+ All Categories
Home > Documents > Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP,...

Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP,...

Date post: 03-Jan-2016
Category:
Upload: cecily-boone
View: 216 times
Download: 0 times
Share this document with a friend
Popular Tags:
22
Prioritization of Maryland’s Transportation Assets Subject to Sea-Level Change and Coastal Flooding Michael S. Scott, PhD, GISP 1 , Arthur J. Lembo, PhD 1 , Brett Dobelstein 2 , & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA
Transcript
Page 1: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Prioritization of Maryland’s Transportation Assets Subject to

Sea-Level Change and Coastal Flooding

Michael S. Scott, PhD, GISP1, Arthur J. Lembo, PhD1, Brett Dobelstein2, & Michel Sheffer, GISP, CFM3

1Salisbury Univ, 2ESRGC, 3MDSHA

Page 2: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Spring High Tide, Wingate, MD 2007Wanda Diane Cole, RC&D Inc. in Sea

Level Rise: Technical Guidance for Dorchester County, 2008

Page 3: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Maryland has 3,190 miles of coast (longest relative to its size in the US, 26%!)

The Mid-Atlantic region is predicted to have some of the worst impacts of SLC because of the combination of rise, subsidence, and relative position to the North Atlantic Gyre

Maryland SHA needs a measured way to prioritize and mitigate the potential impact of baseline SLC on SHA assets, as well as the increased impact of coastal flooding that will result

A Measured Response to SLC

Page 4: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

High-resolution LiDAR data USACE estimates of SLC (SLR + subsidence),

both MSL and MHHW in both 2050 and 2100 Tidal flow network to remove unconnected

inundated areas HAZUS-MH flood depth grids for 10%, 4%,

2%, 1%, and 0.2%-chance floods Hazard Vulnerability Index (HVI) Network trace analysis to calculate SLC

impact

Overall Process of SLC Vulnerability Assessment

Page 5: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Determine amount of SLC per county Obtain sea-level elevations for the

Bay/Ocean from NOAA Adjust the elevations from the tidal datum

to NAVD88 Use USACE Intermediate estimates of both

eutastic rise and subsidence combined (SLC)

Adjust the SLC estimates for a 2015 start date

Add the SLC to both MSL and MHHW Assign each station to a county

Page 6: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.
Page 7: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Create Inundation Areas

Identified vulnerable elevations; elevations below anticipated sea-level rise

4 SLC scenarios – 2050 & 2100, MSL & MHHW◦ 4 inundation polygons per

county Adjust current DEM to

be future coastline “Bathtub” Model

Page 8: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Trouble with the “Bathtub” Model A selection of all areas

less than the value of SLC will include local minima

The local minima are not connected to the tidal waterway and therefore, are unlikely to be impacted by SLC

Page 9: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

To Solve the Local Minima Problem Take NHD high-resolution

flowlines Create a network dataset Use the Bay and other

polygonal tidal water bodies as network destinations

Find all flowlines that connect to tidal waters

Delete any SLC area that does not intersect a tidal flowline

Page 10: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Issue of Local Minima Resolved

Page 11: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Create Flood Depth Grids Modeled expected depth of flood water; each

grid cell contains water depth calculation Recurrence intervals of 10-, 25-, 50-, 100-,

and 500-year floods 4 SLC scenarios – 2050 & 2100, MSL & MHHW Thus, 20 depth grids per county Manipulate the current DEM to simulate each

SLC scenario Calculate the depth of flooding using HAZUS

Page 12: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Reclass Base DEM to Event DEM X 4

Page 13: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

HAZUS MH 2.1 Developed for FEMA to model potential

losses from earthquakes, floods, and hurricane wind

Flood model calculates depth grids per recurrence interval using simplified versions of best available hydrology and hydraulic models

Simplified versions match the data we have available and the scale of our analysis

Significant amount of pre- and post-event accuracy testing with good results

Page 14: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Today, MSL 2050, 1% Flood Depth

Page 15: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Once the modeled depth of water, both with and without coastal flooding, was calculated, we need a way to assess the vulnerability of each road segment

Priority is given to pre-defined evacuation routes, higher route functional classes, and deeper water

HVI = ([Evacuation Route]*.5+1) * ([Flood Depth]+.01)/4) * (1.0/[Functional Class])*.7

Development of Hazard Vulnerability Index (HVI)

Page 16: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.
Page 17: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.
Page 18: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.
Page 19: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Network Trace Analysis

• Goal: Quantify SLC impact for prioritization• Origin/Destination Routing

– Random origins representing population distribution– Known destination representing egress points

• Find optimal path today between each O/D• Find optimal path using HVI results• Calculate anticipated changes to optimal

path – Lengthening vs unreachable

Page 20: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Initial Observations: % Reachable Locations

MSL Nonevent MSL 10yr Event MSL 25yr Event MSL 50yr Event MSL 100yr Event

MSL 500yr Event

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Impact of Coastal Flooding and SLC on Transportation Access

AA 2014AA 2050AA 2100SOM 2014SOM 2050SOM 2100

% o

f Locti

ons t

hat

are

Reachable

Page 21: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.
Page 22: Michael S. Scott, PhD, GISP 1, Arthur J. Lembo, PhD 1, Brett Dobelstein 2, & Michel Sheffer, GISP, CFM 3 1 Salisbury Univ, 2 ESRGC, 3 MDSHA.

Important Caveats SLC estimates are a moving target Older LiDAR data is not as accurate or precise SLC will not be as consistent across counties as

we have modeled Flood scenarios do not include wave setup Coastline change due to SLC is not modeled Flood recurrence interval changes due to SLC

are not modeled HVI values need to “smell tested” by local

experts Still considering appropriate trace metrics


Recommended