+ All Categories
Home > Business > Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Date post: 26-May-2015
Category:
Upload: informa-australia
View: 282 times
Download: 2 times
Share this document with a friend
Description:
Marc Johns, Longwall Superintendent, North Wambo Coal Mine, Peabody Energy Australia delivered this presentation at the 2013 Longwall Conference. Longwall Conference is the optimal place for the industry to come together to discuss the latest advances in the industry, swap experiences and learn from the best operators in the business. For more information, please visit: http://www.longwallconference.com.au/2013
Popular Tags:
38
14 October 2013 Marc Johns, LW Superintendent Andrew Boyling, Mine Manager North Wambo Underground 2013 Longwall Conference
Transcript
Page 1: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

14 October 2013

Marc Johns, LW Superintendent

Andrew Boyling, Mine Manager

North Wambo Underground

2013 Longwall Conference

Page 2: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Peabody: The World’s Largest Private Sector Coal Company

2 Mining position and sales based on 2011 reported sales volumes in millions of tons. Reserves based on 2011 10-K filing in billions of tons.

Page 3: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

3

Australian Operations

Page 4: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Why Is Peabody in Australia?

● Australia is world’s fifth largest coal producer behind China, USA

India and Indonesia

● 60% of world’s seaborne metallurgical coal supply

● Mines close to port with access to rail

● Ports close to high-growth Asian markets

– 70% of Australia’s metallurgical coal exports and more than 94% of thermal

coal exports exported to Asian region in 2010

● Strong skills base

● Excellent safety records, innovation and standards

4

Page 5: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Australian Reserves

Peabody Now Third Largest Australia Coal Company by Reserves

5

~35 Year Reserve Life at Current Production

Reserves shown in short tons; Data based on most recently public company filings.

4013

3457

1400

959 811 776 708

467 333

93

0

500

1000

1500

2000

2500

3000

3500

4000

4500

BHP/BMA Xstrata Peabody Rio Tinto Anglo

Whitehaven New Hope Wesfarmers Gloucester Vale

Page 6: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

6

Wambo Operation

Page 7: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

7

Wambo Operation

● Wambo Mine complex is located in the Hunter Valley of New

South Wales, Australia.

● The mine is 14kms from Mount Thorley on the Golden Highway

at Warkworth. Wambo consists of an underground mine, open

cut mine, and CHPP.

● All areas work as a seven day operation.

● North Wambo Underground is a new longwall mine which

commenced development on 14 November 2005 under Excel

Coal ownership and continues under Peabody Energy Australia

ownership.

● The mine’s longwall is currently extracting Longwall block 7.

Page 8: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

8

Wambo UG History

Page 9: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

9

• 1969 – Operations commenced with ownership by a small group of individuals and Companies

• 1982 to 1991 – ownership by combination of Panaroya, Hartogen, Total Australia, GIO and CDF Minerals

• 1991 – Sumitomo Coal Mining Ltd

• 2001 – Excel Coal

• Oct 2006 to current – 75% Peabody Energy/25% Sumitomo

• Open Cut Operations

• Commenced in the early 1970’s (to 1998 as owner operated)

• 1998 to 2001 – closed

• 2001 to April 2013 – contractor

• April 2013 – Peabody Energy

• Underground Operations

• Commenced in the early 1970’s

• Underground mining has been non-stop via 6 mines (Charlie’s Hole, Wambo, Ridge Entry, Homestead, Wollemi, North Wambo)

• North Wambo commenced coaling November 2005

• Peabody Acquisition 2006

Wambo Ownership and History

Page 10: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

10

Wambo UG History

LW 3

LW 2

LW 1

LW 7

LW 6

LW 5

LW 4

LW 8

LW

9

LW

9A

Wambo Mine - (Wambo Seam) : 1972-1977

Ridge Mine - Whybrow Seam 1976-1981

Homestead Mine - Whybrow Seam 1979 – 1999 (10 LW Panels)

Page 11: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

11

Wambo UG History

LW 3

LW 2

LW 1

LW 7

LW 6

LW 5

LW 4

LW 8

LW

9

LW

9A

LW

12

LW

13

LW

10A

LW

10B

LW

11

Wollemi Mine - Whybrow Seam

1997– 2002 (4 LW Panels)

Page 12: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

12

LW 3

LW 2

LW 1

LW 7

LW 6

LW 5

LW 4

LW 8

LW 9

LW 9

A

LW 1

2

LW 1

3

LW 1

0ALW

10B

LW 1

1

Longwall 7

Longwall 8

Longwall 6Longwall 5

Longwall 4

L W1 SUMP DRIVAGE

48CT

LW5 I

nstall

ation

Roa

d

4 2 1 P ANEL

422 PANEL

49CT

51c t

52c t

ROTHBURY DRIFT

GLEN ALBERT DRIFT

1 in 8

1 in 8

SE2 HDGS

SE3 HDGS

SE3 HDG

S

SE3 HDG

S

SE2 HDGS

SE2 HDGS

422 PANEL

Longwall 3Longwall 2Longwall 1

United Mine - Longwalls LW1-LW8

(Arrowfield Seam) : 2002- to present

Wambo UG History

Page 13: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

13

North Wambo (Wambo Seam) : 2005 - to present

Wambo UG History

Page 14: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

14

North Wambo Overview

Page 15: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

15

NWU – Multi Seam Experience

● No significant strata issues either above or bellow workings. However we do put additional support into areas of goaf edges.

● Harder and slower cutting where there are no goaf influences.

● Have encountered many through seam boreholes. Only 1 has caused problems with water flowing up from below.

● No gas inflows.

● No water inflows however it is a consent condition to drain overlying workings. We have been delayed draining workings.

Page 16: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

16

LW-7 Operational Overview

Page 17: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

North Wambo Longwall

17

146 x PRS

• Joy 2 leg x 1,050t supports 1.75m wide

• Range 1.8 –3.2m (3.8m MG)

• RS20S controls

• Tip to face 400mm at 2.1m height

• Yield support density- >100t/m2

2 x AFC

• AFC – 2,500 tph continuous load, 3,000tph peak rate

• 850kW TTT drives

• 42mm chain

2 x Shearer

• Joy 7LS2a (1.675m) with JNA Face Boss software and Advanced Shearer Automation

2 x Macquarie Monorail

2 x SES Pump Station 2 x Ampcontrol Electrics

Page 18: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

NWU Longwall Geotechnical data

Seam Height

● The Wambo seam may vary between 1.8m and 2.4m in height.

Seam Grade

● The Wambo seam grade this block is 1 in 20 length of block and cross grade is 1 in 90 at the start and changes to 1 in 30 at about the 1500m mark.

Extraction Height

● The extraction height on the LW face will vary from 2.7m to 2.2m in height.

Performance

● Mine designed for 2.5 MTPA. Doing 5.4MTPA.

● Target 115m per week in most conditions.

Page 19: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

19

LW07 Metres Retreat Per Week

53.4

5

94

106

103.5

140

113.7

5

119.5

117

134.2

5

115.5

5

121.2

105.3

99.5

92

100.5

111.5

110.2

5 1

02

55.0

0

75.0

78

83.0

97.8

84.4

93.0

86.5

0

90.7

5

85.2

5

88.0

0

75.5

0

90.5

0

84.5

81.0

0

83.0

0

88.0

0

80.5

0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 37 38 39

Metr

es R

etr

eat

per

Week

No. Of Weeks

North Wambo Underground Longwall 07 Retreat

Metres retreatCutting hoursBudget metres retreat

LW07 Average 107.7

Ramp Up

NWU Record

Ramp

down

Target 90 cutting

hrs

Xmas/NewYear

Page 20: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Longwall 7

20

Cutting height = 2.2m

Block width = 250m

Block length = 3295m

Average retreat per week 110m

Best week 142m retreat

Page 21: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Longwall 6 Recovery

21

• Bolt up 9.5 Days

• LW6 to 7 move 21 days

• 7 days negative float

• No injuries

• Ramp up to full production in

about 2 weeks

Page 22: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Operating discipline

● Plan for maintenance, stick to plan

● Ensure that equipment overhauled to best

standard at start of block

● Secondary support etc. are installed on MG side

– Once going there are no delays

● 2 x Everything except shields

– Maintenance can be done offline and some rebuilds

done on site

– Good commissioning of electrical components

22

Page 23: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Mechanical Innovation

● Extremely simple face only 6 solenoids per shield

● No shield sprays. Keep people out of dust.

● Pilot pressure on solenoids. – Improves reliability.

● Electro hydraulic boot end (safer and reduces hosing).

● Dump valve relocation for faster response.

● Modification of BE to surf across poor floor.

● Life cycle analysis of hosing to minimise failure.

● Galvanised chain.

23

Page 24: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Dump Valve

24

Page 25: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Electrical Innovation

● Custom wiring looms for LW installation.

● Web cams inside enclosures.

● TG drive modifications to reduce wiring.

● LED lights.

25

Page 26: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

26

Page 27: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Mining Innovation

● MBR ventilation.

● TG horizon line.

● Rigid monorail and airtrack.

● TG dusting down pipeline.

● CH4 / BSL interlock.

● Belt downtime reduction.

– NDT testing of rollers.

– Systematic testing of belt switches.

27

Page 28: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Longwall Face: Ventilation

● Low gas in-seam but higher

gas in surrounding strata.

● Workings above complicate

post drainage.

● Long panels 3.4km.

● Low Longwall face (2.2m).

Medium roadways (2.7m).

● Gate roads stand in goaf.

● Air goes to back of goaf

with seam gradient.

● Seal deterioration caused

interconnection LW1 - LW2.

● Rider seams have oxidation

potential (Spon Com risk). 28

Page 29: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

LW MBR System D

100.0

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

2

5 7 9 11

13

14

15

16

18

19

20

21

23

24

Main Headings

A HDG

4

1

4

3

2

1

40

37

B HDG

C HDG

Ta

ilga

te 1

31

29.2

29.2

87.22

87.22

87.22

23.4

68.523.45

57.48 23.62

21.53

41.0463.33

29.5

5

29.7

2

30.3

3

33.9

7

30.67

23.44

40.019.53

10.4

6

11.6

6

B H

DG

29.2

29.2

29.2

29.2

29.2

29.2

38.5

38.5

38.5

38.5

64.2

64.2

64.2

29.2

29.2

40.0

40.0

29.2

29.2

29.2

29.2

41.3

35.7

35.7

35.7

35.1

71.1

2

38.5

Main Headings

A HDG

B HDG

C HDG

Ma

ing

ate

1

A H

DG

59.2

65.5

8

44.9

21.7

6

33.4

50.7

68.5

386.9

8

35.54

14.4

3

54.0

50.7

26.2

5

36.3

Main Headings

A HDG

B HDG

C HDG

Main Headings

A HDG

B HDG

C HDG

F H

DG

F H

DG

A H

DGB

HD

G

4

Ma

ing

ate

2

3

1

13

38

30.4

100.0

100.0

38.5

100.0

100.0

100.0

100.0

100.0

100.0

100.0

90.0

90.0

110.0

110.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

102.2

102.2

87.8

92.0

92.0

122.0

114.0

86.0

100.0

114.01

00.0

100.0

100.0

100.0

100.0

86.0

100.0

114.0

100.0

100.0

100.0

95.0

95.0

91.0

105.0

114.0

100.0

100.0

100.0

86.0

100.0

100.0

100.0

100.0

100.0

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

38.5

41.0

38.5

38.5

112.81

00.0

37.4

37.4

37.4

37.4

37.4

37.4

37.4

37.4

37.4

37.4

35.1

35.1

35.1

37.4

37.4

37.4

37.4

37.4

35.1

37.4

37.4

37.4

35.1

37.4

37.4

37.4

37.4

37.4

37.4

37.4

35.1

35.1

100.0

100.0

100.0

100.0

100.0

100.0

100.0

110.0

110.0

90.0

90.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

87.2

100.0

100.0

100.0

100.0

100.0

112.8100.0

100.0

100.0

100.0

100.0

100.0

100.0

90.0

90.0

97.2

110.0

112.81

00.0

100.0

100.0

100.0

100.0

87.2

100.0

112.81

00.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

87.2

100.0

100.0

100.0

100.0

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

A H

DGB

HD

G

Ma

ing

ate

2

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1B

HD

G

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

Ma

ing

ate

1

A H

DG

B H

DG

6

7

8

9

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

5

14

6

7

8

9

10

11

12

13

15

18

19

20

21

22

23

24

25

29

30

31

32

33

34

35

36

37

5

4

41

42

14

40

3

1 2 1 1 2

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

B H

DG

Ma

ing

ate

3

B H

DG

B H

DG

Ma

ing

ate

3

B H

DG

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

B H

DG

Ma

ing

ate

3

B H

DG

Ma

ing

ate

4

3

F H

DG

42

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

A H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

5

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

6

A H

DG

B H

DG

Ma

ing

ate

7

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

Ma

ing

ate

8

A H

DG

B H

DG

4

1

4

2

3

4

2

3

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

29.2

45.4

8

66.2

5

47.5

66.2

5

69.1

32.3

32.3

32.3100.0

100.0

100.0

102.7

102.7

70.0

70.0

100.27

100.27

70.0 100.27

100.0

100.0

31.6

31.6

100.0

87.9

8

88.2

6

51.4

5

49.9

2

31.6

31.6

31.6 31.6

57.2

29.2

29.2

29.2

29.2

33.4

33.4

12

36.317.7

36.317.7

29.2

17

50.13

29.2

29.2

22

111.51

00.0

100.0

100.0

80.0

80.0

120.0

120.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

88.51

00.0

111.5

100.0

88.5

100.0

111.5

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.01

00.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

94.1

100.0

94.4

100.0

73.5

85.0

100.0

100.0

90.0

110.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0100.0

100.0100.0

100.0

100.0

100.0

31.6

105.6100.0

31.6

100.0100.0

110.0

110.0

100.0

90.09

0.0

100.0

100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0

105.6100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0

31.6

100.0

105.6100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

100.0100.0

96.9

96.9

31.6

31.6

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

100.0

100.0

31.6

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

100.0

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

31.6

100.0

100.0

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6100.0

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

31.6

100.0

31.6

100.0

100.0

31.6

100.0

100.0

31.6

96.9

96.9

31.6

31.6

31.6

31.6

57.2

57.2

31.6

4

100.0

B H

DG

49.9

50.9

38.1

64.9

38.1

35.1

37.8

35.1

37.8

37.8

37.8 42.8

42.8

100.0270.28

70.27

85.15

85.13

39.7

7

41.1

4

170.30

170.27

39.5

87.15

87.13 99.98 157.42

85.13

85.13

85.13

85.13

87.13

87.13

42.8

42.8

100.0

31.6

30.5

42.3

30.0

30.0

42.3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

41

42

1 2

40.0

85.13

85.13

85.13

85.13

87.13

87.13

40.0

40.0 1 2

40.0

85.13

85.13

85.13

85.13

87.13

87.13

40.0

40.0 1 2

40.0

75.13

75.13

85.13

85.13

85.13

85.13

40.0

40.0

40.0

40.0

40.0

40.0

40.0

31.6

31.6

55.0 43.6 85.1

84.13

45.7

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

100.0

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

30.2

30.2

45.7

27.3

61.8

61.8

4

5

6

7

8

9

10

11

12

13

14

15

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

22.2

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

30.0

30.0

59.7

27.3

81.0

36

38

66.7

66.7

37.0

37.0

37.0

A H

DG

100.0

30.4

100.0

103.4

30.4

100.0

96.6

30.4

100.2

6

100.0

30.4

100.0

100.0

30.4

100.0

100.0

30.4

100.0

100.0

30.4

100.0

100.0

30.4

100.0

100.0

28.7

100.0

100.0

28.7

100.0

110.5

28.7

100.0

100.0

30.5

101.0

100.0

110.5

100.0

100.0

100.0

100.0

100.4

46 9

0.0

100.0

110.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.5

100.2

100.2

100.2

100.2

100.2

100.2

100.2

100.2

100.0

100.2

100.0

100.2

3

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

Ta

ilga

te 1

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

B H

DG

A H

DG

37

39

40

90.3

7

8

100.0

2

5 7

Main Headings

A HDG

4

2

1

B HDG

C HDG

Ta

ilga

te 1

31

B H

DG

F H

DG

6

A H

DG

3

4

20.0

41.6

20.6

4

59.2

64.0

59.1

59.1

59.1

DRAINBUND

41

10

29.2

29.2

40.0 58.1

58.1

58.1

30.5

30.5

30.5

30.5

30.5

30.5

30.5

30.5

30.5

30.5

31.3

151/2

31.5

42.0

108.0

86.0

100.0

100.0

16

28.7

101.0

28.7

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

32.0

32.7

33.4

34.1

34.8

35.5

36.2

36.9

37.6

38.3

18.32

36.9

87.8

40.6

2

11.8

2

26.6

38.5

41.0

41.0

41.0

41.0

38.5

41.0

41.0

41.0

38.5

41.0

41.0

38.5

38.5

41.0

41.0

41.0

38

38.6

37.3

62.8 3

6.5

57.1

43.1

19.49

A H

DG

23

38.5

39

41.0

114.0

114.0

100.0

86.0

20.1 79.9

42.0

27.4

11.3

42.0

44.7

17.0

37.4

100.0

37.37

1

36.6

2

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

31.6

33.6

31.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

33.6

32.1

A H

DG

100.0

102.7

54.0

46.2

92.5

F H

DG

63.0

D

26.6

DD

50.13

50.13

36.3

36.3

36.3

92.5

63.0

32.3

32.3

32.3

31.6

26.1

9

47.5

66.3

1

37.4

36.6

1

2

26.6

DD

100.0

35.1

37

35.1

38

100.0

100.0

37.4

72.2

85.0

35.1

42

39

1 37.8

37.8

38.7

45.44

45.45

209.96

35.1

40

41

47.9

35.1

35.1

35.1

35.1

210.0

SU

MP

10.0

10.0

R R MAN

DO

OR O

NLY

SU

MP

38.5

31.6

16

15a

31.6

17

38.5

50.0

50.0

50.0

111.5

0

31.6

27

26a

31.6

26

50.0

50.0

50.0

111.5

0

28

26.1

9

48.0

66.8

1

37.4

36.6

1

2

26.6

27

29.2

29.2 28

29.2

29.2

29.2

110.4 32.3 38.8

110.0 110.4 36.3 32.3 30.5

110.0 110.4 36.3 32.3 41.2

25

29.2

29.2

36.3

12.7

93.0

36.3110.0

29.2

26

DD

33.6

100.0

111.5

5

33.6

100.0

4

33.6

90.0

7

33.6

110.0

6

33.6

100.0

9

33.6

100.0

8

33.6

100.0

11

33.6

100.0

10

33.6

100.0

13

33.6

94.1

0

12

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

100.0

105.6

Ma

ing

ate

4

16

31.6

Ma

ing

ate

4

100.0

15a

31.6

44.4

50.0

50.0

50.0

105.6

Ma

ing

ate

426a

31.644.4

50.0

50.0

50.0

31.6

27

100.0

100.0

100.0

100.0

100.0

100.0

100.0

DD

Air lock

Air lockAir lock

MAN

DO

OR O

NLY Air l

ock

Air lock

Air lock

R

39

38

31.6

33.6

46.6

35.1

41

40

31.6

31.6

105.91

00.0

35.1

35.1

39

38

31.6

33.6

46.6

35.1

62.0

85.0

157.45100.00

10.0

10.0

10.0

10.0

R

30.5

3

50.2

49.6

50.7

69.1

7.5 7.57.5

31.6

62.5

C

Air lock

D

1

40.9

30.1

42.8

D

32.6

5.0

31.1

29

14

32.1

15

32.1

17

32.1

19

32.1

21

32.1

23

32.1

25

32.1

29

32.1

31

32.1

33

32.1

35

32.1

37

32.1

18

32.1

20

32.1

22

32.1

24

32.1

26

32.1

28

32.1

30

32.1

32

32.1

34

32.1

36

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

32.1

100.0

27a

31.6

44.4

50.0

50.0

50.0

31.6

28

16a

31.6

44.4

50.0

50.0

50.0

31.6

100.0

100.0

100.0

100.0

31.6

82.8

82.8

39

40

D

43.6

19.0

7.5

DD

DD

C

D

R

R

DD

R

Air lock

Bobcat

Door

DD

Bobcat

Door

RR

D

shaft

124.2

73.7 97.1 31.6

19.5

19.5

30.0

31.6

31.6

19.5

27.3

68.2

88.1

2

3

7.5

31.6

31.6

36.6

19.5

12.3

86.13

7.5

19.5

49.5

12.3

1

36.6

66.1

67.4

49.5

49.5

31.6

31.6

85.1 140.7

97.1

38.7

23.9

1

25.7

7.5

R

DD

11.4

19.5

30.1

RR

40m3/s

80m3/s

MBR Regulator

120m3/s

10m3/s

70m3/s

Goaf

Stream

#1

Goaf

Stream

#2

Page 30: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Air track for Transporting belt structure

● Increased production due to less time handling structure.

● Men able to resume production whilst 2 people unload

structure at next CT.

● Less injuries associated with the air track .

30

Page 31: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Pantech relocation

● 2 transformers and 2 pump stations (Pantech).

● Power up next Pantech prior to move (Leapfrog).

● This means that only the services monorail has to be

moved forward when window is reached.

● This enables Pantech moves to be done in 1.5 – 2Hrs.

● Maintenance is done off line.

31

Page 32: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Automation

● LASC

– Auto straightening removes personnel from dust.

– Eliminates shiftly straighteners.

– Adds about 5 – 10 metres retreat per week.

● Advanced shearer automation

– Shearer Gate automation.

– Incremental Horizon control.

– Most problems occur in manual control.

– Have shearer operate in auto with minimal amount of manual

over ride.

32

Page 33: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

LASC

33

Page 34: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

34

Shearer Gate End Automation

● Automation adjusts cowls.

● Drum positions.

● Speed changes.

● Direction changes (waits for shield advance).

● Takes approximately 1 minute per shear less.

Page 35: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

35

Page 36: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Auto Gate Cut Out

36

Manual Shearer Gate End cut on average took 14 minutes and 22 seconds from RS23 (PL2) to RS23

The new Advanced Shearer Automation Gate End cut on average now takes 13 minutes and 16

seconds from RS23 (PL2) to RS23

13m16s

Shorter Shuffle 18m/m

New Shearer Gate End Automation

14m22s

Previous Shearer Gate End Manual Cut

Page 37: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Incremental Horizon Control

------- Manual ------- Pre-Defined Roof ------- Recorded Roof ------- Pre-Defined Floor ------- Override ------- FX1 ------- Incremental

O/R

------- Height

Threshold

Operator lowers but

function cancels at

Incremental Override

setting.

Operator raises to cancel

Incremental Override

Function. Drum returns to

Profile.

Operator raises but

function cancels at

Incremental Override

setting

√ √ √

Treat all these button pushes like One Touch Shear on a Miner

Page 38: Marc Johns, NPeabody Energy Australia - CASE STUDY – North Wambo Coal Mine

Future Upgrades

● CME initiated wedge cuts.

● Integrated power management.

– BSL, AFC, TX, conveyor optimisation.

– Allow shearer speed to be adjusted at each part of shear.

● CH4 spike minimisation via shearer speed control.

– Slowing down at shield 115 when gas is already high to minimise

total delays.

● Anti collision.

– Change in pan angles and shields not in correct positions more

likely to cause collisions.

38


Recommended