+ All Categories
Home > Documents > M -RAM (Magnetoresistive – Random Access Memory) Kraków, 7 XII 2004r.

M -RAM (Magnetoresistive – Random Access Memory) Kraków, 7 XII 2004r.

Date post: 21-Dec-2015
Category:
View: 218 times
Download: 1 times
Share this document with a friend
Popular Tags:
21
M-RAM (Magnetoresistive – Random Access Memory)
Transcript

M-RAM (Magnetoresistive – Random Access Memory)

M-RAM M. Bernacki, S. Wąsek

Information flux.Information

Ou

tsid

e

w

ord

Input

Output

Information

transmission

Information

Processing

Information

storage

DRAM, MRAM Magnetic (HDD)

Optical (CD, DVD)

M-RAM M. Bernacki, S. Wąsek

Memory categories.

WHY DO WEE NEED M-RAM MEMORY ????

M-RAM M. Bernacki, S. Wąsek

Basic attractions of M-RAM.

Nonvolatility; Speed; Low-power consumption; Scalability.

M-RAM M. Bernacki, S. Wąsek

Basic attractions of M-RAM.

Transfer data to microprocessor without

creating a bottleneck!

M-RAM M. Bernacki, S. Wąsek

History and development...

M-RAM – quick view. Magnetoresistivity. AMR effect - 80-th.

GMR effect - 80-th. TMR effect – 1995 year.

M-RAM based on:

M-RAM M. Bernacki, S. Wąsek

Storage and states of a bit.

Storage state:

DRAM: charge of capacitor. Flash, EEPROM: charge on floating gate. FeRAM: charge of a ferroelectric capacitor.

TM

R [

%]

Field [Oe]

MRAM: charge and spin.

„1”

„0”

Soft ferromagnetInsulator

Hard ferromagnet

M-RAM M. Bernacki, S. Wąsek

Implementationof 1-MTJ / 1-transistor

cell.

Word

line

NiFe (free layer)

CoFe (fixed layer)Ru

CoFe (pinned layer)

Al2O3 (tunneling barrier)

SA

F

cladclad HwI

H 2wI

Hunclad 2

M-RAM M. Bernacki, S. Wąsek

Write.

Word

line

With digit line current

Without digit line current

M-RAM M. Bernacki, S. Wąsek

Write.

Word

lineR

A [

kO

hm

-u

m2]

Easy axis field [Oe]

M-RAM M. Bernacki, S. Wąsek

Read.

Word

line

Word line

M-RAM M. Bernacki, S. Wąsek

Sizes of MTJ.

Ferromagnet I

Tunnel barrier

Ferromagnet II

NiFe (free layer)

CoFe (fixed layer)Ru

CoFe (pinned layer)

Al2O3 (tunneling barrier)

4nm1..2nm

3nm

3nm

M-RAM M. Bernacki, S. Wąsek

Other MRAM cell architectures.

Twin cell arrays: Circuit is faster than the 1T1TMR implementation.

Less atractive on a cell density and cost basis.

Diode cell: SOI diodes allow the integration of a memory with

most circuits without sacrificing silicon wafer surface area.

SOI diodes suitable for this aplication haven’t been developed yet.

Transistorless array: Large reduce in cell area.

Complex circuity required to read bit state, slow read.

M-RAM M. Bernacki, S. Wąsek

MRAM 32Kb memory segment.

Bit line 31

Digit line

Digit lineWord line

Bit line 0

Word line

M-RAM M. Bernacki, S. Wąsek

Reference generator.RMAX

RMAX

RMIN

RMIN

Bit line Digit

line

Digit line

Word

line

Wordline

RREF = 1/2(RMAX + RMIN)

M-RAM M. Bernacki, S. Wąsek

1Mb MRAM architecture.

Available modes:Active mode

Sleep mode

Standby mode

M-RAM M. Bernacki, S. Wąsek

Examples and performance

of M-RAM technology.

Freescale semiconductors –2003/2004.Technology: 0.18mikrons, 5-level metal CMOS, copper

interconnects;

Capacity: 4MB;

Access time: 15-20ns

Technology: 0.6um, 5-level metal CMOS, copper interconnects;

Capacity: 1MB

Access time: 35ns

Motorola semiconductors –2002.

M-RAM M. Bernacki, S. Wąsek

Roadmap to future storage technologies.

RRAM with CMR

M-RAM M. Bernacki, S. Wąsek

Bio – MRAM,vision for tomorrow?

MRAM array

Biomolecule labeled by magnetic

markers

M-RAM M. Bernacki, S. Wąsek

References.

Wykład z przedmiotu „Magnetyczne nośniki pamięci”, AGH;

Materiały z Uniwersytetu Bielefeld: wykład „Thin films and nanostructures”;

Materiały seminaryjne z „Motorola Labs”;

Materiały z sympozjum „VLSI symposium 2002”;

www.freescale.com

www.motorola.com

M-RAM M. Bernacki, S. Wąsek

Dziękujemy za uwagę


Recommended