Verification

  • 8/10/2019 Low-Noise Amplifier.ppt

    113/115

    113

    Large deviation

  • 8/10/2019 Low-Noise Amplifier.ppt

    114/115

    114

    Comparison between targetedspecs and simulation results

  • 8/10/2019 Low-Noise Amplifier.ppt

    115/115

    specs and simulation results

    Parameter Target Simulated

    Noise Figure 1.6 dB 0.8 dB

    Drain Current < 10mA 8 mA

    Voltage gain 20 dB 21 dB

    IIP3 -8 dBm -6.4 dBm

    P1dB -20dbm

    S11 -17 dB

    Power supply 1.8 V 1.8 V


Recommended