+ All Categories
Home > Documents > Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the...

Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the...

Date post: 27-Mar-2018
Category:
Upload: trinhthien
View: 216 times
Download: 1 times
Share this document with a friend
21
Material Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh University of Michigan, Ann Arbor Seventh U.S. National Congress on Computational Mechanics Albuquerque, New Mexico, July 27–31, 2003
Transcript
Page 1: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Material Forces in the Context ofBiological Tissue Remodelling

H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

University of Michigan, Ann Arbor

Seventh U.S. National Congress on Computational Mechanics

Albuquerque, New Mexico, July 27–31, 2003

Page 2: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Growth and Remodelling

Growth is a change in density due to mass transport(Epstein & Maugin [2000], Tao et al. [2001], Taber &Humphrey [2001], Humphrey & Rajagopal [2002],Lubarda & Hoger [2002], Kuhl & Steinmann [2002], KGet al. [2003]) Tissue is open with respect to mass Multiple species, treated by mixture theory

Remodelling is an evolution of the microstructure (Taber& Humphrey [2001], Ambrosi & Mollica [2002],Humphrey & Rajagopal [2002]) Local reconfiguration of material: self-assembly Evolution of “reference” configuration: remodelled

configuration

Page 3: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Growth of tendon constructs

A B

C D

Calve et al. 2003

Page 4: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Remodelling of collagen during growth

Calve et al. 2003

Page 5: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Remodelling during growth

Hirsch et al. 1998

Page 6: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Remodelling of bone

University of Wisconsin, Dept. of Anatomy

The tissue reconfigures by changing its microstructurewhen stressed (Wolff [1892])

Page 7: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Remodelling of collagen due to load while healing

Provenzano et al. 2003

Page 8: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Development of Biological Tissue

Remodelling is the reconfiguration of the material Stress-driven “Preferred” configuration that varies pointwise and is

in general incompatible. A further configurationalchange can occur, resulting in a compatibleconfiguration.

Biological tissue is capable of changes in configurationby motion of particles relative to ambient material Motion in material space/Configurational change

Page 9: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Continuum Field Formulation

F

X

x

Kr

Kc

KF*

X*

Ω0

Ω∗

Ωtϕ

u∗κ

Kr is given. κ(X, t) =? (motion in material space)

Page 10: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Continuum Field Formulation

F

X

x

Kg

Ke

KF*

X*

Ω0

Ω∗

Ωtϕ

u∗κ

Kg is a kinematic “growth” tensor , K

e and F∗ are

elastic deformation gradients—internal stress problem

Page 11: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

A Variational Method

F

X

x

Kr

Kc

KF*

X*

Ω0

Ω∗

Ωtϕ

u∗κ

Π[u∗, κ] :=

Ω∗

ψ∗(F∗, Kc, X∗)dV ∗−

Ω∗

f∗· (u∗ + κ)dV ∗

∂Ω∗

t∗ · (u∗ + κ)dA∗

Page 12: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

A Variational Method

Variation in spatial position: u∗

ε= u

∗ + εδu∗

Equilibrium with respect to u∗:

d

dεΠ[u∗

ε,κ]

ε=0= 0

Euler-Lagrange equations:

Div∗P∗ + f∗ = 0, in Ω∗; P∗N∗ = t∗ on ∂Ω∗; where P∗ :=∂ψ∗

∂F∗

Quasistatic balance of linear momentum in remodelledconfiguration, Ω∗

Page 13: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

A Variational Method

Equilibrium with respect to material motion:κε = κ + εδκ

d

dεΠ[u∗,κε]

ε=0= 0

Euler-Lagrange equations:

−Div∗(ψ∗1 − F

∗TP

∗ + Σ∗) +

∂ψ∗

∂X∗

= 0 in Ω∗,

(

ψ∗1 − F

∗TP

∗ + Σ∗

)

N∗ = 0 on ∂Ω∗

where Σ∗ :=

∂ψ∗

∂KcK

cT

Eshelby stress: ψ∗1−F

∗TP

∗; configurational stress: Σ∗

Page 14: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

κ = L∗− L, u∗ = l − L∗

Π[u∗, κ] =1

2k∗(κ + L − Lr

1)2 +1

2k∗(κ + L − Lr

2)2 + 2 ·1

2ku∗2

− T (u∗ + κ)

∂Π

∂u∗

= 0 ⇒ 2ku∗ = T ;∂Π

∂κ= 0 ⇒ κ =

k

k∗

u∗−

(

L −

Lr1

+ Lr2

2

)

Page 15: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

Kr

Kc

F*

t

u*κκκ

Kr =

1 + β 0 0

0 1 + γ 0

0 0 1 + γ

, t∗ = δeR

• ψ∗(F∗, Kc, X∗) = ψ∗

1(F∗) + ψ∗

2(Kc), (compressible neo-Hookean)

Page 16: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1−4

−2

0

2

4

6

8

10

12x 10

−13 Sf−>0 (β=0.0, γ=0.0)

κ(r

adia

l)

R

Kr =

1 0 0

0 1 0

0 0 1

, t∗ = 0 Pa

Page 17: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45Sf −> 0 (β=0.2, γ=0.2−>0.6)

κ(r

adia

l)

R

Kr =

1 + β 0 0

0 1 + γ 0

0 0 1 + γ

, β = 0.2, γ = 0.2 − 0.6; t∗ = 0 Pa

Page 18: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045Sf ≠ 0 (β=0.0, γ=0.0)

κ(r

adia

l)

R

Kr =

1 0 0

0 1 0

0 0 1

, t∗ ≈ 109eR Pa

Page 19: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35Sf ≠ 0 (β=0.2, γ=0.2)

κ(r

adia

l)

R

Kr =

1.2 0 0

0 1.2 0

0 0 1.2

, t∗ ≈ 109eR Pa

Page 20: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remodelling Examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Sf ≠ 0 (β=0.2, γ=0.5)

κ(r

adia

l)

R

Kr =

1.2 0 0

0 1.5 0

0 0 1.5

, t∗ ≈ 109eR Pa

Page 21: Material Forces in the Context of ... - Harish Narayanan · PDF fileMaterial Forces in the Context of Biological Tissue Remodelling H. Narayanan, K. Garikipati, E. M. Arruda, K. Grosh

Remarks

Remodelling is coupled with growth—separatetreatment for conceptual clarity

The remodelled configuration, κ depends uponψ∗(•,Kc, •)

Remodelled configuration is assumed to be anequilibrium state Perturb conditions—new equilibrium

Self-assembly processes in materials are similarlydescribed by minimizing the Gibbs free energy of thesystems with respect to the configuration


Recommended