+ All Categories
Home > Documents > m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest...

m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest...

Date post: 29-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
103
Catabolism Precursors ATP Enzymes Inside every cell Autocatalytic feedback (essential) Efficient processes Minimal enzymes (lean manufacturing) Long assembly process (simple steps) Limited control feedback
Transcript
Page 1: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

Pre

curs

ors

ATP

Enzymes

Inside every cell

• Autocatalytic feedback (essential)

• Efficient processes

– Minimal enzymes (lean manufacturing)

– Long assembly process (simple steps)

• Limited control feedback

Page 2: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

transl. Proteins

Pre

curs

ors

ATP

ATP

Inside every cell

Ribosomes

make

ribosomes

Translation: Amino acids

polymerized into proteins

Page 3: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Building

Blocks

• Translation

• Transcription

• DNA Replication

Page 4: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Crosslayer

autocatalysis

Macro-layers

Inside every cell

Page 5: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

App AppApplications

Router

Page 6: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Crosslayer

autocatalysis

Macro-layers

Inside every cell

Page 7: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Building

Blocks

Lower layer autocatalysis

Macromolecules making …

Three lower

layers? Yes:

• Translation

• Transcription

• Replication

AA

RibosomeRNA

RNAp

transl. Proteins

xRNAtransc.

Enzymes

DNADNAp

Repl. Gene

Page 8: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

AA

RibosomeRNA

RNAp

transl. Proteins

xRNAtransc.

Enzymes

DNADNAp

Repl. Gene

Autocatalytic within lower layers

• Collectively self-replicating

• Ribosomes make ribosomes, etc

Three lower

layers? Yes:

• Translation

• Transcription

• Replication

Naturally

recursive

Page 9: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

App AppApplications

Router

Cat

abo

lism

AA

Ribosome

RNA

RNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Macro-layers

Page 10: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Naming and addressing

• Names needed to locate objects

• 2.5 ways to resolve a name

1. Exhaustive search, table lookup

2. Name gives hints

• Extra ½ is for indirection

• Address is just a name that involves

locations

Page 11: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Operating systems

• OS allocates and shares diverse

resources among diverse applications

• Clearly separate (disaster otherwise)

– Application name space

– Logical (virtual) name/address space

– Physical (name/) address space

• Name resolution within applications

• Name/address translation across layers

Page 12: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

App

kernel

user

In operating systems:

Don’t cross layers

Direct

access to

physical

memory?

Page 13: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Benefits of stricter layering

“Black box” effects of stricter layering

• Portability of applications

• Security of physical address space

• Robustness to application crashes

• Scalability of virtual/real addressing

• Optimization/control by duality?

Page 14: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Bacterial architecture• More complex macro-layering of function

– Upper: Metabolism, envelope, signaling, building blocks

– Lower: Proteins & macromolecule synthesis, replication

• Cleaner layering of control– Transcription factors

– 2 component signal transduction

• Name/address resolution– Global, exhaustive by fast diffusion within layers

– Highly structured interactions between layers

• Limited scalability– Limited to small volumes

– Control proteins scale super-linearly with enzyme

numbers

Page 15: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Reactions

Flow/error

control

Protein

levelAssembly

Flow/error

control

DNA/RNA

levelsInstructions

Building

blocks

Page 16: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

1 1

q

h

q Vx

x

1

1y

qk y

yw

xSupply

AA Biosyna

p2Translation

RibosomeTransl.

Production

)(

),( )( tosubj

)( )( max0

P

P

Cx

wcxGR

wVxU l

l

l

i

iix

Does it fit the

framework?

Yes, but it takes

some explaining

and no one has

worked out the

details.

? ?

??

Page 17: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

0

0 0

0 0

0 0

( ) subject to max

min ( ) max

min ( ) max

min

Primal:

Dual:

i

i

i

i ix i

i i l li i lp xi l

i i i li l l lp xi l l

p x

U x Rx c

U x p R x c

U x x R p p c

1

( ) max

( ) ( )

i i i i l l

i l

i i i i i i

U x x q p c

U x q x U q

No duality gaps?

Multipath routing?

Coherent pricing?

1 1

q

h

q Vx

x

1

1y

qk y

yw

xSupply

AA Biosyna

p2Translation

RibosomeTransl.

Production

Page 18: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Crosslayer

autocatalysis

Macro-layers

Page 19: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP• Complex machines

− Polymerization

− Complex assembly

• General enzymes

• Regulated recruitment

• Slow, efficient control

• Quantized, digital

• Building blocks

− Scavenge

− Recycle

− Biosynthesis

• Special enzymes

• Allostery, Fast

• Expensive control

• Analog

Page 20: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

• DNA replication

− Highly controlled

− Facilitated variation

− Accelerates evolution

• DNA modification (e.g.

methylation)

• Complex RNA control

• Homeostasis

− pH

− Osmolarity

− etc

• Cell envelope

• Movement,

attachment, etc

What we’ve neglected

• Ecosystems

• Biofilms

• Extremophiles

• Pathogens

• Symbiosis

• …

Page 21: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

source receiver

control

energymaterials

More

complex

feedback

All these other feedbacks make feedback control

harder, and in each layer biology appears to

cleverly balance competing requirements.

signalinggene expression

metabolismlineage

2 2

0

1ln ln

z z pS j d

z z p

Page 22: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

1 1

q

h

q Vx

x

1

1y

qk y

yw

xSupply

AA Biosyna

p2Translation

RibosomeTransl.

Production

Main problem with autocatalytic networks

• Maximize production, but

• Balance risk to fluctuating supply

• (or control for fluctuating demand)

Page 23: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

Pre

curs

ors

ATP

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Upper layer autocatalysis

• Fastest allosteric control

• Complex proteins

• High metabolic overhead

• Hard to reprogram

• Essentially analog

Page 24: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

Pre

curs

ors

ATP

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Name resolution?

• Locating: Enzymes and

– Substrates

– Allosteric regulator

• Global search by diffusion

• Spatial localization by “solid

state” complexes

Page 25: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH H2S

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

H. Pylori Amino Acid Biosynthesis

Page 26: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

S1 S2

S3 S4

ADP

ATP

1

2

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

AKG

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAP

ASS

HSE PHS

DHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

GLU

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

PI NADNADH

ADPATP

NADPNADPH CO2 COA

ACCOA PPI AMPATP NH3 AC THF

MTH H2S

H Pylori

amino acid

biosynthesis

As a bipartite

labeled graph.

Page 27: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Substrates

Carriers

1

2

3

4

1 0

1 0

0 1

0 1

1 1

1 1

S

S

S

S

ATP

ADP

H Pylori

amino acid

biosynthesis

As a color coded

(for reversibility)

stoichiometry

matrix.

21

12

23

50

61

Page 28: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

AKG

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAP

ASS

HSE PHS

DHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

GLU

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

PI NADNADH

ADPATP

NADPNADPH CO2 COA

ACCOA PPI AMPATP NH3 AC THF

MTH H2S 21

12

23

50

61

S1 S2

S3 S4

ADP

ATP

1

2

Substrates

Carriers

1

2

3

4

1 0

1 0

0 1

0 1

1 1

1 1

S

S

S

S

ATP

ADP

These are

equivalent to each

other but not to

unipartite graphs.

Page 29: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

1 2

3 4

S ATP S ADP

S ATP S ADP

S1 S2

S3 S4

ADP

ATP

1

2

S1 S2

S3 S4

ADP

ATP

Substrate graph

1

2

Reaction graph

Unipartite projections

lose too much.

Page 30: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

S1 S2

S3 S4

ADP

ATP

1

2

S1 S2

S3 S4

ADP

ATP

Substrate graphSuppose these reactions

are in different modules,

say,

Lipid

biosyn

AA

biosyn

S2

S4

“Small world?”

Not really.

Page 31: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH H2S

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

H. Pylori Amino Acid Biosynthesis

Page 32: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

ADPATP

NADPNADPH

DHS SME S5PDQT DHS

“Typical” reactions

Page 33: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH H2S

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

ADPATP

NADPNADPH

DHS SME S5PDQT DHS

“Typical” reactions

Page 34: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH H2S

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

precursors amino acids

Page 35: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

precursors amino acids

Page 36: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH H2S

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

Page 37: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Aside

• A popular view of “modularity” is

– High connectivity within the module

– Low connectivity to the outside

• This is intuitively appealing, and there are some

examples…

• …but the most important elements of biological

modularity are often exactly the opposite of this

Page 38: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2

Highest degree carriers

Page 39: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

PINADNADH

ADPATP

NADPNADPH

CO2

Highest degree carriers

The carriers are a crucial

element of modularity,

But they don’t have “high

internal, low external”

connectivity.

Page 40: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

DAH

PHP

AKG

precursors

The precursors are

a crucial element of

modularity,

But they don’t have

“high internal, low

external”

connectivity.

Page 41: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

AKG

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAP

ASS

HSE PHS

DHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

GLU

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

Without carriers

Long assembly lines

“long” not “small” worlds

Page 42: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

21

12

23

50

61

carriers

metabolites

reactions “Vertical”

decomposition

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

AKG

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAP

ASS

HSE PHS

DHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

GLU

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

PI NADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH

H2S

Page 43: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

21

12

23

50

61

carriers

metabolites

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

AKG

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAP

ASS

HSE PHS

DHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

GLU

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

PI NADNADH

ADPATP

NADPNADPH

CO2 COAACCOA

PPI AMPATP

NH3 AC THFMTH

H2S

Prices?

• Each constrained quantity has a carrier

• Delivery by rapid diffusion

• “Price” by concentration of charged carrier?

• Elegant implementation of optimization and

duality, integrated with delivery?

Page 44: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

• Fastest allosteric feedback control

• Complex proteins

• High metabolic overhead

• Hard to reprogram

Page 45: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

1( )k ATP

x

1( )k x y

x

Control

Autocatalytic

• Fastest allosteric feedback control

• Complex proteins• High metabolic overhead

• Hard to reprogram

Page 46: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

1( )k x y

xAutocatalytic

Control

1( )k x

x

level

form/activity

rate

Layered control

Page 47: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

• How to get rid of the RHP zero?

• What are the new tradeoffs?

y

x

More

control

y

x

More

complex

enzymes

y

x

Biology appears

to do both

Page 48: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

AA Ribosometransl.

Lower layer autocatalysis

Ribosomes making ribosomes

Page 49: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

AA

Ribosome

RNA

RNAp

transl.Proteins

xRNAtransc.

DNADNAp

Repl. Gene

ATP

Lower layer autocatalysis

Macromolecules making …

Page 50: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

AA

RibosomeRNA

RNAp

transl. Proteins

xRNAtransc.

Enzymes

DNADNAp

Repl. Gene

Autocatalytic within lower layers

• Collectively self-replicating

• Ribosomes make ribosomes, etc

Three lower

layers? Yes:

• Translation

• Transcription

• Replication

Naturally

recursive

Page 51: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Flow/error

Reactions

Protein level

Flow/error

Translation

RNA level

Flow/error

Transcription

DNA level

Naturally

recursive

Page 52: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Protein level

Flow/error

Translation

RNA level

Flow/error

Transcription

DNA level

Three lower

layers? Yes:

• Translation

• Transcription

• Replication/

rearrangement

Replication

DNA Replication/

Rearrangement is

complex and

highly controlled Flow/error

Page 53: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Cat

abo

lism

AA

Ribosome

RNARNAp

transl. Proteins

xRNAtransc.

Pre

curs

ors

DNADNAp

Repl. Gene

ATP

ATP

Enzymes

Building

Blocks

Crosslayer autocatalysis

Supply/demand control between layers?

Page 54: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Reactions

Protein Assembly

DNA/RNA

control

control

DNA

Ou

tsid

e

Ins

ide

Tra

nsm

itte

r

Ligands &

Receptors

Rec

eiver

Responses

control

Receiver

Resp

on

ses

Page 55: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responses

• 50 such “two component” systems in E. Coli

• All use the same protocol

- Histidine autokinase transmitter

- Aspartyl phospho-acceptor receiver

• Huge variety of receptors and responses

• Also multistage (phosphorelay) versions

Signal

transduction

Page 56: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiv

erVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responsesT

ran

smit

ter

Rec

eiverVariety of

Ligands &

Receptors

Variety of

responses

Page 57: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Rec

eiver

Ligands &

ReceptorsResponses

Shared

protocols

Flow of “signal”

Recognition,

specificity

• “Name resolution” within signal transduction

• Transmitter must locate “cognate” receiver

and avoid non-cognate receivers

• Global search by rapid, local diffusion

• Limited to very small volumes

Page 58: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Rec

eiver

Ligands &

ReceptorsResponses

Tra

nsm

itte

r

Rec

eiver

Ligands &

ReceptorsResponses

Tra

nsm

itte

r

Rec

eiver

Ligands &

ReceptorsResponses

Shared

protocols

Flow of “signal”

Recognition,

specificity

Page 59: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Variety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

Ligands &

Receptors

Variety of

Ligands &

Receptors

Variety of

Ligands &

Receptors

Variety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responsesVariety of

Ligands &

Receptors

Variety of

responses

Tra

nsm

itte

r

Rec

eiver

Tra

nsm

itte

r

Rec

eiver

Tra

nsm

itte

r

Rec

eiver

Recognition,

specificity

Huge variety• Combinatorial

• Almost digital

• Easily reprogrammed

• Located by diffusion

Page 60: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Rec

eiver

Tra

nsm

itte

r

Rec

eiver

Tra

nsm

itte

r

Rec

eiver

Flow of “signal”

Limited variety• Fast, analog (via #)

• Hard to change

Reusable in

different pathways

Page 61: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Internet

sitesUsers

Tra

nsm

itte

r

Rec

eiver

Ligands &

ReceptorsResponses

Shared

protocols

Flow of “signal”

Recognition,

specificity

Note: Any

wireless system

and the Internet

to which it is

connected work

the same way.

Lap

top

Rou

ter

Flow of packets

Recognition,

Specificity (MAC)

Page 62: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Tra

nsm

itte

r

Ligands &

Receptors

Rec

eiver

Responses

“Name” recognition

= molecular recognition

= localized functionally

= global spatially

Transcription factors

do “name” to “address”

translation

Page 63: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

Tra

nsm

itte

r

Ligands &

Receptors

Rec

eiver

Responses

“Addressing”

= molecular recognition

= localized spatiallyBoth are

• Almost digital

• Highly

programmable

“Name” recognition

= molecular recognition

= localized functionally

Transcription factors

do “name” to “address”

translation

Page 64: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

2CST systems provide

speed, flexibility,

external sensing,

computation, impedance

match, more feedback,

but

greater complexity and

overhead

Tra

nsm

itte

r

Ligands &

Receptors

Rec

eiver

Responses

ReceiverR

espon

ses

Feedback control

There are simpler

transcription

factors for sensing

internal states

Page 65: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

There are simpler

transcription

factors for sensing

internal states

Page 66: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

RNAp

DNA and RNAp

binding domains

Sensor domains

Domains can

be evolved

independently

or coordinated.

Application

layer cannot

access DNA

directly.Highly

evolvable

architecture.

There are simpler

transcription

factors for sensing

internal states

Page 67: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

RNAp

DNA and RNAp

binding domains

Sensor domainsThis is like a

“name to

address”

translation.

Sensing the

demand of the

application

layer

Initiating

the change

in supply

Page 68: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Sensor

domains

Sensing the

demand of the

application

layer

Any

input

Any

other

input

• Sensor sides attach to metabolites or other proteins

• This causes an allosteric (shape) change

• (Sensing is largely analog (# of bound proteins))

• Effecting the DNA/RNAp binding domains

• Protein and DNA/RNAp recognition is more digital

• Extensively discussed in both Ptashne and Alon

DNA and RNAp

binding domains

DNA and RNAp

binding domains

Page 69: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Sensor

domains

“Cross talk” can be

finely controlled

Any

input

Any

other

input

• Application layer signals can be integrated or not

• Huge combinatorial space of (mis)matching shapes

• A functionally meaningful “name space”

• Highly adaptable architecture

• Interactions are fast (but expensive)

• Return to this issue in “signal transduction”

Page 70: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

DNA

“Addressing”

= molecular recognition

= localized spatially

Both are

• Almost digital

• Highly

programmable

“Name” recognition

= molecular recognition

= localized functionally

= global spatially

Transcription factors

do “name” to “address”

translation

Page 71: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

RNAp

Can activate

or repress

And work in

complex logical

combinations

Promoter Gene1 Gene2 …

• Both protein and DNA sides have sequence/shape

• Huge combinatorial space of “addresses”

• Modest amount of “logic” can be done at promoter

• Transcription is very noise (but efficient)

• Extremely adaptable architecture

Page 72: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Promoter Gene5 Gene6 …

(almost analog)

rate determined

by relative copy

number Binding

recognition

nearly digital

Page 73: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Promoter Gene5 Gene6 …

rate (almost analog)

determined by copy number

Recall: can work by

pulse code

modulation so for

small copy number

does digital to

analog conversion

Page 74: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Promoter Gene1 Gene2 …

No crossing layers• Highly structured interactions

• Transcription factor proteins

control all cross-layer interactions

• DNA layer details hidden from

application layer

• Robust and evolvable

• Functional (and global) demand

mapped logically to local supply

chain processes

Any

input

Page 75: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Reactions

Assembly

DNA/RNA

control

control

DNA

Ou

tsid

e

Ins

ide

Tra

nsm

itte

r

Ligands &

Receptors

Rec

eiver

Responses

control

Receiver

Resp

on

ses

Protein

Cross-layer control

• Highly organized

• Prices? Duality?

• Minimal case study?

Page 76: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Reactions

Flow/error

control

Protein

levelAssembly

Flow/error

control

DNA/RNA

levelsInstructions

Building

blocks

Page 77: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

0

0 0

0 0

0 0

( ) subject to max

min ( ) max

min ( ) max

min

Primal:

Dual:

i

i

i

i ix i

i i l li i lp xi l

i i i li l l lp xi l l

p x

U x Rx c

U x p R x c

U x x R p p c

1

( ) max

( ) ( )

i i i i l l

i l

i i i i i i

U x x q p c

U x q x U q

No duality gaps?

Multipath routing?

Coherent pricing?

1 1

q

h

q Vx

x

1

1y

qk y

yw

xSupply

AA Biosyna

p2Translation

RibosomeTransl.

Production

Page 78: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Any

input

GLC

DPG

PGLPGC RL5P

X5P6PG

MALCIT

ICIT

SUCFUM

G6P

F6P

T3P

3PGPEP

R5P

E4P

PYROA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHOAN NAN CD5 IGP

PPN HPP

BAPASSHSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPSASE

GLN

SER

TRP

ASP

TYR

THRLYS

CYS

GLYASN

AKG GLU

RNA

Gene

Transc.

RNAp

trans. EnzymesAA

mRNA

• Slowest transcription control

• Complex transcription factors

• Lowest metabolic overhead

• Easily reprogrammed

Page 79: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

All transcriptional

regulatory links

are downward.

Nodes are

operons. Global

regulators are

red. Yellow

marked nodes are

operons in the

longest regulatory

pathway related

with flagella

motility.Ma et al. BMC

Bioinformatics 2004

5:199 doi:10.1186/1471-

2105-5-199

Hierarchical

structure of

E. coli transc.

regulatory

network.

Page 80: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram
Page 81: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Note: all feedback in this picture has been

removed in two ways:

1) There are self-loops

where an operon is

controlled by one it’s

own genes

2) All the real complex

control is in the

protein interactions

not shown (e.g. see

heat shock details)

These are not really

control systems,

they just initiate

manufacturing

Page 82: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

This architecture has limited scalability:

1) Fast diffusion can

only work in small

volumes

2) The number of

proteins required

for control grows

superlinearly with

the number of

enzymes (Mattick)

“Control”

Enzymes

Page 83: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Any mRNA

Translation

Initiation codon

Any

inputAny

protein

GLC

DPG

PGL

PGC RL5P

X5P

6PG

MAL

CIT

ICIT

SUCFUM

G6P

F6P

T3P

3PG

PEP

R5P

E4P

PYR

OA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHO

AN NAN CD5 IGP

PPN HPP

BAPASS

HSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPS

ASE

GLN

SER

TRP

ASP

TYR

THR

LYS

CYS

GLY

ASN

AKG GLU

• Fast translation control

• Complex RNAs

• Medium metabolic overhead

• Highly reprogrammable?

Page 84: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

GLC

DPG

PGLPGC RL5P

X5P6PG

MALCIT

ICIT

SUCFUM

G6P

F6P

T3P

3PGPEP

R5P

E4P

PYROA

SUCOA

PRPP

DAH DQT DHS SME S5P PSM CHOAN NAN CD5 IGP

PPN HPP

BAPASSHSE PHSDHD

PIP SAK SDP DPI MDP

PHP PPSASE

GLN

SER

TRP

ASP

TYR

THRLYS

CYS

GLYASN

AKG GLU

Any

input

RNA

Gene

Transc.

RNAp

trans. EnzymesAA

mRNA

• Slowest transcription control

• Complex transcription factors

• Lowest metabolic overhead

• Easily reprogrammed

Any mRNA

Translation

Initiation codon

Any

inputAny

protein

• Fast translation control

• Complex RNAs

• Medium metabolic overhead

• Highly reprogrammable?

• Fastest allosteric feedback control

• Complex proteins

• High metabolic overhead

• Hard to reprogram

Page 85: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

App AppApplications

Router

Page 86: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Clean slate layering?• Two “macrolayers” with a new, higher “waist”

– Upper: Managing content, function, naming

– Lower: Managing physical resources, addressing

• Lower layers: map to physical addresses (PNA)

– Recursive “microlayers” of control and management

– Different scopes (more global and lumped to more

local and detailed)

– No global addresses, hide details, addresses

• Cleaner role of optimization and control?

• Integration with naming and addressing

• Align robustness and security

Page 87: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

SlowFast

Wasteful

Efficient

log

log

Example design

space:

Speed versus

efficiency

Faster

Cheaper

Design tradeoffs

Page 88: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

waste

ful

fragile

Sharpen

hard

bounds

bad

Find and

fix bugs

Complementary

approaches

Page 89: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

• Each focuses on few dimensions

• Important tradeoffs are across these dimensions

• Speed vs efficiency vs robustness vs …

• Robustness is most important for complexity

• Need “clean slate” theories

• Progress is encouraging

waste

ful

fragile?

slow

?

• Thermodynamics (Carnot)

• Communications (Shannon)

• Control (Bode)

• Computation (Turing)

Standard theories are severely limited

Page 90: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Robust

• Secure

• Scalable

• Evolvable

• Verifiable

• Maintainable

• Designable

• …

Fragile

• Not …

• Unverifiable

• Frozen

•…

Most dimensions are robustnessCollapse for visualization

fragile

Page 91: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

wasteful

fragile

• Important tradeoffs are across these dimensions

• Speed vs efficiency vsrobustness vs …

• Robustness is most important for complexity

• Collapse efficiency dimensions

waste

resources

waste time

Page 92: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

log

log

bad

But many existing

systems and architectures

are clearly far from any

fundamental limits.

?

??

So fixing “bugs”

in existing

architectures

has most

immediate

impact.

waste

ful

fragile

Note: “log” suggests

orders of magnitude

variations

Page 93: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Wasteful

Efficient

log

log

Brains?

Cells?

Conjecture: Cells and

brains are RYF but not

gratuitously fragile

fragile

They avoid

cross-layering?

Page 94: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

SlowFast

Wasteful

Efficient

log

log

DNA

Neurons

CMOS

Brains

What makes this possible?

Network

architecture

Cells

Page 95: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Embedded

virtual

actuator/

sensor

Network

cable

Controller

Lib

App

DIF

Networked embedded

Lib

Physical

plant

Page 96: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Embedded

virtual

actuator/

sensor

Network

cable

Controller

DIF

Physical

plant

Meta-layering of cyber-phys control

Page 97: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Physiology

Organs

Cells

Meta-layers

Page 98: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Physiology

Organs

Meta-layers

Prediction

Goals

Actions

errors

ActionsCo

rte

x

Page 99: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Physiology

Organs

Meta-layers

Prediction

Goals

Actions

errors

ActionsFrom

Information to

“Outformation” to

“Actformation”?

Page 100: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Physiology

Organs

Cells

Meta-layers

Page 101: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Maximize

allowable

fluctuations

in

Minimize

resulting

fluctuations

in(Evolution +

physiology)

2SpO

BP

wattsSimple

starting point.

Page 102: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

2SpO

BP

Maximize

MinimizeEV

HR

Control

error

error

Control

requirement

watts

functional requirements

Page 103: m rs ATP - Idaho National Laboratory · 2013-10-23 · ACA Upper layer autocatalysis •Fastest allosteric control •Complex proteins •High metabolic overhead •Hard to reprogram

Result of

control

requirements

2SpO

BP

EV

HR2VO

2VCO

watts

error

error

low

varhigh

watts

Control

requirement

Control

requirement

Finally VO2 and VCO2 don’t need tight

control and vary as needed, they don’t

change as much as watts, but much

more than spO2 or BP.


Recommended