+ All Categories
Home > Documents > Mesurer et modifier l'élasticité des tissus avec les ... · Mesurer et modifier l'élasticité...

Mesurer et modifier l'élasticité des tissus avec les ... · Mesurer et modifier l'élasticité...

Date post: 14-Sep-2018
Category:
Upload: lamlien
View: 216 times
Download: 0 times
Share this document with a friend
60
Mesurer et modifier l'élasticité des tissus avec les ultrasons: de l'élastographie à la chirurgie non invasive Jean-Francois Aubry 1. Director of research CNRS, Institut Langevin, Equipe Physique des Ondes pour la Médecine, CNRS, INSERM, ESPCI Paris Tech, Paris, France 2. Visiting Associate Prof, Department of Radiation Oncology, Univ. of Virginia, USA
Transcript

Mesurer et modifier l'élasticité des tissus avec les ultrasons:

de l'élastographie à la chirurgie non invasive

Jean-Francois Aubry

1. Director of research CNRS, Institut Langevin, Equipe Physique des Ondes pour la

Médecine, CNRS, INSERM, ESPCI Paris Tech, Paris, France

2. Visiting Associate Prof, Department of Radiation Oncology, Univ. of Virginia, USA

Mesurer l'élasticité des tissus avec les ultrasons

Human Body Sismology : Mechanical waves in soft tissues

Compressional wave

(used by a conventional scanner)

Shear wave

(invisible with a conventional scanner)

Human Body Sismology : Mechanical waves in soft tissues

Compressional wave

(used by a conventional scanner)

Shear wave

(invisible with a conventional scanner)

1500 m.s-1 1-10 m.s-1

3s

Ec

ρ

KcP

E: Young‘s modulus

(elasticity)

K: Compressibility modulus

Compressional wave celerity: Shear wave celerity:

T = 0.5 ms

Shear Wave Speed = 1 to 10 m/s in human tissues

2.000 measurements/s

Human Body Sismology : Mechanical waves in soft tissues

Principe du palpeur acoustique

Milieu diffuseur

xz

Vibreur 100 Hz

Transducteur 5 MHz

Speckle US

t

3

EcS Cisaillement: Compression: cUS = 1500 m/s

Récurrence US: 1 à 5 kHz

qq m/s

Mesure du déplacement axial

Profondeur

layer

A scan at shot n

Recurence time ~ 200 ms1 µm < d < 100 µm

R

d

max

Profondeur

Prof.

Prof.A scan

at shot n+1

Profondeur

Cross-correlation in moving window

Coup basse fréquence : 100 Hz

Mesure de l’élasticité

-20 -10 0 10 20 30 40Retard de phase (ms)

50

40

30

20

10

Pro

fon

de

ur

z (m

m)

cS = 2,84 ± 0,02 m/s

E = 8,07 ± 0,09 kPa

Pro

fon

de

ur

z (m

m)

0 10 20 30 50

10

20

30

40

50

60

70

80

(P)

-50µm

50µm

(S)

Temps (ms)40

Ultrasound-based FibroscanTM (1D)

Méthode globale qui mesure un score

d’élasticité pour la fibrosehépatique

1997 2001

In Vivo Study by FibroscanTM

M. Ziol et al., Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with

chronic hepatitis C , Hepatology, 41:48-54, 2005.

Evaluation des stades de fibrose hépatique(Historiquement: autopsie, ponction,

échographie, tests sanguins)

Goal: Image shear wave propagation in Real Time

T = 0.5 ms

2.000 images/s !

Shear Wave Speed = 1 to 10 m/s in human tissues

Conventionnal US imaging50 Hz

US imaging for TE5000 Hz

ULTRAFAST IMAGING

Human Body Sismology : Mechanical waves in soft tissues

D

F

Conventional Imaging Ultrafast Imaging

RAM

Parallel ProcessingProcessing

128 transmits for a full image 1 transmit for a full image

Principles of Ultrafast Ultrasonic Imaging

Tissue displacement estimation

Corresponding axial tissue displacement (µm)

Ultrafast ultrasound movie ( 10.000 images/s)

Goal 1: Image shear wave propagation in Real Time

Human Body Sismology : Mechanical waves in soft tissues

Goal 2: Generate the shear wave with the imaging probe

UltrasoundTransducer

Imaged Area

x

z

Focal zone

Force

),(),(2

2trp

ctrF

Remote Palpation using the Ultrasonic Radiation force

Typical ultrasonic bursts of 100 µs

Generating low frequency (kHz range) Shear waves

Using high frequency (MHz range) Ultrasound

~ 100 µs

Step 1Shear wave generation by focusing

an ultrasound beam

Plane wave insonification at 3000 Hz

Texp=20 ms~ 0.3 ms

Step 2Ultrafast imaging

Ultrafast Imaging and Acoustic Radiation Force

Bercoff et al. IEEE Trans UFFC 51(4), 2004

Mapping Visco-Elasticity: Inverse problem of SW Propagation

kPa

• Freehand / does not change anything to the echographic exam

• Quantitative

• Operator independent = reproducible

• Ultrafast / Insensitive to motion artefacts and boundary conditions.

Leveraging this research elastography imaging modality into a product

Aixplorer ©,2008

1996-2002 2004-2005

Protocole clinique hôpital Cochin (108 patients)

Transient elastography 1D (50 Hz)

F1

F2

F4

F3

Shear waveelastography 2D

E: 4.78 ± 0.83 kPa

E: 10.64 ± 1.10 kPa

E: 27.43 ± 2.64 kPa kPa

E: 14.52 ± 2.20 kPa

Suivi de la fibrose hépatique

Bavu É et al. Ultrasound in medicine & biology. 2011

Suivi de la fibrose hépatique

Grade de fibrose

Elas

tici

té (

kPa)

0 0.2 0.4 0.6 0.8 1

1-Spécificité

1

0.8

0.6

0.4

0.2

0

Sen

sib

ilité

F01 vs F234

Fibroscan 0.89SSI 0.95

Fibroscan 0.95SSI 0.97

0 0.2 0.4 0.6 0.8 1

1-Spécificité

F0123 vs F4

Fibroscan 0.93SSI 0.96

0 0.2 0.4 0.6 0.8 1

1-Spécificité

F012 vs F34

Grade de fibrose

Elas

tici

té (

kPa)

P-index: ~10-12 P-index: ~10-16

Liver Cholangitis carcinomaTransplanted Kidney

Tendon Elasticity

Carotid Plaque

Thyroid Nodule

Soleus

Contraction

Supersonic Shear Wave Imaging: Clinical Diagnosis Examples

Breast Cancer

Vers la haute fréquence

Nouvelles sondes:« Software » optimisé pour la

haute-fréquence

Nouvelles cartes électroniques: - Emetteurs HF (de 5 à 25 MHz)

- Récepteurs jusqu’à 20 MHz de fréquence centrale

* Non CE

20 MHz 0.080 mm

15 MHz0.125 mm

15 MHz oeil 0.100 mm

20 MHz0.080 mm

Vers l’élastographie ultrasonore des organes fins

1 mm

2 c

m

1 c

m

6 m

m

Etude de l’élasticité de la peau

Protocole clinique sur 100 volontaires sains

Caractérisation de la cornée

mm

mm

Velocity map [0 - 5 m/s]

0 2 4 6 8 10 12

6

7

8

9

10

11

12 0

0.2

0.4

0.6

0.8

1

mm

mm

Velocity map [0 - 5 m/s]

0 2 4 6 8 10 12

5

6

7

8

9

10

11 0

0.2

0.4

0.6

0.8

1

1.7 ± 0.2 m/s

2.9 ± 0.3 m/s1.7 ± 0.2 m/s

5

5

0

0

m/s

m/s

8 MHz 15 MHz 20 MHz

Nguyen T-M, Aubry J-F, Fink M, Bercoff J, Tanter M. In vivo evidence of porcine cornea anisotropy using

supersonic shear wave imaging. Investigative ophthalmology & visual science 2014

Modifier l'élasticité des tissus avec les ultrasons

60°C

during 10s

4MPa

skin

Normal

Cells

Dead Cells

Frontier of the lesion

transducer

Thermal effect:

Tissue ablation

liver

1mm

Biological effects of ultrasound

Monitoring Elasticity changes during HIFU treatments

(Vermon, France)

Arnal et al.

(Imasonic, France)

Liver: a moving organ shadowed by the ribs

Respiratory movements

– Amplitude of displacements : – 10 – 20 mm

– Speed of displacements : – 10 mm.s-1

time

Motion tracking

focus

Step 2:

Phase shift

Step 1:

Motion estimation

Step 3:

HIFU sonication

HIFU Duty

cycle ~ 90 %

Transmit/Receive

Multichannels

systemHIFU Array

X

Y

Z

3D Motion tracking system for liver

5 ms 50 ms

Motion compensation : in vitro experiments

With motion correction

Without motion correction

Increasing powertime

Step 2:

Phase shift

Step 1:

Motion

estimation

Step 3:

HIFU sonication

5 ms 50 ms

F Marquet, J-F Aubry, M Pernot, M Fink and M Tanter Optimal transcostal high-intensity focused

ultrasound with combined real-time 3D movement tracking and correction, Phys. Med. Biol. (2011)

3D Motion tracking system for liver – Animal studies (pigs)

I.M.M., Institut Mutualiste Montsouris

Paris, France

Normal motion of a ventilated pig

Superior-Inferior motionLateral motionAnterior-Posterior motion

F Marquet, J-F Aubry, M Pernot, M Fink and M Tanter Optimal transcostal high-intensity focused

ultrasound with combined real-time 3D movement tracking and correction, Phys. Med. Biol. (2011)

Transribs focusing

Spherical law

Ribs detection

and automatic

correction

E. Cochard, J. F. Aubry, C. Prada and M. Fink Ultrasonic focusing through the ribs using the DORT

method. Medical Physics (2009).

0 10 20 30 40 50 60 -2

0

2

4

6

8

10

Time (s)

Te

mp

era

ture

at

rib

s s

urc

fac

e (

°C)

For a 20°C temperature

increase in liver tissues

at focus

No correction

Ribs detection and

automatic correction

5s sonication

(1000 W.cm-2)

5s sonication

(1600 W.cm-2)5s sonication (1600 W.cm-2)

Focal Plane Along Beam Axis

Aubry JF, Pernot M, Marquet F, et al, “Transcostal high-intensity-focused ultrasound: ex vivo adaptive

focusing feasibility study”, Physics in Medicine and Biology (2008)

Transribs focusing: avoiding overheating of the ribs

Targeting the brain with ultrasound: promises and challenges

Challenge:

How to focus ultrasound through the disorting skull bone?

Time shift compensation

Skull

Array of transducers

Skull

Array of transducers

How to determine the appropriate time shifts ?

Simulation of transcranial wave propagation

CT Scan

Acoustical properties of the skull

1300

-100

Speed of sound Density Absorption

Hounsfield

0),(

)(

1

)(

),()(

2

2

2

-

t

trp

rcr

trpgraddivr

J.-F. Aubry, M. Tanter, J.-L. Thomas, M. Pernot, M. Fink, “Experimental demonstration of non

invasive transskull adaptive focusing based on prior CT scans”, Journal of the Acoustical

Society of America, 113 (1), pp 84-94, 2003.

Intensity around focus without correction

3D finite difference time domain simulation using CT scans

Non invasive procedure

Virtual point source

F. Marquet, M. Pernot, J.-F. Aubry, G. Montaldo, L. Marsac, M. Tanter and M. Fink, Non-invasive transcranial ultrasound

therapy guided by 3D CT-scans: protocol validation and in-vitro results Phys Med Biol (2009)

Intensity around focus with correction

Transcranial aberration correction : a long way…2002-2013

Pernot, Aubry, et al, ”In vivo

transcranial brain surgery with an

ultrasonic time reversal mirror”

J Neurosurg., 2007

Aubry, et al , “Experimental

demonstration of non invasive

transskull adaptive focusing based

on prior CT scans”, JASA, 2003.

Tanter , et al,

“Compensating for bone

interfaces and respiratory

motion in High Intensity

Focused Ultrasound”, Int.

J. of Hyperthermia, 2007

Marquet et al, “Non

invasive ultrasonic

surgery of the brain in non

human primates”, JASA,

2013

Chauvet et al, “Targeting accuracy of

transcranial MR-guided High-Intensity

Focused Ultrasound brain therapy: a

fresh cadaver model”, J. of

Neurosurgery, 2013

High Frequency Brain therapy (1MHz)

Ultrasonic array

-512 elements, 1 MHz, ø 6mm, 20 W/cm2

Human skull mounted on a stereotactic

frame in front of the array

Electronics

-512 channels, 10 W/channel

Planning Software

Clinical device developed with SSI

MR temperature imaging

Precision on 13 cadavers :

axial plane: 0.71.2mm

along the ultrasonic beam:

0.52.4mm

Size of the MR temperature voxel:

1.5mmx1.5mmx3mm

11°C

0°C

Validation on cadaver heads

Chauvet et al, “Targeting accuracy of transcranial MR-guided High-Intensity

Focused Ultrasound brain therapy: a fresh cadaver model”, Journal of

Neurosurgery (2013)

ExAblate 4000 Neuro

ExAblate 4000 Neuro: 1024 elements operating at 670-720 kHz

Focused Ultrasound Excellence Center, University of Virginia, USA

Focused Ultrasound thalamotomy on medication resistant Essential Tremor

Targeting

Elias et al, NEJM, 2013

Essential Tremor Treatment

Awake, no anesthesia

No incisions

No burr holes

No electrodes

No infection

No blood clots

No brain damage

Courtesy of Uva

Courtesy of InSightec

Essential Tremor : Clinical results

• 18 Patients

• 75% reduction in hand tremor

• 85% improvement in quality of life

• 4 patients

• >80% reduction in dominant hand tremor

The Lancet, 2013

• ~70% tremor reduction

Can we induce more subtle effectsin the brain?

SURFACE

ELECTRODES

IMPLANTED

ELECTRODES

TRANSCRANIAL

MAGNETIC

STIMULATION (TMS)

OPTOGENETICTRANSCRANIAL

ULTRASONIC

STIMULATION (TUS)

Spatial

resolution

Non invasive

Deep

structures

Why use ultrasound for brain stimulation ?

Ultrasonic Neurostimulation

35-40 min

Ketamin (66mg/Kg) / Xylazin (13 mg/Kg)

10 s

10-15 min

search & work time

time

wake up phase

Sprague Dawley rats / transcranial(n=10; all male, body weight 150-250 g)

Y Younan, T Deffieux, B Larrat, M Fink, M Tanter, J-F Aubry, Medical Physics, 2013

Ultrasonic Neurostimulation

Sprague Dawley rats / transcranial(n=10; all male, body weight 150-250 g)

35-40 min

Ketamin (66mg/Kg) / Xylazin (13 mg/Kg)

10 s

10-15 min

search & work time

time

wake up phase

Y Younan, T Deffieux, B Larrat, M Fink, M Tanter, J-F Aubry, Medical Physics, 2013

Ultrasonic Neurostimulation

Neuromodulation on awake animals : voluntary eye movements

FUS Opening of the Blood Brain Barrier

Micro-bubbles injection + low pressure UltraSound (US)

Transient opening of endothelial tight junctions

from Bellavance 2008

from Vykhodtesva 2008

without US with US

Courtesy of N. de Jong

BBB opening on rodents

B Larrat, et al. MR-guided transcranial brain HIFU in small animal models, Phys Med Biol (2010)

MR compatible stereotactic brain system for rodents

T1w post Gd

200µL Sonovue®

60s US bursts

(3/100ms)

T1w Before

R Magnin, et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-

brain barrier permeabilization along arbitrary trajectories in rodents, J Ther Ultrasound (2015)

BBB opening on rodents

B Larrat, et al. MR-guided transcranial brain HIFU in small animal models, Phys Med Biol (2010)

MR compatible stereotactic brain system for rodents

T1w post GdT1w Before

R Magnin, et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-

brain barrier permeabilization along arbitrary trajectories in rodents, J Ther Ultrasound (2015)

Blood brain barrier opening in monkeys with the pre-clinical prototype

M. Santin, L. Marsac, G. Maimbourg, M. Monfort, B. Larrat, P.

Annic, M. Pernot, C. François, S. Lehéricy, M. Tanter, J.F. Aubry,

Repeated localized blood brain barrier opening using a 1 MHz

multielement Focused Ultrasound transducer array and

microbubbles: safety study on the macaque brain, submitted

Planning

software

T1 map before BBB

opening

T1 map

after BBB openingT1 difference between both

images

Clinical Blood brain barrier opening with skull bone removed

Carpentier et al, Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Science

Translational Medicine, 2016

17 patients with recurrent GBM before receiving systemic chemotherapy with carboplatin

(dose escalating study)

Ultrafast Functional

Imaging

Ultrasonic

NeurostimulationThermal Therapy

Ultrabrain project (transcranial focused ultrasound)

Collaboration Institut Langevin / Institut du Cerveau et de la Moelle (ICM)

Blood Brain Barrier

Opening

+

Ultrafast Functional

Imaging

Ultrasonic

NeurostimulationThermal Therapy

Ultrabrain project (transcranial focused ultrasound)

Collaboration Institut Langevin / Institut du Cerveau et de la Moelle (ICM)

Blood Brain Barrier

Opening

+

Small animal system

Primate system

Clinical system

(neuronavigator)

Equipe Physique des Ondes pour la Médecine at Institut Langevin

J. L. Gennisson, Y.Desailly, B. Osmanski, C. Demene, W. Kwiecinski, C. Boccara, C. Errico, M.Pernot

M. Fink, N. Liu,S. Chatelin, J. Provost, J-F. Aubry, M. Bernal, C. Papadacci, P. Annic, O. Thouvenin,

S. Bidault, M. Correia, M. Imbault, P. Daenens, D. Maresca, B. Jayet, L. Lermusiau, J. B Laudereau,

O. Couture, M. Flesch, C.E Leroux, J. Pierre, D. Raffini , E Bossy , J-M. Chassot, T. Chaigne ,

V. Maillard, K. Bertino, K. Contreras, C. Hudin, E Budelli, F. Poisson, M. Tanter

Pierre

Pouget,

ICM

Nicolas

Wattiez,

ICM

Stephane

Lehéricy,

ICM

Acknowledgements

Credits for some of the pictures:

FUS foundation

Jeff Elias & Robert Dallapiazza, UVA

This work was supported by :

Agence Nationale de la Recherche : Equipex Ultrabrain, ref

ANR-10-EQPX-15

Bettencourt – Schueller foundation:

Save the date:

Winter School on

THERAPEUTIC ULTRASOUND

Les HOUCHES, FranceDirectors:

G. ter Haar (UK), V. Khokhlova (Russia)

& J.-F. Aubry (France)

March 26-31, 2017

Save the date

17th ISTU meeting, Nanjing, May 30-June 2 2017

Jinling Hotel, Nanjing

www.istu.org


Recommended