+ All Categories
Home > Documents > May 13, 2005Sandireddy & Agrawal: Hierarchy in Fault Collapsing 1 Use of Hierarchy in Fault...

May 13, 2005Sandireddy & Agrawal: Hierarchy in Fault Collapsing 1 Use of Hierarchy in Fault...

Date post: 21-Dec-2015
Category:
View: 214 times
Download: 1 times
Share this document with a friend
18
May 13, 2005 Sandireddy & Agrawal: H ierarchy in Fault Colla psing 1 Use of Hierarchy in Fault Collapsing Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA Vishwani D. Agrawal Auburn University Auburn, AL 36849, USA
Transcript

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

1

Use of Hierarchy in Fault Collapsing

Raja K. K. R. Sandireddy

Intel CorporationHillsboro, OR 97124,

USA

Vishwani D. Agrawal

Auburn UniversityAuburn, AL 36849,

USA

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

2

Outline• Introduction

– Main idea

– Background on fault collapsing

• Hierarchical fault collapsing– Method

– Advantages:• Smaller collapse ratio

• Reduced CPU time

• Results• Conclusions

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

3

The General Idea of Hierarchy

Circuit(top levelIn hierarchy)

Subnetwork analyzed once, placed in library.

interconnects

Lowest-level block (gates and interconnects),analyzed in detail, saved in library.

Analysis at nth level: 1. Copy preprocessed internal detail of n-1 level from library.2. Process nth level interconnects.

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

4

Background on Fault Collapsing

DUT

Generate fault list

Collapse fault list

Generate test vectors

Fault model

Required fault coverage

Test Vector Generation Flow

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

5

Structural Fault Collapsing

• Equivalence Collapsing: It is the process of selecting one fault from each equivalence fault set.– Equivalence collapsed set = {a0, b0, c0, c1}– Collapse ratio = 4/6 = 0.67

• Dominance Collapsing: From the equivalence collapsed set, all dominating faults are left out retaining their respective dominated faults.– Dominance collapsed set = {a0, b0, c1}– Collapse ratio = 3/6 = 0.5

a0 a1

b0 b1

c0 c1 Total faults = 6

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

6

Functional Collapsing: XOR Cell

a

b

c

d

e

g

h

i

j

k

m

c0 c1

d0

d1

Functional dominance examples: d0 → j0, k1 → g0

f

All faults = 24Str. Equ. Faults = 16Str. Dom. Faults = 13Func. Dom. Faults = 4

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

7

Hierarchical Fault Collapsing• Create a library

– For smaller (gate-level) circuits, exhaustive (functional) collapsing may be done.

– For larger circuits, use structural collapsing.• For hierarchical circuits, at any level of hierarchy, say

nth level:– Read-in preprocessed (library) collapse data of (n-1) level

sub-circuits.– Structurally collapse the interconnects and gate faults of nth

level.References:- R. K. K. R. Sandireddy and V. D. Agrawal, “Diagnostic and Detection Fault

Collapsing for Multiple Output Circuits,” Proc. Design, Automation and Test in Europe Conf., March 2005, pp. 1014–1019.

- R. Hahn, R. Krieger, and B. Becker, “A Hierarchical Approach to Fault Collapsing,” Proc. European Design & Test Conf., 1994, pp. 171–176.

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

8

Results: Collapse Ratio Advantage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FullAdder

64-bitAdder

1024-bitAdder

c432 c499

Structural Equiv.

Hierarchical Equiv.

Structural Dom.

Hierarchical Dom.

Co

llap

se

rati

o

Total faults 60 3,714 59,394 1,116 2,646

In hierarchical collapsing, faults in lowest level cells (XOR, full-adder) are functionally collapsed.Programs used: 1. Hitec (obtained from Univ. of Illinois at Urbana-Champaign)

2. Fastest (obtained from Univ. of Wisconsin at Madison)3. Our program

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

9

Fault Collapsing Time for Flattened Circuits

CPU time clocked on a 360MHz Sun UltraSparc 5_10 machine with 128MB memory.

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

10

Analysis of CPU Time (s) for Flattened Circuits

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

11

Analysis of CPU Time (s) for Hierarchical Circuits

14.33.10.379.254096-bit

50.26.00.7940.18192-bit

4.721.520.202.102048-bit

1.820.730.080.551024-bit

0.810.360.040.17512-bit

0.390.190.020.05256-bit

0.190.130.020.03128-bit

0.100.070.010.0164-bit

TotalLibraryEquiv.

+Dom.CollapsingStructure

Processing

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

12

Comparison of CPU Times for Hierarchical and Flattened Circuits

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

13

CPU Time (s) Improvement by Hierarchy

Hierarchical circuitFlattened circuit

16.635.1674.112584096-bit

55.0127.22676--8192-bit

4.8010.3166.43262048-bit

2.313.6039.977.71024-bit

1.051.529.3819.5512-bit

0.490.692.495.09256-bit

0.240.320.751.47128-bit

0.100.160.240.5764-bit

Multi-levelTwo-levelOur ProgramHitec

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

14

CPU time (s) for Hierarchical Collapsing

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

15

Rent’s rule

• Rent’s Rule: Number of inputs and outputs terminals (T) for a typical block containing G logic gates is given by:

T = K × G

~ 0.5 to 0.65

• For ripple carry adders, ~ 1. CPU time for collapsing is proportional to G2.

G isproportional

to area

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

16

Hierarchical Multipliers

n/2×n/2

Additional Circuitry

n × n multiplier

~ √G inputs ~ √G outputs

n/2×n/2

n/2×n/2 n/2×n/2

Here ~ 0.5, hence we expect the total collapse time to grow linearly with circuit size.

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

17

Conclusions• For larger circuits described hierarchically, use

hierarchical fault collapsing.• Hierarchical fault collapsing:

– Better (lower) collapse ratios due to functional collapsed library

– Order of magnitude reduction in collapse time.

• Smaller fault sets:– Fewer test vectors

– Reduced fault simulation effort

– Easier fault diagnosis.

Dom. Collapsed Set Size (Collapse Ratio)

CPU s

Flat Hierarchical Flat Hier.

229378 (0.48) 98304 (0.21) 2676 55

8192-bit Adder

May 13, 2005 Sandireddy & Agrawal: Hierarchy in Fault Collapsing

18

THANK YOU


Recommended