+ All Categories
Home > Documents > MAY 2 7' - Defense Technical Information · PDF fileIV-3 Calculations for 14'-0" x 18'-0"...

MAY 2 7' - Defense Technical Information · PDF fileIV-3 Calculations for 14'-0" x 18'-0"...

Date post: 15-Mar-2018
Category:
Upload: vuxuyen
View: 217 times
Download: 3 times
Share this document with a friend
112
0 ENGINEERING STUDY OF BLAST-RESISTANT DOORS Submitted to U. S. CORPS OF ENGINEERS Protective Construction Branch Contract No. DA-49-129-ENG-434 Li .... MAY 2 7' S by Charles D. Price Mosler Safe Co. 30 November 1960 Reproduced by the I , CLEARINGHOUSE -. for Federal Scientific & Technical Information Sprifigheld Va 22151 //6)
Transcript

0

ENGINEERING STUDY OFBLAST-RESISTANT DOORS

Submitted toU. S. CORPS OF ENGINEERS

Protective Construction BranchContract No. DA-49-129-ENG-434

Li ....

MAY 2 7' S

by

Charles D. PriceMosler Safe Co.30 November 1960

Reproduced by the I ,CLEARINGHOUSE -.

for Federal Scientific & TechnicalInformation Sprifigheld Va 22151 //6)

TABLE OF CONTENTS

Page

Synopsis. . . . . . . . . . . . . . . . . . . 1Section I -Scope of Work. . . . ...... 2

Section II - Review of Existing BlastDoors Studied. . . . . . . . .

Section III - Comparison of Door Designsand Final Door DesignSelections . ... . . . 16

Section IV - Design Calculations. . . . . . . 22

Section V -Bibliography ........... 33

aI,

LIST OF ILLUSTRATIONS AND TABLES

FigureNumber Description Page

I-i Pressure-Time Curve, 25 psi 41-2 Pressure-Time Curve, 50 psi 51-3 Pressure-Time Curve, 100 psi 61-4 Standard OCE Blast Doors 7II-I Mosle. C-10 Door Before & After Nuclear Blast 1111-2 C-10 Door Open Before Blast 1211-3 C-10 -'xult Interior Before Blast 1311-4 C-10 Door After Nuclear Blast 1411-5 C-10 Door Opened After Nuclear Blast 15III-1 6'x7' Double Leaf, 100 psi Blast Door 18111-2 61x7' Double Leaf, 100 psi Blast Door 19111-3 3'-6" x 7-0 ' Single Leaf, 100 psi Blast Door 20111-4 3'-6" x 7'-0" Single Leaf, 100 psi Blast Door 21IV-I Calculations for 3'-6" x 7'-0" 25 psi Blast Door 25 - 25dIV-2 Calculations for 3L6" x 7t-0", 50 psi Blast Door 26 - 26tIV-3 Calculations for 14'-0" x 18'-0" 50psi Blast Door 27 - 27sIV-4 Calculations for 2'-6" x 4'-0" 100 psi Blast Door 28 - 28tIV-5 Derivation of Constant K. Factor 29IV-6 Derivation of Rel 1 Xel' i-d K for Partially

Loaded Span 30IV7 Derivation of Re, X and K for Built-up

Cons cruction el el, 31IV-8 Derivation of R and X for Solid Steel Plate 32

el el

b-

I2-

NOMENCLATURE

DLF Dynamic Load Factor (to convert a given dynamic load toan equivalent static load)

E Modulus of elasticity (psi)

f Dynamic yield strength of steel (psi)dy 4I Moment of inertia (inches4 )

KL Load factor

KM Mass factor

K!M Load mass factor

k Spring factor (kips/foot)

M Bending moment (inch-pounds)

P Reflected shock wave overpressure (psig)r

P Overpressure (psig)SO 3

S Section modulus (inches3 )

T Time of idealized triangular load (seconds)

T Natural period of oscillation (seconds)n

t Time in seconds

Positive phase duration (seconds)

U Shock front velocity (feet per second)

c

This Document Contains

Missing Page/s That Are

Unavailable In The

Original Document

BESTAVAILABLE COPY

SYNOPSIS

This final report is the nuclear-blast-resistant door

section of a study, which also includes blast valve closures,

under Contract DA-49-129-ENG-434 with the Protective Construction

Branch, U. S. Corps of Engineers, Washington, D. C. Blast valve

closures were covered in a separate report. (1)

The purpose of this report is-to evaluate various existing

blast-resistant door designs and then to select the optimum door

designs for the door sizes, types, and blast pressure ratings

specified in the contract, taking into consideration economy,

ease of manufacture from standard available materials, reliability

of operation, and a minimum amount of maintenance.

From the optimum door designs complete drawings and specifi-

cations were prepared suitable for competitive bidding and manu-

facture.

This report summarizes the results of the Interim Blast Door

Study (2) which included detailed preliminary design calculations,

sketches, and comparisons.

.11

SECTION I -SCOPE OF WORK

The criteria specifies 25, 50, and 100 psi overpressures

(see Figures I-I, 1-2, and 1-3, which are compiled from item 3 in

. Bibliography), with full reflected pressures to be withstood

elasto-plastically by the doors, which are to be operable after

three blasts under conditions of moisture and extremes of tempera-

ture with a minimum of maintenance.

The door sizes and types to be considered are as follows

(see Figure 1-4):

A. Pedestrian door 3'-6" wide x 7'-0" high, single-leaf,side-hinged

B. Pedestrian door 6'-0" wide x 7'-0" high, double-leaf,side-hinged

C. Vehicular door 8'-0" x 8'-0", double-leaf, side-hinged

D. Vehicular door 12'-0" x 12'-0", single- and double-leaf,

sliding

E. Rail and truck door 14'-0" wide x 18'-0" high, single-leaf, sliding

F. Hatch door 3'-0" x 3'-0", single-leaf, side-hinged,suitable for horizontal or vertical mounting

G. Service tunnel door 2'-6" wide x 4'-0" high, single-leaf,- hinged

Door sizes mentioned above are clear opening sizes. The

12'-0" x 1 2 '-0", 25 psi rating, double-leaf, sliding door is

powered by a manually operated hand chain geared trolley. The

12'-0" x 12'-0", 50 and 100 psi rating, s:ngle-leaf sliding doors,

and the 14'-0" x 181-01, 25, 50, and l00 psi rating, single-leaf

sliding doors are powered by electric motor drives with an emergency

manual handwheel drive.

2

The remainder of the doors are manually opened and shut,

either single or double-leaf. By using bank-vault-door type

three-way adjustable hinges, the door leaves are easily opened

and shut by one person with just a few pounds pull on the door

handle, even though the door leaf may weigh 5 tons or more.

The doors were designed complete with frame and hardware.

Doors and frames (except for sliding doors) were designed as

integral units. The frames are of a one-piece box construction.

The doors are designed to be mounted in the door frames, adjusted

and operated at the factory, and shipped'together as one unit,

thus insuring proper fit and operation on the job.

Doors are also designed to resist a 25% maximum rebound

force, except where calculations indicate a greater percentage,

in which case the calculated figure is used. The rebound force

is taken care of by a bank-vault-door type locking bolt mechanism.

3

-- 1 -~---*-----r- - -- ~~~~~*1~~*~~

.1 1I I

I I

'I~**'EV? i~li1 ~ - ~i4;4 17'7717. 1 T.

I.I.4

I -i I

I- ~q

iIi~iK__ q -~t~.

24- lqj t~Th 'I

I .1 I -~

II-..-----I * ~ H___ -%

I I,

-7- .-I ~

+Tfl7KT7 -

i-Il ~ *

-. H* -I '~I

-~ --- ~w~Iz9 -7* I £ ~*j-~ ~ -. -----

- - ~ ,-w9r7WYY

-- A)f7

AOKI ~?4&~-:~-7?

____ L4

NI Ilk

... I . I .

N-

; t .. . .. . i- ....

- -, 1 - -- - -----

7-.- , 7 . i I

I - . . .. . - I'

4 '

•ii _- __ --- 4w

(:I

Ik.$i. .. '

l I . . . .. . . II - " "

__.,. " I ---. Q

.. ... ... ! .... ..-----,--- . ... . ._ . _ . __ -I

, - -, '-_ _ -

-

-

wi r4

1

-

. .

Ila,

I I

I ...

"

- -j-

-- ---. i _ -

IL ".

I *- Ii

*- 4.. 4.. f, I-- •">

---- ...

.-- ~ - ---

4-I-*

•4. L.

....... ........ ,..|

,

" .

. 1 '

-. - ~-I. . .i+ I . i f

• I

L 4

, .

n *T. .

* iiiJ:

II' I _

Tt. -

I~1ti.~VI

- C

Z--a -V0 o PS2r

5, -z- _

k 5 b Ts - a 5i-Pf

t -4 . :d 15 PS A _ _ _

IZ. :~ o ',!O 00 PSL IA

- A

l'in! 0001kO . ' OPI3

C -

4-4-

FL

157F p~~R - Eji~R A kHT HIP~k

3 101 0 100 P45 1 j53 6b 5 ZDj4 -5 E B~~ 10 4 ojT

* ULL E~x ,o~ -J,;IEV4 **

-8 D

-2I

1r PRESSURE 5 C 'D Z %4T

soO7- ZS S_ _ -10

3O~ 0 100 51 8-.5Z -7 30 r- x-7-0- 50 P S I0? lI4-0,40 it W71

Z(- 0 P1 ~4 0A/1~~ Iz B64Z _____ 6-0, X7- 01 P'6I 101t0 11

,- 0

-as 44 0B05 1411 i Izb I

A. B~~1 C.- 00-S 1714 50 ol l 5~ i m~ £ - -oIi-'4

:4 F i I- _____ ~zI4Iuc~s-

z~6 s* i. rozJ,4I

L!_ __ 1

0 V4EIV 1 ~TOVRP I- - I I - 1 1

SD , .N o I CIv _ - I - *6

'I I o p// -'1Z06- W 412- -I,- 00P -OV/1VO5'71: "o1 4-

-i -r B-'r

-c - -

31000 (00- s-oZ PS 11314J135~ 4 5 '2 S* OOo

I~~ '-1 U_ _;__ _ ~ _ _

300 8-0 it0 Z5 9.5' 1 *I 41 415 l.3 'ir n 8 t,A.400 8-0n-8-0 1 50 P5 i j50 ____14_1a,_ ti , ' --- 7

_C Lo_ P56 134411 ZBUS I-IN I 'lb 6 - I A- 7_5

.'4

I -I

.07 r

12 r-- I

21O , T- 00PS1 4 .I,4 t 41 -'" xIsU zp 1 ' Z T- h ' .C!1-C6 It

'4:~I -a X -"5 P 1 1dKo -l-1 Z4d~ z~l-.F1714 o3 i-4-*l8-roo Si U

MA _________i

-IL 1- C

4- j i%- b"'4-503~ 100

SECTION II - REVIEW OF EXISTING ELAST DOORS STUDIED

Rath:er than a detailed list of all door drawings available

for study (which would be unduly voluminous), a representative

cross-section of various doors is presented.

Drawing Description

Ammann & Whitney Constructed of 8" channel and beams60-02-058, Sheet W18 running short way of door with 3/8"5'-4" x 7'-2" opening outer plate and 1/4" back plate.

Side-hinged 3 side hinges, 3 separate manuallatches, and rubber gasket.

Ammann & Whitney Constructed of 14" @ 43 WF beams running60-02-58, Sheet #17 long way of door with 3/8" outer plate

10'-0" x 14'-0" and 1/4" back plate. Runs on threesliding door 2-ton trolleys. Sealing gasket and

turnbuckle anchor dogs.

Ammann & Whitney Constructed of 8" thick solid steelSheet #1 & Sheet #2 plate. Moved on double flanged wheels61-01 x 8'-0" on bottom of door. Sliding door.

Black & Veatch Constructed of 12" "I" beams running33-15-58, Sheet #9 long way. 9/16" thick steel plates12'-0" x 12'-0" front and back. Runs on trolleys.Double sliding door 3/16" x 1-1/2" rubber-impregnated canvas

belting for seals.

Black & Veatch Constructed of 4" channels running short33-03-15, Sheet #8 way of door with 3/8" thick steel platesV-0" x 6'-8" front and back. Spring bronze seals.

Side hinged door.

Black & Veatch Constructed of 6" "I" beams running33-03-15, Sheet 7 long way with 5/8" thick steel plates8'-0" x 8'-0" front and back. Spring bronze seals.

Double-leaf, side-hinged door.

8

T

Drawing Description 4

Lorenzo S. Winslow Constructed of structural tees, ST 5 I's

49-100-9 running short oay and ST 5 B's running

31-0" x 6'-6" long way, with 7116" thick steel outer

Side-hinged plate and 1/4" thick steel back plate.

Lorenzo S. Winslow Double door, constructed of structural

49-100-9 tees, ST 5 I's running long way and41-8" x 6'-6" 5" x 1-1/8" bars running short way, with

Side-hinged 1/2" thick steel outer plate and 1/4"thick steel back plate.

Leo A. Daly Constructed of 1/4" thick steel plateA-11 with 3" x 2" x 1/4" angle frame, with7'-9" high canvas-covered rubber gasket and refrig-Single- and Double- erator type handle and latch.leaf, side-hinged

General Services 6-11/16" thick door consists of struc-Administration tural tees, ST 6 I's running short way

49-100-9 and ST 6 B's running long way, with 6"V-8-1/2" x 6'-7-1/8" channel outer frame, with 7/16" thick

Side-hinged steel outer plate and 1/4" thick steelback plate.

General Services 5-11/16" thick door consists of struc-Administration tural tees, ST 5 I's running short way

49-100-9 and ST 5 B's running long way, with 5"21-81 x 6'-7" channel outer frame, with 7/16" thick

Side-hinged steel outer plate and 1/4" thick steelback plate.

Faulkner, Kingsbury, 13 various size doors consisting of 5/8"& Stenhouse or 7/8" thick solid steel plate on outer

or hinge side and an outside frame of3-1/2" x I" steel bar with a 1/8" steel

* back cover plate.

Daniel, Mann, Johnson 2" thick curved steel plate, side-& Mendenhall & hinged door.Associates

AP-1511/16

5'-0" I 7-0"

9

From the preceding simmary of existing door designs, the

following generalities are obtained:

1. Large doors are of built-up construction with a heavy

front and back steel plate, with structural steel beamsbetween the plates.

2. Built-up-constructicn doors feature more one-way con-struction than two-way construction. On double-leaf doorsthe one-way construction runs the long way of the door dueto the one edge of the door being unsupported.

3. Built-up-construction doors with two-way reinforcementfeature a "tee" beam reinforcement, which allows the leg ofthe tee to be welded to one plate and the other plate to beslotted and welded to the flange of the tee from the outside,overcoming what would otherwise be a fabrication problem.Two-way reinforcement is very much in the minority, however.

4. Small or medium strength and size doors might be made ofa solid steel plate as well as of a built-up fabrication.

5. There is a wide variety of hinges and latching devices,practically none of which appear adequate and capable ofwithstanding significant rebound forces.

6. Little progress has been made in the design of doorsdeparting from conventional designs, such as curved doorsor prestressed concrete doors.'

Of considerable interest, in addition to the above-mentioned

doors, is a particular door design which was successfully tested

in 1957 in "Operation Plumbbob" at the Nevada Test Site under very

high pressures. This was a standard bank vault door, a Mosler

Safe Co. C-10 door. The damage to the door was only superficial,

peeling off ornamental trim, etc., the door being reopened without

any difficulty. Tha cterior of the above-ground vault was entirely

protected by the door. Although the concrete covering of the vault

was badly damaged. the steel lining of the vault kept it air tight.

This door is shown in Figures 11-1, 11-2, 11-3, 11-4, and 11-5.

10

'IMT REPR0~

4A

MC --

A*''~~ 14

NOT RFJPPITITTTV

4~C 4

I'l

1.~12

NOT REPRODUIB!=

4-

131

NCT

4 , Iq ~

4.~. 4J II :

4~ A'2 ~.

I

p

I

4-.'

-t

I-I-1

I

p r4

II 4~I

14

I

NOT uEPWOfUCIM

4L

-Wm-

dr

15 -

SECTION III - COMPARISON OF DOOR DESIGNS

AND FINAL DOOR DESIGN SELECTIONS

There are several possibilities of door designs and ma-

terials. Possible designs included:

A. Solid flat plate door leaves

B. One-way reinforced built-up welded door leaves

C. Two-way reinforced built-up welded door leaves

D. Curved door leaves

Possible materials for door leaves included:

A. Aluminum

B. Concrete

C. Plastic

D. Steel

Referring to Interim Blast-Resistant Door Study (2), for

reasons of economy and ease of fabrication, steel was selected

as the best material.

Likewise, for the various possible door Jesigns, the one-way

reinforced built-up welded door leaf design was selected for all

but the lighter section doors. For these doors it was found more

economical to use the solid steel flat plate design.

For easy swinging of the hinged type doors, only two hingesshould be used for best performance and ease of operation. The

bottom hinge contains radial-thrust bearings to take all the down-

ward weight of the door and half of the radial (horizontal) thrust

which is due to the rotational effect of the overhang of the door.

The upper hinge takes only the other half of the radial

(horizontal) thrust (which is actually a couple). This construc-

tion, by relieving the upper hinge bearing of any thrust loads,

allows adjustment of the hinge in a vertical direction without

danger of overloading the bearings by the adjusting screws. In

16

some designs studied the weight of the door was evenly divided

by thrust bearings in the upper and lower hinges, which could

result in overloaded hinge bearings if there is a slight mis-

alignment or if one of the vertical adjusting screws is turned

too far so that the screw is trying to "jack" against the two

bearings and force them apart. In other door designs studied

there were three hinges per door leaf, which made this problem

even worse. In the final hinged door design the upper hinge

bearing "floats" vertically on the hinge pin and is therefore

unaffected by vertical adjustment or misalignment.

The top and bottom hinges by being adjustable in the other

two directions also, become three-way adjustable. This permits

very accurate alignment of the doors so that they swing easily,

do not go "up hill" or "down hill", and have no "run" in any

position.

Since the door leaf, when closed, seats evenly against a

finished section of the door frame all around the door periphery,

and is firmly clamped from "rebounding" open by means of the

tapered end locking bolt system, the blast forces on the door are

isolated from the hinge bearings.

The tapered wedge locking bolt system used in the final design

is a duplicate of the same system which has been used for the last

50 year on bank vault doors and was successfully tested under an

actual nuclear blast in "Operation Plumbbob."

A completed 6'-0" x 7'-O" double-leaf blast door, 100 psi

rating, is shown in Figures III-1 and 111-2.

If it is desired to have these blast doors power-operated

(say for remote control or interlocking in pairs), this is easily

accomplished. Figures 111-3 and 111-4 show the 3'6" x 7'-0" single-

leaf blast door, 100 psi rating, with the additional blast-proof

operator.

-I1

NOT REPRODUCIBLE

'4

=444

4-'r*

N'OT REPRODUCIBLE

Al-

19N

rrr

v-I

20

211

A composite list of the door sizes, drawing numbers, and

specification numbers of the final door designs is as follows:

Drawing Number SpecificationDoor Size 25 PSI 50 PSI 100 PSI Number

3'-6" x 7'-0" 60-12-06 60-12-07 60-12-08 60-12-06-60

6.-0" x 71-01" 60-12-09 60-12-10 60-12-11 60-12-09-60

81-0" x 8'-0" 60-12-12 60-12-13 60-12-14 60-12-12-60

12'-0" x 12'-0" 60-12-15 60-12-16 60-12-17 60-12-15-60

14'-0" x 18'-0" 6CL-12-i8 60-12-19 60-12-20 60-12-18-60

31-0" x 3'-0" 60-12-21 60-12-22 60-12-23 60-12-21-60

21-6" x 4-01 60-12-24 60-12-25 60-12-26 60-12-24-60

22

SECTION IV - DESIGN CALCULATIONS

In calculating the strengths of the door leafs, there are

three basic types of calculations, as follows:

1. Curved door, 3'-6" x 7'-0", 25 psi rating(Figure IV-l)

2. Solid steel plate doors simply supported all four

sides, all 3'-0" x 3'-O" and 2'-6" x 4'-0" doors(Figure IV-2)

3. Structural Beam doors welded flange to flange(Figure IV-3)

In the case of the welded structural beam doors, calculations

were made on a per beam basis, considering the beam as simply sup-

ported each end.

In the case of the solid steel plate doors, the calculations

were made on the basis of a plate simply supported on all four

sides. Basic plate formulae used were from "Theory of Plates and

Shells" by Prof. S. Timoshenko (13).

For the convex curved plate door a completely elastic design

was used, as the curved plate would otherwise fail by buckling as

soon as the elastic limit was exceeded.

In all cases calculations were made in accordance with the

Corps of Engineers Design Manuals (4 through 12). The Design

Manuals show two basic approaches, the Energy Method and the

Deflection Method. The Deflection Method was chosen as the most

suitable. A numerical method of analysis was used in conjunction

with an Acceleration Impulse Extrapolation Table.

Recurring constants in the various door calculations were

lumped together to form one constant. Derivations of the various

constants are shown in Figures IV-5 through IV-

Calculations are broken down into repetitive step-by-s tep

procedures. A certain door section is assumed and then by a series

of trials the optimum section -is determined.

23

t

Typical calculations are shown for the 3 -6 " x 7-1.

25 psi curved door (Figure IV-!), the 3'-6" x 7'-011, 50 psi

built-up door (Figure I'I-2), the 14'-O" x 18'-0", 50 psi built-up

door (Figure IV-3), and the 2'-6" x 4'-O'-, 100 psi, solid steel

plate door (Figure IV-4).

24

DOOR NO. 60-12-06TRIAL NO. 1 CALCULTATIONS BY T.A.CURVED DOOR CHECKED BY H.S.

Door opening = 3'-6" x V-011 Door vertical

Assume 6" bearing width and O(= 600, arch fixed at supports

Sf = 41.6 ksiss

Peak reflected pressure -80 psi

L =41'

Arch. P1 10

h =.532'

H H

31-611

R-h 3.468'

*R - L/2 -2.00 -4.00Sin cc/2 0.50

R-h= R Cos O(./2 4 (.867)=3.468

* h =.532

25

DOOR 60-12-06

Trial No. 1

Design for Direct Loading - Elastic

Assume a D.L.F. = 2.00 P = .080 ksir

T = PrR = .08 (2) 12 (4) = 7.68 k/in.

V = P rR Sin Coi/2 = .08 (2) 12 (4) .5 = 3.84 k/in.

H x P R Cos oY/2 - .08 (2) 12 (4) .867 - 6.66 k/in.r

Required Thickness7.68

Arch Plate t = .6 = .185 Try 3/16" plate41.6

Tie Plate t1 = = .160 Try 11/64" plate4.6 Ty1/4 lt

Shock Velocity1

U 1117 + Pso 27 (14.7j

7 6(25)]2U = 1117 Ll+ 102 =1750 ft/sec

Time of Pressure Riseh - .532

to U - 150 = .000304 sec.o U 17500

Period of Vibration of Arch Plate9

TN = 2ir 21

2

C2 =4Sin 2 G(/2 [2 / 3 (R) 2 -1)i

12 (3/16) 3

k- =12 (3/16) = .0541 in.A 12 (3/16") 12

R 48k .0541 = 887.2

25a

DOOR 60-12-06Trial No. 1

c< = 600 = r/3 radians 2/12 =9

C =4 (.5)2 /3 (887.2)2 + (9-i1 2

= 1 5.24749 (10 + 2 = 724.3

L =48"

E 30 (106) psi

bd 3 1 (3/16)3 000549 in 4

=12 12 "3/16

W = 490 ( 16 ) 7.6 psf127.6 2/ 3

m = 3 = .000138 #sec in32.2 (12) 144

T(=8) .000138Tn 724.3 630 (10 ) .000549

= 19.98 %F 8.38 (10 -10) = .001828

Dynamiic Response of Arch Plate

The loading curve is assumed to have a triangular shape asshown below.

P80 PSI

:.: t

t t +3 sec.

to .000304= .16 D.L.F. = 1.95 = 2 Section O.K.T .001828

n(The David W. Taylor Model Basin, UJSN,"Effects of Impact on Simple Elastic Structures".Report 481, April 1912, Fig. 18)

25b

DOOR 60-12-06Trial No. I

Buckling

PcR = - (k 2 1)c ~R3

k = 8.5 for ,. = 6006pcR = 30 (106 ) .000549 .5)2 -

(48)E

.1489 1.2 = 10.6 psi 80 (2) = 160 psi No Good

3/16" plate O.K. for elastic direct loading, but not good forbuckling. Try 1/211 plate for buckling.

bd3 1 (1/2) .010412

6R = 0( 0) .0104 (8.5)c (48)3 . -

[ 2.82 [,1.251 201 psi 80 (2) = 160 psi O.K.

Use 1/2" arch plate

Use 11/64" tie plate

2

25c

CALCULATIONS

1-WAY SPAN DOOR TRIAL NO. 2 ELASTO-PLASTICBUILT-UP DESIGN DOOR NO. 60-12-07SIMPLY SUPPORTED 4 SIDES CALCULATIONS BY T.A.3'-6 x 7'-0", 50 PSI CHECKED BY H.S.

GIVEN:

Assumed Beam =5 x 5 WF 16#

T = Load Duration = .050 Sec.

P = Peak Reflected Pressure = 197 PSIr

W = Total Weight of Beam = 58.6 Lbs.

A = Area of Beam (Width x Span) = 220.5 Sq. In.

L = Span Length of Beam = 3-1/2 Feet

S = Section Modulus of Beam = 8.53 Inch 3

I = Moment of Inertia of Beam = 21.3 Inch4

KL = Elastic Mass Constant = .780e

KL = Plastic Mass Constant = .667

p

FIND:

1. MAXIMUM ELASTIC DEFLECTION (FEET)22

L x S 3.52 x 8.53X = .0017333 x I = .001733 x 21.3

= .0017333 x 4.91 = .008511

2. NATURAL PERIOD (SECONDS)

M

T = 6.2832 x f-n K

1

= 6.2832 x - .0014207949

= 6.2832 x A" .000000178638

= 6.2832 x .00042265 = .00266

21

, 26

DOOR 60-12-07 - T2

3. EQUIVALENT MASS (ELASTIC) (KIP-SEC 2/FT.)

W X KLM 58.6 x .78 .001420e e 32,20032,200 2

4. EQUIVALENT MASS (PLASTIC) (KIP-SEC2 /FT.

M = W x 20.704 x 10 - 6 = .001213P

5. STIFFNESS FACTOR (KIP/FOOT)

K = 16,000 x L - 16,000 x 21.3 7,9491 3 42.875

6. MAX. ELASTIC RESISTANCE (KIP LB)

R = 27.7333 x = 27.7333 x 8.53 68el L 3.5

2.6a

DOOR 60-12-07 - T2

7. CONSTANTS FOR EXTRAPOLATION TABLE

ELASTIC RANGE

Tn .00266a. T= .000266

10 10

b. 3t = .0002

c. (4t)2= 4 x 108

P XAd. P 0 r 1 9 7 x 2 20.5KIP 43.4

01,000 1,000

t .0002e. P = P4(3 .05 - 43.2

f. P -P P 43.4-43.2 .20

g.1P1 1 0 1 434 .20 M -2 + 6 = .0014202( 2e

15,253

h. X1 =aX ({t) = 15,253 x (4 x 108) = .000610

t ) 2 4x10 - 8

M .001420e

PLASTIC RANGE

a. /\t = .0002b. (At) 2 x i0 8

b. - 4 x 10

c. 4 x= 3298 x i 8

M .001213p

2 6b

I I

M 0 %N i M%

44 0 0 0 0 0 C)0 00

r- 4 s -i 0 C% n f0C0 - It00 C00 C1

41 %. 0)) %D C- '-4 z % 't 0 -

H CCL 000000000000: 4 X N-.' ... . . .I. . . . . .

44 04% tr - 14m a m mr000H. tON-I - C14 r400N 00 00

f7 C 0 00000C)0n-0 0 0C0c'. . . ..- . . -0 *ri

H iHC'J 41i

0rq o o o o 0- C) 0 r4KJ0oooooooOoo o )o07 000000C: ) : )0 0 000)00 0

0J 0 0 0 0 0 0 0 0

W-. cr0 00 0 1c%

41 04M -4 0'14 0r-4 -" - -4 0 0 r-0

zII0 0 C -

Ol 0 0Cl) Cq -I Cq q CII r,4*404IN " 40) -

I I I I I I I UCJ' U JJ 4 J0r-4 -4 a)0)4)t44 M 0

4-4'J.4 V-0

In12 I4 00 ,-4 r- 00~4 co00-t -4 0

H 4 :-4 -A

0

UF,

0 C1 :T cc1 0 00 0C4 -,tD 0 0 C 4H0 - - -4H - 1 *

40 w 0 00000

26c

DOOR 60-12-07 - T2

T -. 05

R TABLEx

Maximum R to Minus Rx el

_x. _ _x. Xx _ _ _ _ x

68 .011070 .010694 .000426 7,949 3.4 64.6

U .009466 .001604 " 12.8 55.2

" " .007839 .003231 " 25.7 42.3

" " .006182 .004888 " 38.9 29.1

" .004924 .006146 48.9 19.1" " f.004388 .006682 " 53.1 14.9

?6d

0T

* *r

C-4 toi

0 At

'0

0 01 0

vv~

0

E-0

+ 26 e

DOOR 60-12-07 - T2Time .009

7. CONSTANTS FOR EXTRAPOLATION TABLE

ELASTIC RANGE

Ta. n .00266

10 .000266

b. nt = .0002

c. ( t)= 4 x 10 8

P r X 197 x 220.5Kd. Po 1,00= ,0 KIP 43.4

1,000 1,000

e. PI = e( I .005 ) = 43.4 (1- 002% 42.41 0 009.009

f. P -PI = 43.4 - 42.4= 1

i P PI P

1- ( p - 1 1 43.4 1g. a 0 + 6 .001420 -2e

= 15,162

h. = a X ( t)2 15,162 x (4 x 10- 8) .000606

i. 4 x 10-8Me .001420 2,817 x 10

PLASTIC RANGE

a./\t = .0002

b. (jt) 2 = 4 x 10 8

c. ( t) 2 4 x i0 8 -8M - .001213 3,298 x 10

p

26fI

C)I (O '- w- -, In% I0O

+ 4 0 , XWa 0r + 4 -

~-4. .0 .-a . .o r. . .~ .r . o . . .

%D 01 f %MM0000000 00 C40I 0000t -000(%Cc0000000 N-4r- %

0 T. r 0 -1 In

0 00 -f - r--4-1r-40 0 00 0I

0.

E-4 CC

N %0) a%%DC4V) 4O .

P4 1 0 0OO r-4 r-4 0 00 0r-4'- o4 0 o000000 0 000

04 0000000000000

a, x

z0 0

HH) IN 4 0 w)C-C -4 C V

In. IN

In%. ID D n T '4 r4

1; 040400*1 4-4rr-: I* MNJ 4 0

4-j 000000000 tCO00I 1 00

CIO 00000000000000

Z 0 -4 e~ ~ ~N- cos r-I ~c~~ inor4z -4 IrCq Mr-r-4 r-4 r- )o 11 NC14

26g

DOOR 60-12-07 - T2

T - .009

R TABLEx

Maximum R to Minus Rx el

xR) X( ] RPlax. [(~x. x/ "" X

68 .009973 .009953 .000020 7,949 0.2 67.8

.008897 .001076 8.6 59.4

.007049 .002924 23.2 44.8

.004858 .005115 40.7 27.3

"_"_.002868 .007105 " 56.5 11.5

" _ " .001567 .008406 it 66.8 1.2

"_"_ .001262 .008711 " 69.2 1- 1.2

26h

0 0

o 4 4)

0

a' +

00

0o) a)

CD r-4- m H1 0

0 r

zz-~c 0ci

H 0 0

H

0

0 H

0 0

ul) M N

26N

DOOR 60-12-07 - TI

CALCULATION FOR LOCAL CONDITION

L = .432'

5I - -- -- = 31

1/4

21. M M = 1/4 x 41.6 xt = 1/4 x 41.6 x.141s

= 1.4 K in/in

2. E 2M 1 1.4 .233 K-ft/in12 x -

8M 8 x .233o3. R L .432 4.3 K/in

4. F 12 Pr x L x 1 (per inch) (12)(197)(432) = 1 K/in

1,000 1,000

R _ 4.35. D.L.F. R= 4.3 > 2 (Member remains elastic)

26j.

DOOR 60-12-07 - TI

CHLTCK FOR LOCAL BUCKLING OF ONE-WAY BEAMS

Beam = 5 x 5 WF @ 16# LOAD

a = 4-1/4 COMPRESSION FLANGE

b- 5-3/16 t r

tf =3/8 dft -- a

t =1/4 ww

tf4 b-

Web Ratio - 4.25 = 17t .25w

WEB REINFORCEMENT (WHEN REQUIRED)

LOADLA F COMPRESSION FLANGE

cC s

Eb

Length of Stiffeners

Locate symmetrical with mid-point of door

26k

DOOR 60-12-07 - T2

CHECK FOR LATERAL-TORSIONAL BUCKLING

GIVEN:

K 0.51

L Span = 42

d = Depth of Beam - 5.000

b = Width of Flange = 5.184

T = Thickness of Flange = .360

KI Ld .51 x 42 x 5.000b Tf 5.184 x .360

107.1001.866

= 57.4 < 100 O.K.

26 11.

DOOR 60-12-07

BEARING AREA STRESS

R = Maximum Resistance of Door

R Area of Leaf L2 xh hel Area of Beam el x L2 x Wb el Wb

Re 68,000#el5

R = 68,000 x = 1,156,000m 5.000

S BR RSb Bearing Stress = m = m

A 2TxhB

AB = 2 x 1/2 x 85 = 85 in2

S 1,156,000 - 13,600 < 30,000 PSI OK85

-V

Wb=5 h=85

1/2L-2

26 m

DOOR 60-12-07

STRIKER THICKNESS CALCULATIONS

Take a 1" wide typical strip.

Force per Lineal Inch = F - Rm (see p. 26m)

= SB x T = 13,600 x .500 = 6,800

Bending Moment = M - F x D = 6,800 x .372 = 2,550

Thickness = d = 46M r [.367788 = .60696 USE I"SB

i"

D 41/8

D = 8.375

*SB Allowable Bending Stress #A-7 Steel =41,600

B6

26n.

DOOR 60-12-07

REBOUND LOAD CALCULATION FOR LOCK BOLTS

Consider rebound resisted equally by "dead latch" and lockbolts.

Then: .25 Pm

Rebound force per bolt = P = Max. Rebound Force2 x no. of lock bolts

289,000 = 24,08312

Maximum total rebound force is obtained from rebound calculations.

"DEAD" LATCH

RFA LOCK BOLTS

RR FACE OF DOOR

26 o

'4

0

o 4-

cu 0

Q)Y

>05- Q) UA

o, CL t Et.) - -r r

o Cr C ) -AQ)4n0

CY4 0 %Da41 I4 5-

C)-Cr, (1

w 0~ COE 0-

0Y 0rC a)*-

c

00C0 C -4 -4

o r-4 C'S

-Y) 0 %. /Lr00 r-0

trn Ci cu

00 ON

C,4 C,4-,

P4 x- V' )

x C'J..0

11

Q) a) (1) (n-- 4Cf4 -

41) a) o4 coco

0u 60 JC4 -, a)X4C4-tc

0~~~ w t~- ~

000

a' C4 0000

26p

DOOR 60-12-07

CALCULATIONS FOR RADIAL-THRUST BEARINGS

IN LOWER HINGE*

RPM =50 F /F .65a r

Rotating Inner Ring

Thrust Load = F = 2,076a

Radial Load F = 746r

Rotation Factor = V 1

Thrust Factor Y = 1.45

Radial Factor = X = .67

P Equivalent LoadP = XVF +YF

r a

= . 6 7 F + 1.45 Fr a

= (.67 x 746) +-C.45 x 2,076)

= 500 + 3,010

= 3,510

C 1.0

S". Minimum bearing is SKF #5303 or equivalent.

Use SKF bearing #5304 or equivalent.

* Formula shown is for Series 5200 and 5300 double row, deep

groove SKF bearings. Series #5300 preferred. For otherdesign bearings, check formula.

26 q

C14

0

0 '-4

0 o xZ4 rZ

I f I

>4Z

rM4

0

U) xz11

c0 x r4U~)V)

ODrZ

I-I/ r.4 ell

11/0 00-

U) 'I%H 4

C/V)

Cl)

00

":3:

>4I x

26r

000C14 0

00 dl0 0 Nr-

ri X - 0) x rIr4 x Cr 4 a a

o) %. 0 d 5 - IE0d ~-4 r-X - U W

oXN 00C%0 0* 4 0 -It r-

41 %D N.'r-4 04V-m O't 9 I4j 9WV0 rlr, C41: 0

% %0 0) 11 Ltn 0) %

dlI 5.i4 V)0 l

140 U1 C-) U 0* V UW0

u a o 1 q c cV4T4 X X-1

0. u

z Lrh

000

000

.A1

CI9

00 0~- H-

V 0-

COE- 0 - C l

.0C.041:

0

H H-44.

26sj

00

C'-4

E-1 %--1 'I

0 col-S.4 + L

U.

+ .d-

:3 L aV 4

(n ++ N U-1

0 Nr-I40 r.-4

0 p+ C14 + t

U))

0 IH L- -

C.0 +

IIn

[I 26 t.

CALCULATIONS

1-WAY SPAN DOOR TRIAL NO. 2 ELASTO-PLASTICBUILT-UP DESIGN DOOR NO. 60-12-19SIMPLY SUPPORTED 2 SIDES CALCULATIONS BY T.A.PARTIALLY LOADED OVER FULL SPAN CHECKED BY H.S.14'-0" x 18'-0", 50 PSI

GIVEN:

Assumed Beam - 24 WF @ 145

T = Load Duration - .050 Sec.

= Peak Reflected Pressure = 197 PSIr

W = Total Weight of Beam = 2465 Lbs.

A = Area of Beam (Width x Span) = 2268 Sq. In.

L = Span Length of Beam = 17 Feet2S = Section Modulus of Beam = 3725 Inch 3

I = Moment of Inertia of Beam = 4561 Inch4

KIM = Elastic Mass Constant = .67 Cn

e H= Plastic Mass Constant = .57

L I = Loaded Portion of Beam L 14 Feet.to

FIND:

I. MAXIMUM ELASTIC DEFLECTION (FEET)

S 8 L32 4 L12L2 + L1

Xl = .000346666x T( 2L -L.1 2 1

(.000346666)(.081671)( 39304 - 13328 + =20

.000346666 x 94.869034 = .032888

2. NATURAL PERIOD (SECONDS)

MT = 6.2832 x T-- e

n K1.051290

- 6. 2832 x J- 15015706

= 6.2832 x J .000003265631

- 6.2832 x .001807 = .011354

27

DOOR 60-12-19 - TI

3. EQUIVALENT MASS (ELASTIC) (KIP-SEC 2/FT.)-W X L

M = __ e 2465 x .67 .051290e 32,200 32,200

4. EQUIVALENT MASS (PLASTIC) -(KIP-SEC2/FT.)

1 6 10 6

M = W x 20.704 x 0 = 2465 x 20.704 x 1 .051035p

5. STIFFNESS FACTOR (KIP/FOOT)

IK= 80,000 x 3 4 18 L2 4 L + LI

4561

39304 - 13328 + 2744

4561= 80,000 X 23,232 = 15,706

6. MAX. ELASTIC RESISTANCE (KIP LB)

27.7333 x Sel =2 L2 - L

2 1

2

2.7a

'V

DOOR 60-12-19 - TI

7. CONSTANTS FOR EXTRAPOLATION TABLE

ELASTIC RANGE

~Ta. n = .01 = .001

10 10

b. At 2 .0012 -6

c. (A t) 2= 1 x 10

d. P = Pr X A = 447 KIPo 1000

t .001e. P =P ( - 44 ( -- ) 438

f p -p I = 447 -438= 9

g. a 1 + 10 oM 2 6

h. X = a. X (i\t) = 4328 x 10- 6 x .004328

i. ( t)2 1 x 10-6 -6

M .051290 19.496 x 10e

PLASTIC RANGE

a. At = .001

O6

b. 1 x 106

2-66C. i/LI - 10 19.594 x 10- 6

M .051035p

27b

C14 0, C14 00fl C rID 0 C14 *- 0 4 cl k** o 0'I o

+1) N . 11 0t ~ * C CN r- 00 -cr -- I r- 1 r-+> 0- cr r- f 0r r -r "10I f nr0 C) 0000 C)0 0 0C10C)0 0 0 1-4

00 C o00 r nC44%D0 -It r'.0 %co C14f-.

4 r- "w r 0 r-4 0 " coNCm%0 .

4J m a% %0 m 0N c D

0 0 -4 A'0-I I-%Dr- r- r-iO'0 'nr: D4 0 00 0 00 0000oC)00 0

. .4 . . ..- . r-

0%n 0 C*4 0 4 ' 0 %D 00 C14 %D %~ D mo

E-4: 0 00>0 C). - - -4 r-I r-4 r-I,4 - r-4 "IC'4' . . . . . . .

z c~~: i '0 -- - - - - - 0

m~ C-,t 0% r- r- M 0 M 0i N' N'c cis Ca

P4 rsj g - n T-qC N ' " ' N~ "' N. C'4 r-4 0 rIC4 " J c0 0 000 0 00 0 0 000C0 0-

to 10 00 CNI 00c) 4I.-~c 31 U) a) -2C'

H d-0r Cco' o-

a%0.00 44-

VU) 0 4J'

(.2 ~ - 33 I ! I I I 43 4J . 4. ) 4)

___) 44I- .0r- r-iO 01

co 0 0Co o~ *iI 0o %C - - - -r- -I0'CA-viA j 0 o ZCj4 r-I

OD cd n4r4 D 0 0- - f 4- l e ti 0

c'J JI) .

f-f 40 . Ia tMU ) 4 N0 -% n , nI -

C) 00 0000 00C'-4r-- r4 -- r- -4-4v-I -44J 4) 00 0C)00000000000000

r-4 I-

uJ -r- r4.-r-4 4 -4r4 N'

,4 (A-?L~i ~ o ' 27IcAI D~o0-

R TABLEx

Maximum Rx to Minus Rel

' x.- x.- x " _- _I

517 .071824 .077481 .001343 15,706 21 496

_ " .073423 .005396 " 85 432

_ " .067737 .011087 174 343

"__.0 61968 .016856 265 252

" .057719 .021105 331 186

" " .056102 .022722 " 357 160

-27 d

trto

I-4

z ri0

HV

O 0 C)

z H

*Xa OT>-l HrJ C14

r-4 AIZcc. 0 0 "

IJ3 If) L

6* 6IC)

tn:- H

27E-

7. CONSTANTS FOR EXTRAPOATION TABLE

ELASTIC RANGET

~n a. = .001

b. At .00

. )2 = 1 x 10 6

P XAd. P 4 = 4 KIP

0 1,000e. P P.024 428 KIP

f. P -P 1 = 447 -428 =19 KIP0

1 P P - Pog (a-1 + 1 ) 4296

0m2 -6e2 21h. X 1 a X(/At) 4296 x I x 10. 004296

( t) 2 x 10 - 6 -6M .051290 19.496 x 10e

PLASTIC RANGE

a. At .001

26b. (At) = 1 x 10 6

2C. (At)2 19.594 x 10-6

m=

p

27_ f

0%.0C> r-l t %0 L ON n r %.DCYND c C+

cn % C- 0L C -a - -c%0 M '

4.) %D r4 W 0 N Z L - Z 1 Y

+ wn c: r na nC r %oma ;

09 . .. c

ILA ~0000000 Dt C )r DO 00 -

0> 0 co c

,* 7 q c

u n 0 m mo N- ) -1 *'-4II 11- cn ,-ht-- V)L) 0 % LI - I r

D4 x 0 DC)C.~~ .. . . .c

ia 0 o w- 00 -0E: % - 00G)a 00c D00 -Hr-4 04r-10 0 acoD

0 0 0 j- - 4rfr4c

10c O I - co r- Cl L ' CC) N Cl % - t tr) C4

-Li C - Dc C 0 0r (% C-)rC4 r

Q0000000000000010 <{ L1 ft Ia

0 0IC O 00r-4 0

3- r- r- - - D0 14

41 1~ 0 00 4

*** X xc 0

%-o~~ G%. . 4

U CC~r-I

-- , % n-t 400g4O t .0

1 4 IA Q c4-4 It-0 11-

ml go 4 r- .2C' r- t-) loo *'n r-HG~I= r-4 t 4- -

00 1- "0 0- 0 -0- 0 v00 4 0 0 00 0D 0 0-

- 1 %0 -t g: ' H 1~~

OH C% C> -4-4 Cn n .o r- 0-. a%* Cl - LA'0r 4o 4j-

U)~ 7g 0

CL -tIi0O nc 4a - nc ICoc

R TABLEx

Maximum R to Minus Rel

x el..

R -Ma XMax. _ x K_ :z R --

517 .063079 .062295 .000784 15,706 12 505

it .057417 .005662 " 89 428

t " .049576. .013503 It 212 305

S.040799 .022280 it 353 167

" " .033406 L.029673 " 466 51

" .029288 .033791 " 531 - 14

j27

27h

04

4;

01

00 10- 0 ,C

126 f-4

0,

zz0~ 0-

T4-

A 4An

0 C> 00)C 10 C 0 0,

I2 i'

DOOR 60-12-19 Tl

CALCULATION FOR LOCAL CONDITION

t = 1i

24

5/8

i

1. M 1/4 x 41.6 x 1/4 x 41.6 x 1

=10.4 K in/in

2. = 2 M x 10.4 = 1.73 K-ft/in

3. 1.738 - 12.3 K/in

= 1. 125

4.F 12 Pr x L x 1 (per inch) 12 x 197 x 1.1254. F = - = 1 x 97 x1.15 .2.66 K/in1,000 1,000

5. D..L.F.= R - 12.3 = 4.6 > 2 (Member remains elastic)

I

DOOR 60-12-19 - TI

CHECK FOR LOCAL BUCKLING OF ONE-WAY BEAMS

Beam = 24 WF @ 145

a = 22-1/2 LO. Cn.RESSION FLANGE

b = 13-1/2;d = 24-1/2

t .625 twlw

tf - i

b

1. Compression Flange Ratio b - 13.5tf

_ a 22.5 32. Web Ratio - .5 =36

t .625w

WEB REINFORCEMENT (When required)

LOAD

COMPRESSION FLANGE

8 c ts t /,,

3, b 6 t - Web Stiffeners s

7t - Load Bearing orS Compression Stiffener

)

Length of Stiffeners

Locate symmetrical with mid.-point of door

2-7 k :

DOOR 60-12-19 - TI

CHECK FOR LATERAL-TORSIONAL BUCKLING

GIVEN:

K .51

L = Span= 204

d = Depth of Beam- 24-1/2

b = Width of Flange = 13-1/2

Tf = Thickness of Flange = 1

I. KI Ld .51 x 204 x 24-1/2= = 188.8b T 13.5 x 1

f

27 1

cJC g

z z

z

0n0-1-

oc

o 001

-4 P4 4

A 0,

x L1- H-5,-

0 00

49 .4

to E- -4 kL

NJ aN v-4 P4

~ II27

-Co

C4

0'

9zz

0 Cc

e'f

-. 00 %0Cr

'0 L

'. _ _0 x

(12 4 c c fr)4J C U* -1

V .0 > x~

0 ? 00 r--n -4) 4

60 0) > q %D

0 x0 C- C4

I I

0 to rIq0

0 0 c

6-,q co*91 1. t:4. :L0 X CJ 0

277'

cc r L,- -

C4'

ce) gn (3-~ * u-~Ln

0 04

0

00

-A-

o ,-n 0

-1-4 bo 0

C/) 0 Z'4C4 C>00 C0ot 1-4i

CO C4r- / 4 -1 CL -0. X %D 0

34 - 7 0 P- Q).41 -0 1. 1

0 3 01- 413 c.)IA0 ca to o t0

V~ 41 r-4 $4 0o

r.0 oV ft .0 C -ci 14 u -4 C 0 QA Oco0 44CO Co c'r) 1 -A

-A 0. 14 a $4 W +14 i X 0 (3413 N Co

4.JX .0 r -4a4

a) O r-4 *ra Ck x2: r n 0

O0 0 + 3 ij I 0OH 0 0) eNC' Co 63 t

to co Na %%0 I4C4 (cn ..- 03co1, c

co coG! -3 c2, H'-d :3: : 3

270o

00

CC)

zi

0 00C)

a 0A

V~ CC)

z zi

U-4 C1 0

o cn

-A-

0 7- -

r14 <

0~IN I

cjV0 1

I: ~- Co 27

~I~uoo2nluado

pro-L punonauI MMlw

C*4- C-4

C144

00

00

H 0 0p 0 C.) i

C-14

27 q

-C

I

CVo. to -r

zi C14

0 a0

(/20 0 - C

CC))

a x C4 -

a) 0> t&X C

-4 t) C CIIE~

U 0 4E i r q IfC0 Ec-

rj ~ C-l '0)- -,4 EO -t- - Io uo~ (n XCN j a' CI

C) ZC 2 o 0 4-Y:to fl 0-r4 If II U I 4 OCo Oi-

5 0 x C' c ) n 1ii (N 0o cj~'r- r-4-(

ZI 00 0

jc-If ZIN, X 1

u Co

27 r

4J cn00 '-C4 C*4 4

w0 C - 44~

cr. gli 0

CIO-rq

$41

0 1- 4 toC

Cv)

Cv).C14 CC) 0.

* 0 0 % ci

.4* C/3 C ) U) Ci Z

-A 411-

4: - -4 a 0 0c

10) 0 of-U :71z 0ft - "41X

0 ) Q-

-A 3

00 ~ 1(n .. S C* co

r-4-,-

co Cl) le

co ~ ~ 2 s* 0

CALCULATIONS

2-WAY SPAN DOOR TRIAL NO. 1 ELASTO-PLASTICSOLID DESIGN DOOR NO. 60-12-26SIMPLY SUPPORTED 4 SIDES CALCULATIONS BY T.A.2'-6" x 4'-0", 100 PSI CHECKED BY H.S.

GIVEN:

t = Assumed Thickness = 2.50 Inches

T = Load Duration = .050 Sec.

P = Peak Reflected Pressure = 500 PSIr

W = Total Weight of Door = 1021 Lbs.a = Short Span of Door - 30 Inches

b = Long Span of Door = 48 Inches

= Timoshenko Moment Constant = .0862

a. = Timoshenko Deflection Constant = .0906

KLM = Mass-Load Constant = .74 .58ELASTIC PLASTIC

I-A

FIND:

1. ELASTIC RESISTANCE (KIP)

R 6.933 x t 2 x b 6.933 x 2.502 x 488 x a .0862 x 30

2079.90 82.586 80

2. ELASTIC DEFLECTION(FEET)

2 26.933 x o( x a .0906 x 30 x 6.933

360 x 10 3 x x 360 x 103 x 2.5 x .0862

565. 316827 8 .00728777,580

28

DOOR 60-12-26 -T1

3. PLASTIC MOMENT (KIP-inch/Inch)

2 2M =10.4 xt =l10.4 x2.5 =65p

4. ASSUMED TRAPEZOID FOR CRACK-LINE SECTION

(All dimensions in feet)

1.5 .9833 1.55

f Loaded Area

Cross-Hatched1.2998I

I lici Total Moment Arm

.04167 L _______

4. 0833

5. AREA OF TRAPEZOID LOADED (SQUARE FEET)

A = (f + e) x g (1.5 + .9833) x 1.24998 -3.10408

6.MOMENT ARM lic"t (FEET)

2 2f xg +Ie x

2 3

1.5 x 1.249982 .9833 x 1.2499823 + 2

3.10408

.49915

28a

DOOR 60-12-26 - TI

7. TOTAL MOMENT ARM (FEET)

TA = "c" + h = .4991511 + .04167 = .54082

8. UNIT RESISTANCE (Kip/Foot )

M xLRL 65 x4.0833

nit TA x A .54082 x 3.10408

9- ASSUMED TRIANGLE FOR CRACK-LINE SECTION

(All dimensions in feet)

2.514

' - Loaded Area Cross-Hatched

1. 5d k -

i 8C"_ Total Moment Arm

b .9

h.04167 - B

2. 5833

28b

DOOR 60-12-26 - TI

10. AREA OF TRIANGLE LOADED (SQUARE FEET)

A =1/2 x k x j = 1/2 x 1.50833 x 2.514= 1.8960

11. MOMENT ARM "c" (FEET)

i -c" = 1.50833 = .502783 3

12. TOTAL MOMENr ARM (FEET)

TMA = "c" + h = °50278 + .04167 = .54445

213. UNIT RESISTANCE (ip/Foot)

M x ,R p 65 x 2.5833

unit TMA x A .54445 x 1.8960

167.9145 163= = 1631.032277

14. TOTAL EFFECTIVE RESISTANCE (KIP)

R = 2 x (Runit x A + R x A) x .80

= 2 x (158 x 3.10408) + (163 x 1.8960) x .80

= 1.60 x 799.49 = 1279

15. PEAK LOAD (KIP)

Pr xaxb 500 x 30 x 48 =7

0 1,000 1,000

16. ELASTIC SPRING CONSTANT (Kip/Foot)

K1= .110333 x 10

1 X .007287

28 c

L

S

17. PLASTIC SPIING CONSTANT (K-ipiFoot)

(Assmekw -3 X e)

K2 - R1 1272 - 804 475- x - xe .005757 .o057

= .082508 x 106

18. EFFECTIVE 7_ASS (Kip- Sec 2!Foot)

ix 1021 x .74 .023464e 32,200 32,200

W x KIM 1021 x .58S.018391p 32,200 32,200

19. NATURAL PERIOD (SECONDS)

T 27r x en =K,

= 6.2832 x .023464.110333 x 106

= 6.2832 x %1 .000000212665295

= 6.2832 x .0004612 = .002898

i

28 d

DOOR 60-12-26 - TI

20. CONSTANTS FOR EXTRPOlATION TABLE

ELASTIC

a. Tn .0029 .00029 Sec.10 10

b. t = .0002 Sec.

c. (80' 4 x 10 - Sec.

d. P = 72OKip0

t .0002e. PI = P ( 1 . ) 720 (1 .5 )

o.050 .5

= 717 KIP

f" P -PI =720 -71- 3 Kip0

P P P

g. a x 1 0e

1 720 3.023464 -( 2~- 6 ) = 15,321

h. xaox 15,321 x 4 x 10 -0

= .000613 ft.

8_.( _) 4 X 10-8 170 x 108

m .023464

28 e

DOOR 60-12-26 -TI

ELASTO-PLASTIC m =me ep

PLASTIC (For X I 3X 1e only)

f% 2a. (L-t) -

mp

c. R el

d. R~ x Rel+ K 2 (X x x e

*Not used this calculation

28 f

a) C) C> c:)r-4 r-4 - D a 0

co rX4 0 0c)0 00 0000000000 . . . . . .

Cc4 w-I~0 0 Cn0%C O , r MCo -

3a 0 'T r-0 N C~C0co Lncfn'"_: _z 0 0

t4 x' %-.1c 9cc9cor.

- - -n 0 T % l 4 D ,

0 0 0 00 000000 0Cq. . . . . . .o c.o.t

N z4

C -4 H 0 -0 r %i ctu .iso

0 0 0 00 0 000 00 0 00o00D

00 0 0 0 0 0 0 0

4J ;,4r- 00 0 U

z-0 4-000

H00 -NN

U 0c3 -r-4 - LF) Z -. r40mcN4 Na OW 0 r - -

00 0.-I U0'3 - n0 nL 4rI0 4a

0

C14 .,-4 r r -. % r r- r-4 ro r-

40 000*rq000 * N% y 0000000Pim, 00000r - o0 0 - NO 00000 0f r

A. . .H

2C/3

DOOR 60-12-26 - Ti

R TABLE (T = .05)x

Plastic Range to Maximum RX

-~~e I~X =12 4 +I el~ RI I..007619 .007287 .000332 82,508 27 804 831

.010207 .002920 1 241 " 1045

.012217 " .004930 " 406 It 1210

.013363 " .006076 " 501 " 1305

.013479 " .006192 " 511 1315

.28 h

R TABLEx

Maximum R to Minus Rx el

V- , .. • I --I

1315 .013479 .012543 .000936 110,333 103 11212

"".010725 .002754 "304 11011

" ".008361 .005118 " 5E5 750

.005890 .007589 " 837 478

.003769 .009710 1071 244

' " .002391 .011088 " 1223 92

"__ .002009 .011470 " 1266 49

28i

0~

C4.

W 0 0nC

mOD 1 0 1

P41 -, - U)Co /

E -4 ~ U

00%0 a) 4

co 00 H-

U 01

CflCII

I f------

U)H 0 0 0 0 0 0Q0~- W

-~E- o c

28W

DOOR 60-12-26 - T1

20. CONSTANTS FOR EXTRAPOLATION TABLE (T = .0041)

ELASTIC~T Tn .0029

a. 10 = .00029

b. /\t = .0002

( )c. t 2 = 4x108

P xAd. P - r 1 720 KIP

e . Pi = P I i /t 72.1-0002 68,Io 0.0041 ) 2 i .0041 65 I

SP - P = 720 - 685 -35 KIP

P PI P

1 og. a x -- x (._.9+ po m2 6e

1 720 35.023464 (-2 6 ) = 15,094

A 2 -8h. = ax (t) 2 = 15,094 x 4 x 10- = 000604

A2 -8t 2 4 x 10 -8

me .923464 170 x 10

ELASTO-PLASTIC M Me ep

PLASTIC

Not used this calculation

28 k

A 0Ln0%r- C C 0 t %0- co - I- - %D a%

a 44- 0 0~ 0' r- N- .-. 0 0

on -r4'-koeJ~r4 t- O nC

co0 %0 tn'.1

r- , nc nt lI ,a n cV

0I 0 OO 0 0 r4 -4 r4 C: 0 00 0 0-

tn~~ ~ ~ --- 01 - -r C nw

C-4-

E- C14 4

o CV) 4 J %D 0% - -C - >r nO(1). 0 rv-4C>0 0 0 0 -4 r-40C)0 0 Cr-I r-a) 000 0 00 0 0C)000C0 00r4' rX4 000000 00 ) )0C)00 C0

~ r-4

Nt 0-400 -

0 Iz

0- *r4IC1 14r40O0N ON r-I 0 0Ln 04 4 -,00~ r- r-I r- -4 4 0 N VLV4

C14a a aCo

0 - - - - - - - - 4 - 4- - - - - - - - - - --.

cn 0 00C.I .

0 .4 d* N-0~ C VCY)V)r 0 * C4 CY)'t 'r 0 N0 -r- -'-44f4 - -4r4 N C

* 0 N o0 N - 28c1

DOOR 60-12-26 -T

R xTABLE (T -. 0041)

Plastic Range to Maximum Rx

xel X '2 el x

.009285 ~007287 .001998 82,508 167 804 971

.010731 .003444 _ ___ 284 II 1088

.011194 1 003907 ______ 322 -1126

2,8 I

R TABLEX

Maximum R to Minus R

x el

,,,,,.I [( x, ) ___ ,,K1 ___:

Mx-Xox X X

1126 .011194 .010550 .00C644 110,333 71 1055

o " .008860 .002334 of 258 868

t " .006383 .004811 " 531 595

" .003523 .007671 " 846 280

" " .000775 .010419 " 1150 - 24

" " -.001422 .012616 1392 -266-.002716 .013910 1535 -409

" -.002924 .014118 " 1558 -432

28n

H* z

-C-4 H

ot44

0) 0

+

z C)E-4 0

o w E-4 E-4

0 1 0coz 1 4 c 0

"'0'

00

H E-

0 0

cn C14

C.,4

0

I ~N Nt4-E-4 fn E-cM

C)0 0 0 0 00 0 0 0 0

N 00 %D N4 0+H H

- ,oI4

'00

IfI

/n c

r40

bo+ m 00 1

CU 14. 00

0 0VX

r-4 q4 X Ln

cuCV -40 1--' d5 ~ - h.- c

0 r-4 HY r-

U)f U)4 9qX

C00 C-4 0cOo0 -

M V) 4 r4 -! -11 $4v

If 14CV 11 1

W) 44 H-

28)

DOOR 60-12-26

VERTICAL STRIKER THICKNESS CALCULATION

Take a typical 1" long vertical strip.

Average Force per Lineal Inch = F = SB x T = 9,315

Bending Moment = Mb = F x D = 9,315 x .625 = 5,822

Minimum Required Thickness = d = 6 Mb IF60 34,93241,600 - 41,600

- F .839712 - .916 (for T - 1")

Use d - 3/4" (.7117 Min.) (for T - 1/2")

F - Total force on vertical strikerc

41,600 - allowable bending stress

d1" Section of Door

"C"= Length of VerticalStriker

St

Striker

/,DOOR /

-28 q

DOOR 60-12-26

REBOUND LOAD CALCULATION FOR LOCK BOLTS

Consider rebound resisted equally by "dead latch" andlock bolts.

Then:_Max._ReboundForce

Rebound force per bolt = P = 2 Reno, Foc2 x no, of lock bolts

= 8 = 54,0008

Maximum total rebound force is obtained from rebound calculations.

"D)EAD" LATCH

LOCK BOLTS

ZREAR FACE OF DOOR

28 r

'00

410 0 c

ca 0 C r

14 C ()m V

9 0 < 0400.0 r-4 a)0'

C 0 0 C Jan r

> 1 41 4 ri - 0

0- r4 b $E 4 Unt

,-4C-4 -I inCO C

d- C $ C)

1$4~0 0 0'-O'a)C O ,I

E-4 , C* ON -4u

t4 C14 co k

0 .C*q C'4 In a

If 00 00 O N Ln x -t

0 )n H r-4

ft -- I CI

P4c~ t C /

O $4 "t0C4~

H .0 P4 4

0 .0 cn to

CO .4 im p4<0 0

n 077 to 00 W H H

H- C p4 <HN A

00w d 10c c 4

r- n

28 so to c

C141

00co

on cc -

000

E-4 ODI

* * nN1 r-4 0)N

1-1

MI -4

H cr cC1

+ I)Ci)CN

r-IIH C

'E-4

28 tr

U 0

(D H4 :r, cv) U)

CO $4

Ho ca

02 V o~ 41 i

z rI~ ~ -o co

H 4

a)0

C..) U0N- - - 0

C. 4-JC Z C0~ E- S CP4 r-4 U 1

to 0 CO *.t0o00O

)H-1 (0 )

).-1 44 >a) 90 rZ4 C

Xa 0 + $

Hi mO N4---- 3 00c 1

HO CO %.,t

0~ m CSr-4

1 41 41 0 r-I NCO co gO

0

0E-4

rz4 41

-a i 0 )

COO

01 IINn

If I.~ ," H

ca 0 ) -r- COr0 CO, CO

__ HCZ W CO CO

29

1

0Or-4

.0 z~

044

cu

-4t4+

0i H 0z Q)0 -

o4 04i xoU)4 U)-~-

r: 00 C:

caY Cua- 0 3 xz~~z 0~4.I

U) 1- ).400

<'- 0 ta.-14 cu

U)) ca

r4 Cu 0

Hr H 4 C-. ) 0u r

Q) 444 t 0 H

-4 14 D.0) ou cu

(nS 4-I r -4

o Ca )u 0Ia. I2 U)

(n) 00(

44

4-i2 a .

C') I

CNC'

x Hct

0X N

0

Q))1

xx0

X4 w4 0- J4x x l'-4 1-4

x .4Ic.4 -It E+ 1-4x PQ

00 n HCYi 0.

0H

:3: N I: El

E-i E-

29 b

(1

4JJ

0 r

0 00a) H1 9 414P4 0- H- 4r

o r4 0 01 K014 401 H- 0

0f1-1 U) CT0 00

I4 P4~0 0 H r

U ~ ~ 4 0~I .

0 0

0 012~- H -40J

(n U) bo

0

0 0r

En 4 4 f-

0

Q) C14 44J4- 001 - 0

0 1 v IZ

x 600 4 01U

H 0

H-

r-4 0 0o- 0n .,-I-

01 r-4-c9 00

0 U

.1-4Ct.~~ .1- *v0U HIH

29 c

00 K1

ce) CN

u 1

4X 0 - _1 Go

r--4I .1 H

44 14 N

41 H(0. P4 l

C-4 P4

00

H H

Hq X- x0 Nd

E-IU ccI

W 04aHo 4~4 04

N 0 00 C 0CH4 x' P4fl

N1 N 0'0 M W.

C X Co

300

N C-4

a) V)

b.4oJ44

014 ___ C

0 m-rii w

ca N

00 ... A

E-1 Cu4 %tL 4.t

CuT-c t +

N C l, I I

C)I~%C ca cu 04 0r:I C4 +N

x! C4 Cu4Cu I c 1 ON j

4C, 04I

u ON! o N!

4 ~ - M0N l-a) Cu4 I~ 'lOC

N~f C4 JHtC

cu C4 N1)

0 30 a

41 .1

m +

+ NI r-+

CN N r-i-i Ct-I +r i- i

C14M 0 NtN

C~) CrCI C)HN a 30+ 04 1

C14 C- Nfl *.l ) -; n

.4, P41 I

+l W + %-e

toN- + P4C0+N C)) Nv-4v- P4 H% r.0 4

NV C1N r--; C)a+~0 Ha 0 0 IqH- H NI I Nt 0Y r )-Ie C14 C) C) * N

N*o :HI' 00d enI "IH 1

+ In V-4 H+ P4 M4.3

4 N )H a) x14~I C%4I0 +-k to 1- K

ci04r rI 40 -

-4:N~- P4HC~Xe 004-I~~~ 0I i1 0

PI C I q NNNt0

*n - N 4 CM H1 - -, 0

C14 3 r3 4 I H00-

1-4 4.I3, rINt M

CC-4+) C% 1-

30 b

r-q -H

r..

co C4

Cw C4 4N

00 $4C

II N s-4 Q)

W -N X

03

-4

3. U

4 cu00)

x 0

'- x

N-0 Q)

+T 4

c")C" Cfl %-I0 A AC0 HC1H 0 nAH

M ).-I 4C) C14 A 0

-4C'I A -14 0

X. a, a) + If'H.M

'.0 CY) HCM 0 x AcIC ".I 0 )

r- Cv 0

0

cc 0 0-4 0) C

0 000

'-l

0

coj

X 41:

CNI)

co cx C4

C) xC.) Q) x

0)) x-

_- I !

P4. C') .C.I to %0 go 0CV

I W I: *

act x~ II C'i00

-Ao

XI X r)

1.0 co~ 0 ON

X- F- -4C14VY

0) No 0 04-1 m0 0001. 004 0x~r Xc: 1.>0c0 o

0Q) (1)1.

r-4..r40 0 0

0) 31

0*-A

0

C) 0)

0 04

c-I

Cl)r-4 CVX-C* 0 %>

0% N ICYr4 r-4 0 m M

x~' 001r-fr o Y

'0) %- r1cr

X x " CY * e

00) r MCY) X N%0- r-4C'

x

C.. x 14 CY)c

0 HZ -cn HC,4 ~-IC M co4 H -. .- 4 -'.n- CY) 04*)

r- r-. rS

4J 00

C1 -I I 0~

314~H,4 -

0.

o 'h4

C14-

43.

0.m3"4J C- 4J C'4 X

coX C-4 cu

X 4-)C* xr'r-4. ko ce) X

r-4

caa44 C1~4

Q) X

Q) 4. coH~ ~ W -I< 4

U) 0)1 4 r- X C4 x

0 4 0 .

E-44

r-4 a

wx coGO C1

0 ) w 01 0 -H--H 41 -c .go U4 W

ao V oo 141 0

410

Cco '0vi~4 c CoN.

32

caIxV

M)

0*4 r-q

0' 4J

0CY

x 41

a) co CCx m-

ca CU U)

C U 4N J X x 0

t- *- C U x (-i CO C 4 i

o- co X o1u 0u C 0 14 ON Xo X1 I0I c H "0 x I 0 H )0 N0 0 44 CU 0- ~0- oJ t& . U C CC X X Cl)

CUr 0 C .C C C

0 C1 0 9:1cCH co mC-

U 1 Ni 0 Y) x Y)U41 a X X

r I m(a -' 41'c

SECTION V - BIBLIOGRAPHY

1. "Engineering Study of Blast Closure Devices," datedNov. 30, 1960, C. D. Price, Mosler Safe Cc., toU. S. Corps of Engineers, Protective ConstructionBranch, Washington, D. C.

2. "Blast Resistant Door Study" (Interim) dated Mar. 30,

1960, Mosler Safe Co. to U. S. Corps of Engineers,Protective Construction Branch, Washington, D. C..

3. "The Effects of Nuclear Weapons," 1957, prepared bythe United States Department of Defense, publishedby the United States Atomic Energy Commission.

4. "Design of Structures to Resist the Effects of AtomicWeapons," January 1957, EM 1110-345-413 Department ofArmy, Corps of Engineers.

5. "Design of Structures to Resist the Effects of Atomic

We-apons," 15 March 1957, EM 1110-345-414, Department

of Army, Corps of Engineers.

6. "Design of Structures to Resist the Effects of AtomicWeapons," 15 March 1957, EM 1110-345-415, Departmentof Army, Corps of Engineers.

7. "Design of Structures to Resist the Effects of AtomicWeapons," 15 March 1957, EM 1110-345-416, Departmentof Army, Corps of Engineers.

8. "Design of Structures to Resist the Effects of Atomic

Weapons," (Draft), EM 1110-345-417, Department of Army,Corp's of Engineers.

9. "Design of Structures to Resist the Effects of AtomicWeapons," (Draft), EM 1110-345-418, Department of Army,Corps of Engineers.

10. "Design of Structures to Resist the Effects of AtomicWeapons," 15 Jan. 1958, EM 1110-345-419, Departmentof Army, Corps of Engineers.

11. "Design of Structures to Resist the Effects of AtomicWeapons," (Draft), EM 1110-345-420, Department of Army,Corp s of Engineers.

33

12. "Design of Structures to Resist the Effects of AtomicWeapons," (Draft), EM 1110-345-421, Department of Army,Corps of Engineers.

13. "Theory of Plates and Shells," S. Timoshenko,McGraw-Hill Book Co., 1940.

34


Recommended