+ All Categories
Home > Education > Mathcad cms (component mode synthesis) analysis

Mathcad cms (component mode synthesis) analysis

Date post: 09-Feb-2017
Category:
Upload: julio-banks
View: 103 times
Download: 2 times
Share this document with a friend
19
Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd Component Mode Synthesis by Julio C. Banks, P.E. The treatment of large structural systems may be simplified by dividing the system into smaller systems called components . The components are related through the displacement, and force conditions at their junction points. Each component is represented by mode shapes (or functions) . The sum of the component mode shape functions allows the satisfaction of the displacement and force conditions at the junctions [1]. α 1 m 1 α L 2 L 1 = L 1 1 L 2 α L 1 Component 1: M 11 1 5 M 12 1 6 M 21 M 12 M 22 1 7 Component 2: M 33 1.0α M 34 1 2 α M 35 1 5 α M 43 M 34 M 44 1 3 α M 45 1 6 α M 53 M 35 M 54 M 45 M 55 1 9 α Component 3: M 66 α Julio C. Banks, PE [email protected] page 1 of 11
Transcript
Page 1: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Component Mode Synthesisby Julio C. Banks, P.E.

The treatment of large structural systems may be simplified by dividing the system into smallersystems called components . The components are related through the displacement, and force conditions at their junction points. Each component is represented by mode shapes (orfunctions) . The sum of the component mode shape functions allows the satisfaction of thedisplacement and force conditions at the junctions [1].

α 1 m 1 αL2

L1= L1 1 L2 αL1

Component 1: M1 11

5 M1 2

1

6

M2 1 M1 2 M2 21

7

Component 2: M3 3 1.0α M3 41

2α M3 5

1

M4 3 M3 4 M4 41

3α M4 5

1

M5 3 M3 5 M5 4 M4 5 M5 51

Component 3: M6 6 α

Julio C. Banks, PE [email protected] page 1 of 11

Page 2: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

M

0.2000

0.1667

0.0000

0.0000

0.0000

0.0000

0.1667

0.1429

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

0.5000

0.2000

0.0000

0.0000

0.0000

0.5000

0.3333

0.1667

0.0000

0.0000

0.0000

0.2000

0.1667

0.1111

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

1.0000

mL1

E 1 I 1 K1 1 4 K1 2 6 K2 1 K1 2

K2 2 12 K5 5 28.81

α3

K6 6 0

K

4.00

6.00

0.00

0.00

0.00

0.00

6.00

12.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

28.80

0.00

0.00

0.00

0.00

0.00

0.00

0.00

E I

L13

1

0

2

2

1

0

3

6

0

1

0

0

0

1

1

α

0

0

1

4

α

12

α2

1

0

0

0

p1

p2

p3

p4

P5

P6

0=

Apply the nonzero diagonal criterion to select the independent (generalized) coordinates, p.

1

0

2

2

0

1

0

0

0

1

1

α

0

0

1

4

α

12

α

p1

p3

p4

P5

1

0

3

6

1

0

0

0

p2

p6

=

Julio C. Banks, PE [email protected] page 2 of 11

Page 3: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Or S p Qq=

where S

1

0

2

2

0

1

0

0

0

1

1

α

0

0

1

4

α

12

α2

= and Q

1

0

3

6

1

0

0

0

=

Let p2 q1= and p6 q2= therefore,

1

0

0

2

2

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

α

0

0

0

0

1

4

α

12

α2

0

0

0

0

0

0

1

p1

p2

p3

p4

P5

P6

1

1

0

3

6

0

1

0

0

0

0

1

q1

q2

= or S' p Q' q=

where S'

1

0

0

2

2

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

α

0

0

0

0

1

4

α

12

α2

0

0

0

0

0

0

1

and Q'

1

1

0

3

6

0

1

0

0

0

0

1

Therefore, p T q= Where T S'( )1Q'

1.000

1.000

2.000

2.333

0.333

0.000

1.000

0.000

2.500

2.667

0.167

1.000

Julio C. Banks, PE [email protected] page 3 of 11

Page 4: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

A TT

MT1.18

1.48

1.48

3.18

B TT

K T7.200

3.600

3.600

4.800

C A1B

11.40

4.19

2.80

0.20

λ sort eigenvals C( )( )1.37

10.23

ω λ

1.172

3.198

E I

mL14

Calculate the eigenvectors Nm length λ( ) 2

i 1 Nm

Φi eigenvec C λi

The mode shapes in normal coordinates is Φ0.2693

0.9631

0.9225

0.3859

Normalized mode shapes Φn Vnorm Φ( )0.280

1.000

1.000

0.418

First and Second Mode Shapes

Reference"Theory of Vibration with Applications, 5th Ed.", Thomson, W. T., and Marie Dillon Dahleh.1.Prentice Hall.ISBN 0-13-651068-X, Pp. 341 through 346.Julio C. Banks MSME Thesis - "Component Synthesis Methods for Vibrating Systems". Tufts2.University, Medford Massachusetts, May 1984.

Julio C. Banks, PE [email protected] page 4 of 11

Page 5: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Appendix A

1

0

2

2

1

0

3

6

0

1

0

0

0

1

1

0

0

1

4

12

1

0

0

0

p1

p2

p3

p4

P5

P6

0=

Since the total number of coordinates used are six and there are four constraint equations, the number of generalized coordinates for the system is two (i.e., there are four superfluouscoordinates corresponding to the four constraint equations. We can thus choose any two (the first example uses the nonzero diagonal criterion) of the generalized coordinates, q. Let p1 = q1, and p6 = q6 be the generalized coordinates, and express p1 ..p6 in terms of q1, and q6according to the following steps:

1

0

3

6

0

1

0

0

0

1

1

α

0

0

1

4

α

12

α2

p1

p3

p4

P5

1

0

2

2

1

0

0

0

q2

q6

= or S p Qq=

Let p1 q1=

where S

1

0

3

6

0

1

0

0

0

1

1

α

0

0

1

4

α

12

α2

= and Q

1

0

2

2

1

0

0

0

=

and p6 q2=

or S' p Q' q=

1

0

0

3

6

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

α

0

0

0

0

1

4

α

12

α2

0

0

0

0

0

0

1

p1

p2

p3

p4

P5

P6

1

1

0

2

2

0

0

1

0

0

0

1

q1

q2

=

Julio C. Banks, PE [email protected] page 5 of 11

Page 6: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

For α 1.00

Where S'

1

0

0

0

0

0

0

1

0

3

6

0

0

0

1

0

0

0

0

0

1

1

α

0

0

0

0

1

4

α

12

α2

0

0

0

0

0

0

1

and Q'

1

1

0

2

2

0

0

1

0

0

0

1

p T q= Where T S'( )1Q'

1.00

1.00

2.00

2.33

0.33

0.00

0.00

1.00

4.50

5.00

0.50

1.00

A TT

MT1.1774

2.6614

2.6614

7.3206

B TT

K T7.200

10.800

10.800

19.200

C A1B

15.60

4.19

18.20

3.99

λ sort eigenvals C( )( )1.37

10.23

ω λ

1.172

3.198

E I

mL14

Julio C. Banks, PE [email protected] page 6 of 11

Page 7: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Example

gc glb

lbf γ 0.280

lbf

in3

γ ρg

gc= ⇒ ρ γ

gc

g0.280

lb

in3

Do 1.315in Di 1.049in L1 10in E 30 106 psi

Area: Aπ

4Do

2Di

2 0.4939 in2

Moment of Inertia: Iπ

64Do

4Di

4 8.734 102 in

4

Thickness: tDo Di

20.133 in

V A L1 4.94 in3 m ρA 0.1383

lb

in

ω' ωE I

mL14

1.172

3.198

E I

mL14

fω'

159.6

435.4

Hz

FEM Validation:

ANSYS FEA f'159.2

433.0

Hz error

f' ff

0.24

0.55

%

CAEFEM FEA f'165

470

Hz error

f' ff

3.4

8.0

%

Results CommentaryANSYS model uses 2D Beam Elements, while CAEFEM model utilized 3D Beam Elements (That is,ANSYS will most closely follow the closed-form solution since the latter is 2D. On the other hand,CAEFEM model had to be restrained in the out-of-plane dimension in order to emulate a 2D planeframe (CAEFEM has 3D beam elements only).

In general, the natural frequencies can be expressed as a function of = L2/L1 . The choices ofdependent, and independent coordinates follows those chosen in the reference. The results areidentical.

Julio C. Banks, PE [email protected] page 7 of 11

Page 8: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

The mass matrix: The Stiffness matrix:

M α( )

1

5

1

6

0

0

0

0

1

6

1

7

0

0

0

0

0

0

α

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

0

0

0

0

α

K α( )

4

6

0

0

0

0

6

12

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

28.8

α3

0

0

0

0

0

0

0

Recall S' α( )

1

0

0

2

2

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

α

0

0

0

0

1

4

α

12

α2

0

0

0

0

0

0

1

and Q'

1

1

0

3

6

0

1

0

0

0

0

1

p T q= Where T α( ) S' α( )( )1Q' T α( )

1.000

1.000

2.000

2.333

0.333

0.000

1.000

0.000

2.500

2.667

0.167

1.000

Julio C. Banks, PE [email protected] page 8 of 11

Page 9: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

α 1

A α( ) T α( )T

M α( ) T α( ) B α( ) T α( )T

K α( ) T α( )

A α( )1.1774

1.4840

1.4840

3.1753

B α( )7.2000

3.6000

3.6000

4.8000

C α( ) A α( )1

B α( )

C α( )11.40

4.19

2.80

0.20

λ sort eigenvals C α( )( )( )1.37

10.23

ω λ

E I

mL14

1.172

3.198

E I

mL14

159.6

435.4

Hz

Calculate the eigenvectors

Nm length λ( ) 2

i 1 Nm

Φi eigenvec C α( ) λi

The mode shapes in normal coordinates is Φ0.2693

0.9631

0.9225

0.3859

The mode shapes in physical coordinates is D T α( ) Φ

1.232

0.269

1.869

1.940

0.071

0.963

1.308

0.923

0.880

1.123

0.243

0.386

Julio C. Banks, PE [email protected] page 9 of 11

Page 10: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Normalized mode shapes Dn Vnorm D( )

0.635

0.139

0.964

1.000

0.036

0.496

1.000

0.705

0.673

0.859

0.186

0.295

Julio C. Banks, PE [email protected] page 10 of 11

Page 11: Mathcad   cms (component mode synthesis) analysis

Mathcad - CMS (Component Mode Synthesis) Analysis.xmcd

Appendix BDefine two (2) procedures to unit-normalize the columns of a matrix. The first algorithm determinesthe maximum magnitude in each column. The second algorithm, expands the first algorithm to the unit-normalization phase of the solution

Vmax v( ) "Determine the maximum-magnitude"

"element in each column of a matrix"

Nr rows v( )

Nc cols v( )

max v1 j

max vi j vi j maxif

i 2 Nrfor

zj max

j 1 Ncfor

zreturn

Vnorm v( ) "Determine the maximum-magnitude"

"element in each column of a matrix"

Nr rows v( )

Nc cols v( )

max v1 j

max vi j vi j maxif

i 2 Nrfor

zj max

Vnj v j

zj

j 1 Ncfor

Vnreturn

Julio C. Banks, PE [email protected] page 11 of 11

Page 12: Mathcad   cms (component mode synthesis) analysis
Page 13: Mathcad   cms (component mode synthesis) analysis
Page 14: Mathcad   cms (component mode synthesis) analysis
Page 15: Mathcad   cms (component mode synthesis) analysis
Page 16: Mathcad   cms (component mode synthesis) analysis
Page 17: Mathcad   cms (component mode synthesis) analysis
Page 18: Mathcad   cms (component mode synthesis) analysis
Page 19: Mathcad   cms (component mode synthesis) analysis

Recommended