+ All Categories
Home > Documents > Material Properties - nanoHUB.org

Material Properties - nanoHUB.org

Date post: 20-Jan-2022
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
40
ECE-305: Spring 2018 Material Properties Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] Pierret, Semiconductor Device Fundamentals (SDF) Chapter 1 (pp. 3-19) Chapter 2 (pp. 22-32) 1 1/11/2018
Transcript
Page 1: Material Properties - nanoHUB.org

Bermel ECE 305 S18

ECE-305: Spring 2018

Material Properties

Professor Peter BermelElectrical and Computer Engineering

Purdue University, West Lafayette, IN [email protected]

Pierret, Semiconductor Device Fundamentals (SDF)Chapter 1 (pp. 3-19)Chapter 2 (pp. 22-32)

11/11/2018

Page 2: Material Properties - nanoHUB.org

Bermel ECE 305 S18 2

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

Page 3: Material Properties - nanoHUB.org

semiconductors

3http://en.wikipedia.org/wiki/Periodic_table

column4

1/11/2018

Bermel ECE 305 S18

Page 4: Material Properties - nanoHUB.org

4

carbon energy levels

1s2

2s2

2p64 valence electrons8 valence states

“core level”

Bermel ECE 305 S18

energ

y

1/11/2018

Page 5: Material Properties - nanoHUB.org

Graphene: 2011 Nobel Prize in Physics

5

Graphene is a one-atom-thick planar crystalline carbon sheet with a triangular lattice with 2 atoms per unit cell.

source: CNTBands 2.7.2

https://nanohub.org/resources/1838

Bermel ECE 305 S181/11/2018

Page 6: Material Properties - nanoHUB.org

triangular lattice + 2 atom basis

6Bermel ECE 305 S18

a

1/11/2018

a

Page 7: Material Properties - nanoHUB.org

Bermel ECE 305 S18 7

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

Page 8: Material Properties - nanoHUB.org

8

silicon energy levels

1s2

2s2

2p6

3s2

3p2

4s0

4 valence electrons8 valence states

“core levels”

Bermel ECE 305 S18

energ

y

1/11/2018

Page 9: Material Properties - nanoHUB.org

“cartoon” Si crystal

Bermel ECE 305 S18 91/11/2018

What would you get from combining carbon in the same way?

Page 10: Material Properties - nanoHUB.org

3D crystal structure

10http://en.wikipedia.org/wiki/Bravais_lattice

Bermel ECE 305 S181/11/2018

Page 11: Material Properties - nanoHUB.org

Bermel ECE 305 S1811

silicon in diamond lattice

https://nanohub.org/tools/crystal_viewer

1/11/2018

Page 12: Material Properties - nanoHUB.org

Bermel ECE 305 S1812

The diamond lattice

https://nanohub.org/tools/crystal_viewer

Atoms per unit cell

8 times 1/8 + 6 times ½ + 4

8 atoms per unit cell

1/11/2018

Page 13: Material Properties - nanoHUB.org

Bermel ECE 305 S1813

Silicon: nearest neighbor (NN) spacing

https://nanohub.org/tools/crystal_viewer

1/11/2018

Page 14: Material Properties - nanoHUB.org

Si atoms in a solid

18

1) In a Si crystal, each atom occupies, a specific location in a crystal lattice.

2) Polycrystalline Si consider of many crystalline “grains” with different orientations.

3) In amorphous Si, the atoms are more or less randomly distributed throughout the solid.

Bermel ECE 305 S181/11/2018

Page 15: Material Properties - nanoHUB.org

semiconductors

19http://en.wikipedia.org/wiki/Periodic_table

column4

Bermel ECE 305 S181/11/2018

Page 16: Material Properties - nanoHUB.org

semiconductors

20http://en.wikipedia.org/wiki/Periodic_table

Col.3

Col.5

Bermel ECE 305 S181/11/2018

Page 17: Material Properties - nanoHUB.org

Bermel ECE 305 S18 21

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

✔✔

Page 18: Material Properties - nanoHUB.org

Bermel ECE 305 S1822

Miller index prescription for describing planes

x

y

z

2a

a

2a

x, y, and z-axis intercepts:

2a, 1a, 2a2, 1, 2

invert:

½. 1, ½

Rationalize:

1, 2, 1

(1, 2, 1) plane

1/11/2018

Page 19: Material Properties - nanoHUB.org

Bermel ECE 305 S1823

question

Where does this prescription come from?

Answer: If we remember the equation for a plane, we can figure it out.

1/11/2018

Page 20: Material Properties - nanoHUB.org

Bermel ECE 305 S1824

where it comes from

x

y

z

2a

a

2a

(1, 2, 1) plane

equation of a plane:

x

xint

+y

yint

+z

zint

= 1

describe with the numbers:

1

xint

,1

yint

,1

zint

equivalent to:

1

xint

a,

1

yint

a,

1

zint

a

1/11/2018

http://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_draw.php

Page 21: Material Properties - nanoHUB.org

Bermel ECE 305 S1825

prescription for describing directions

x

y

z

3a

2a

2a

equation of a vector:

v = 2ax + 2ay + 3az

describe with components:

2a,2a,3a

equivalent to:

2,2,3

v = 2,2,3éë ùû

1/11/2018

Page 22: Material Properties - nanoHUB.org

Bermel ECE 305 S1826

direction normal to a plane

x

y

z

2a

a

2a

(1, 2, 1) plane

v = 1,2,1éë ùû

Why is [1, 2, 1] normal to (1, 2, 1)?

1/11/2018

Page 23: Material Properties - nanoHUB.org

Bermel ECE 305 S18

27

where it comes from

x

y

z

2a

a

2a

(1, 2, 1) plane

N = 1,2,1éë ùû

equation of a plane:

f x, y,z( ) = x

xint

+y

yint

+z

zint

= 1

normal to a plane:

N = Ñf x, y, z( ) = ¶ f

¶xx +

¶ f

¶yy +

¶ f

¶xz

N =

1

xint

x +1

yint

y +1

zint

z

(gradient)

1/11/2018

Page 24: Material Properties - nanoHUB.org

Bermel ECE 305 S1828

angle between planes

(1, 0, 0) plane

N

1= 1,0,0éë ùû

N

2= 1,1,1éë ùû

q

N

N

2= N

1N

2cosq

(KOH etching)

1/11/2018

Page 25: Material Properties - nanoHUB.org

Bermel ECE 305 S1829

angle between planes

cosq =

N

N

2

N1N

2

N

1= h

1,k

1,l

1éë ùû

N

2= h

2,k

2,l

2éë ùû

cosq =h

1h

2+ k

1k

2+ l

1l2

h1

2 + k1

2 + l1

2 h2

2 + k2

2 + l2

2

N

1= 1,0,0éë ùû

N

2= 1,1,1éë ùû

cosq =1+ 0+ 0

12 + 02 + 02 12

2 +12

2 +12

2

cosq =

1

3

q = 54.7

1/11/2018

Page 26: Material Properties - nanoHUB.org

Bermel ECE 305 S1830

summary

h k l( )

h k léë ùû

A specific plane.

A direction normal to the plane above.

h k l{ } A set of equivalent planes.

h k l A set of equivalent directions.

1/11/2018

Page 27: Material Properties - nanoHUB.org

Bermel ECE 305 S1831

what plane is this?

x

y

z

a

a

-a

a 2a 3a

1/11/2018

Page 28: Material Properties - nanoHUB.org

Bermel ECE 305 S18

32

what plane is this?

y

x

z

1/11/2018

Page 29: Material Properties - nanoHUB.org

Bermel ECE 305 S1833

Silicon: atoms / cm2 on (100)

https://nanohub.org/tools/crystal_viewer

Lattice constant: 5.4307 Ang

Atoms on face = 4 times ¼ +1 = 2

Ns = 2/a2

Ns = 6.81x 1014 /cm2

1/11/2018

Page 30: Material Properties - nanoHUB.org

Bermel ECE 305 S18 34

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

✔✔✔

Page 31: Material Properties - nanoHUB.org

35

silicon energy levels

1s2

2s2

2p6

3s2

3p2

4s0

4 valence electrons8 valence states

“core levels”

Bermel ECE 305 S18

energ

y

1/11/2018

Page 32: Material Properties - nanoHUB.org

36

quantization of energy levels

+

n = 1 n = 2

n = 3

E

H= -

13.6

n2eV n = 1,2,3,...

Hydrogen atom

1/11/2018 Bermel ECE 305 S18

Page 33: Material Properties - nanoHUB.org

Bermel ECE 305 S18 37

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

✔✔✔✔

Page 34: Material Properties - nanoHUB.org

38

silicon energy levels energy bands

Si crystal

Bermel ECE 305 S18

3S2

3P2

energ

y

4Natoms statesconduction “band”

valence “band” 4Natoms states

“forbidden gap”

T = 0 K

1/11/2018

Page 35: Material Properties - nanoHUB.org

39

silicon energy levels energy bands

Si crystal

Bermel ECE 305 S18

3S2

3P2

energ

y

4Natoms statesconduction “band”

valence “band” 4Natoms states

“forbidden gap”

• • • • • • • • •

• • • • • • • • •

E =

3

2k

BT = 0.026 eV

T = 300 K

1/11/2018

Page 36: Material Properties - nanoHUB.org

40

energy band diagrams

Bermel ECE 305 S18

valence “band”: highestfilled band

“forbidden gap”

• • • • • • • • • • • • •

• • • • • • • • • • • • • EC

EV

• • • • • • • • •

• • • • • • • • •

E

G

p = nicm-3

n = p = nicm-3

1/11/2018

Conduction band: first partially empty band above filled valence band

energ

y

Page 37: Material Properties - nanoHUB.org

Si atoms1s22s22p63s22p2

C atoms1s22s22p2

2s – 2 states2p – 6 states

For N atoms:

2s line –2N-fold degenerate

2p line –6N-fold degenerate

energy bands versus atomic separation

1/11/2018 Bermel ECE 305 S18 41

Page 38: Material Properties - nanoHUB.org

Empty states

Energy

42

insulators metals semiconductors

1/11/2018 Bermel ECE 305 S18

do conduct electricity well

don’t conduct electricity well

in-between, but can be controlled

EC

E

C

EV E

V

E

G» 9 eV (SiO

2)

E

G»1.1eV (Si)

Filled states

Page 39: Material Properties - nanoHUB.org

Bermel ECE 305 S18 43

outline

1. Graphene

2. Silicon

3. Miller indices

4. Quantization of energy levels

5. Energy bands

6. Electrons and holes

7. Intrinsic carriers

8. Doping

1/11/2018

✔✔✔✔✔

Page 40: Material Properties - nanoHUB.org

summary

1/11/2018 Bermel ECE 305 S18 44

1. Most solid materials are crystals, which fill space with periodically repeated elements

2. Showed how atomic energy level quantization leads to energy band formation in materials

3. Three types of materials: insulators, metals, and semiconductors


Recommended