+ All Categories
Home > Documents > Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire...

Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire...

Date post: 15-Jan-2016
Category:
View: 213 times
Download: 0 times
Share this document with a friend
65
Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France. Email : [email protected] Web : http://cristal.org/ Global Optimisation Techniques Applied to the Prediction of Structures « Gordon Conference style » Workshop, 5-7 July 2006, University College London
Transcript
Page 1: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Microporous Titanium SilicatesPredicted by GRINSP

Armel Le Bail

Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

72085 Le Mans Cedex 9, France. Email : [email protected] : http://cristal.org/

Global Optimisation Techniques Applied to the Prediction of Structures« Gordon Conference style » Workshop, 5-7 July 2006, University College London

Page 2: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

CONTENT

I- IntroductionII- GRINSP algorithm and resultsIII- Results for titanosilicates

Prediction conditionsModels with real counterpartsHighest quality (?) modelsModels with the largest porosity

IV- Opened doors, limitations, problemsV- Conclusions

Page 3: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

I- INTRODUCTION

Personnal views about crystal structure prediction :

“Exact” description before synthesis or discovery in nature.

These “exact” descriptions should be used for the calculation of powder patterns included in a database for automatic identification

of real compounds not yet characterized crystallographycally.

Page 4: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

It would allow complete prediction.

These predictions would be made available in huge databases(currently the case for > 1.000.000 zeolites).

We would have predicted the physical properties as well.

We would try to synthesize the most interesting compounds.

This is pure fiction up to now...But clearly is THE XXIth century challenge.

Trying to make a very tiny step on that long way : GRINSP

If we had a really powerful materials theory…

Page 5: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

II- GRINSP algorithm

Geometrically Restrained INorganic Structure Prediction

Applies the knowledge about the geometrical characteristics of a particular group of inorganic crystal structures

(N-connected 3D networks with N = 3, 4, 5, 6, for one or two N values).

Explores that limited and special space (exclusive corner-sharing polyhedra) by a Monte Carlo approach.

The cost function is very basic, depending on weighted differences between ideal and calculated interatomic distances for first neighbours M-X, X-X and M-M for binary MaXb or ternary MaM'bXc compounds.

J. Appl. Cryst. 38, 2005, 389-395.J. Solid State Chem., 2006, in the press

Page 6: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Observed and predicted cell parameters comparison

Predicted by GRINSP (Å) Observed or idealized (Å)

Dense SiO2 a b c R a b c

(%) Quartz 4.965 4.965 5.375 0.0009 4.912 4.9125.404 0.9

Tridymite 5.073 5.073 8.400 0.0045 5.052 5.052 8.270 0.8

Cristobalite 5.024 5.024 6.796 0.0018 4.969 4.969 6.9261.4

Zeolites ABW 9.872 5.229 8.733 0.0056 9.9 5.3 8.8

0.8EAB 13.158 13.158 15.034 0.0037 13.2 13.2 15.0 0.3EDI 6.919 6.919 6.407 0.0047 6.926 6.926 6.410

0.1GIS 9.772 9.772 10.174 0.0027 9.8 9.8 10.20.3GME 13.609 13.609 9.931 0.0031 13.7 13.7 9.90.6

Aluminum fluorides-AlF3 10.216 10.216 7.241 0.0159 10.184 10.184 7.174 

0.5Na4Ca4Al7F33 10.876 10.876 10.876 0.0122 10.781 10.781 10.781 0.9

AlF3-pyrochl. 9.668 9.668 9.668 0.0047 9.749 9.749 9.749

0.8

TitanosilicatesBatisite 10.633 14.005 7.730 0.0076 10.4 13.85 8.1

2.6Pabstite 6.724 6.724 9.783 0.0052 6.7037 6.7037 9.8240.9Penkvilskite 8.890 8.426 7.469 0.0076 8.956 8.727 7.387

1.3

Page 7: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

More details about the GRINSP algorithm

Two steps :

 Step 1 - Generation of raw models

Haphazard (by Monte Carlo) is used todetermine the cell dimensions;

select Wyckoff positions; place M/M’ atoms.

The cell is progessively filled up to the respect of geometrical restraints and constraints fixed by the user (exact coordination, but large tolerance

on distances), if possible. The number of M/M' atoms placed is not predetermined. Atoms do not move.

It is recommended to survey all the 230 space groups.

Page 8: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Step 2 - OptimizationThe X atoms are placed at the (M/M')-(M/M') midpoints (corner-sharing).

Interatomic distances and cell parameters are optimized (by Monte Carlo) : it is verified that regular polyhedra (M/M’)Xn can really be built starting from the

raw initial models with M/M’ atoms only.

Cost function :

R = [(R1+R2+R3)/ (R01+R02+R03)],

where Rn and R0n for n = 1, 2, 3 are defined by :

Rn = [wn(d0n-dn)]2, R0n = [wnd0n]

2,

Where the d0n are the ideal distances M-X (n=1), X-X (n=2) and M-M (n=3),

the dn being the observed distances in the model.

Weighting is applied through the wn .No powder data.

Page 9: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

The cost function would be better defined by applying the bond valence rules or by making energy calculations (in projet for the next GRINSP

version) both would be more time consuming, especially for energy calculations.

Minimizing distance differences is a very basic approach.

Intuitively, is it clear that this simple approach will give good results only for regular polyhedra.

Comments

Page 10: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Atoms move that time, no jump is allowed which would break coordinations. The cell parameters established at step 1 can change

considerably during the optimization (up to 30%).

The original space group of which the Wychoff positions were used to place the M/M' atoms at step 1 may not be convenient after placing the X atoms and optimization, this is why the final model is proposed in the P1

space group (coordinates placed into a CIF).

The final choice of the symmetry has to be done by applying a checking software like PLATON (A.L. Spek).

More details on step 2

Page 11: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Running GRINSP :

1- The user has first to build a file according to his/her desires

Example :

TiO6/VO5 - all space groups ! Title line55 55 ! Space groups range (you may test the range 1 230) 2 0 2 192 ! Npol, connectivity, min & max number of M/M’ atoms6 5 ! Polyhedra coordinationsTi O ! Elements for the first polyhedra V O ! Elements for the second polyhedra 3. 30. 3. 30. 3. 30. ! Min & max a, b, c5. 35. ! Min & max framework density20000 300000 0.02 0.12 ! Ncells, MCmax, Rmax, Rmax to optimize5000 1 ! Number of MC steps/atom at optimization, code for cell 1 ! Code for output files

Note : that calculation would need 1 day with a single processor running at 3GHz.

Page 12: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

2 – Verify that the atom pairs are defined :

See into the file distgrinsp.txt distributed with the package :

V O 53.050 4.050 3.5501.526 2.126 1.8262.282 2.882 2.5824.20 7.00

Ti O 63.300 4.300 3.8001.650 2.250 1.9502.458 3.057 2.7584.45 6.95

Distances minimum, maximumand ideals for pairs V-V,

V-O et O-O in fivefold coordination,plus a range for second V-V neighbours

(square pyramids favoured).

The same for Ti-Ti, Ti-O et O-Oin octahedral coordination TiO6.

Trigonal prisms may well be produced, but with larger R values.

Page 13: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

3-

Start GRINSP

Page 14: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

4-

Wait…(hours, days,

weeks, months…) and see the summary at

the end of the output file

with extension .imp :

Page 15: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

5 –

See the results

(here by applying Diamond

to a CIF) :

Page 16: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

GRINSP is « Open Source », GNU Public Licence

Downloadable from the Internet at : http://www.cristal.org/grinsp/

Page 17: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Predictions produced by GRINSP

Binary compounds

Formulations M2X3, MX2, M2X5 et MX3 were examined.

Zeolites MX2

More than 1000 zeolites (not 1.000.000) are proposed with R < 0.01 and cell parameters < 16 Å, placed into the PCOD database :

http://www.crystallography.net/pcod/

GRINSP recognizes a zeotype by comparing the coordination sequences (CS) of a model with a previously established list of CS and with the CS

of the models already proposed during the current calculation).

Page 18: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Hypothetical zeolite PCOD1010026SG : P432, a = 14.623 Å, FD = 11.51

Page 19: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,
Page 20: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,
Page 21: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,
Page 22: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

…..

Example of CIF produced by GRINSP and inserted into the

PCOD

The coordination sequence is added at

the end as a comment

Page 23: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Does GRINSP can also predict > 1.000.000 zeolites ?

Yes if Rmax was fixed at 0.03 instead of 0.01, if the cell parameters limit (16Å) was enlarged,

and if all models describing a same zeotype in various cells and space groups were saved.

Is it useful ?

In a specialized database, yes,in a general database, no.

Page 24: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Other GRINSP predictions : > 3000 B2O3 polymorphs

Hypothetical B2O3 - PCOD1062004.

Triangles BO3 sharing corners.

Page 25: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

> 500 V2O5 polymorphs

square-based pyramids

Page 26: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

> 30 AlF3 polymorphs

Corner-sharing octahedra.

Page 27: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Do these AlF3 polymorphs can really exist ?

Ab initio energy calculations by WIEN2K « Full Potential (Linearized) Augmented Plane Wave code »

A. Le Bail & F. Calvayrac, J. Solid State Chem. In press

Page 28: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Ternary compounds MaM’bXc in 3D networks of polyhedra connected by corners

Either M/M’ with same coordination but different ionic radii

or with different coordinations

These ternary compounds are not always electrically neutral.

Page 29: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Borosilicates

PCOD2050102, Si5B2O13, R = 0.0055.

> 3000 models

SiO4 tetrahedra

andBO3

triangles

Page 30: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Aluminoborates

> 2000 models

Example : [AlB4O9]-2, cubic, SG : Pn-3, a = 15.31 Å, R = 0.0051:

AlO6 octahedra and

BO3

triangles

Page 31: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Fluoroaluminates

Known Na4Ca4Al7F33 : PCOD1000015 - [Ca4Al7F33]4-.

Two-sizesoctahedra

AlF6 and CaF6

Page 32: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Unknown : PCOD1010005 - [Ca3Al4F21]3-

Page 33: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Satellite programs distributed with the GRINSP package

GRINS : allows to build quickly isostructural compounds by substitution of elements from previous models.- FeF3, CrF3, GaF3, etc, from AlF3

- gallophosphates, zirconosicilates, or sulfates, etc, from titanosilicates.

CUTCIFP, CIF2CON, CONNECT, FRAMDENS programs for - cutting multiple CIFs into series of single CIFs, - extraction of coordination sequences from CIFs, - analysis of series of CIFs, recognition of identical/

different models and sorting them according to R, - extraction of framework densities, sorting.

Page 34: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

III – Results for titanosilicates

> 1000 models

TiO6 octahedra

andSiO4

tetrahedra

Page 35: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Prediction conditions : Si4+ and Ti4+

Si O 42.570 3.570 3.070 1.310 1.910 1.610 2.229 3.029 2.629 4.40 6.00

Ti O 63.300 4.300 3.8001.650 2.250 1.9502.458 3.058 2.7584.45 6.95

Cell parameters : max 16 Å

230 space groups, one day calculation per space group, processor Intel Pentium IV 2.8 GHz

Page 36: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Numbers of compounds in ICSD version 1-4-1, 2005-2 (89369 entries) potentially fitting structurally with the [TiSinO(3+2n)]

2- series of GRINSP predictions, adding

either C, C2 or CD cations for electrical neutrality.

n +C +C2 +CD Total GRINSP

ABX5 1 300 495 464 35 1294 93

AB2X7 2 215 308 236 11 770 179

AB3X9 3 119 60 199 5 383 174

AB4X11 4 30 1 40 1 72 205

AB5X13 5 9 1 1 0 11 36

AB6X15 6 27 1 13 1 42 158

Total 2581 845

More than 70% of the predicted titanosilicates have the general formula [TiSinO(3+2n)]

2-

Not all these ICSD structures are built up from corner sharing octahedra and tetrahedra.

Page 37: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Models with real counterparts

Page 38: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Example in PCOD

Not too bad if one considers that K et H2O are not taken into account in the model prediction...

Model PCOD2200207 (Si3TiO9)2- :a = 7.22 Å; b = 9.97 Å; c =12.93 Å, SG P212121

Known as K2TiSi3O9.H2O (isostructural to mineral umbite):a = 7.1362 Å; b = 9.9084 Å; c =12.9414 Å, SG P212121

(Eur. J. Solid State Inorg. Chem. 34, 1997, 381-390)

Page 39: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD2200042 [TiSi2O7]2- identified as corresponding to

Nenadkevichite NaTiSi2O72H2O

Page 40: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

The CS(Coordination Sequence)

is not sufficient for a perfectidentification…

Narsarsukite :Na2TiSi4O11

PCOD2200033 :[TiSi4O11]2-

Both have same CS, but the model is a subcell with

subtle differences.# PCOD2200033# 2# 2 8# 6 18 34 54 86 126 166 214 # 4 12 28 52 82 118 164 216

Page 41: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

A few other identified models

PCOD entry Mineral name/formula

2200093 Vlasovite3200122 VP2O7-I3200543 VP2O7-II2200170 Gittinsite2200178 KTiPO5

2200040 ZrP2O7

2200030 Armstrongite2200032 Bazirite2200095 Komkovite/Hilairite3200659 Zekzerite

etc, etc (overview not completed…)

Page 42: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Highest quality (?) models

Page 43: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,
Page 44: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,
Page 45: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Models with the largest porosity

Page 46: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Porosity examined with PLATON (option SOLV or VOID)

Küppers, Liebau & Spek, J. Appl. Cryst. 39 (2006) 338-346.

Calculation with PLATON commands :

SET VDWR O 1.35 Si 0.5 Ti 0.6

CALC VOID PROBE 1.25 (and 1.50) GRID 0.12 LIST

The titanosilicate model with largest channels attains 70% porosity, FD = 10.6 (Framework Density : number of cations for 1000 Å3)

This is close to the best zeolites.

Page 47: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200086 : P = 70.2%, FD = 10.6, DP = 3 (dimensionality of the pore/channels system)

[Si6TiO15]2- , cubic, SG = P4132, a = 13.83 Å

Ring apertures9 x 9 x 9

Page 48: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200867, P = 61.7%, FD = 12.0, DP = 3 [Si2TiO7]2- , orthorhombic, SG = Imma

Ring apertures10 x 8 x 8

Page 49: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200081, P = 61.8%, FD = 13.0, DP = 3 [Si6TiO15]2- , cubic, SG = Pn-3

Ring apertures12 x 12 x 12

+10+6

Page 50: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200026, P = 59.6%, FD = 13.0, DP = 3 [Si4TiO11]2- , tetragonal, SG = P42/mcm

Ring apertures12 x 10 x 10

Page 51: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200037, P = 50.8%, FD = 13.3, DP = 3 (for a 2.5 Å diameter guest) to DP = 2 (at 3 Å)

[Si2Ti3O13]6- , trigonal, SG = P-3

Ring apertures8 x 8 x 6

Page 52: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200837, P = 59.4%, FD = 13.3, DP = 3 [Si4TiO11]2- , orthorhombic, SG = Cccm

Ring apertures12 x 10 x 10

+6

Page 53: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200518, P = 47.3%, FD = 14.2, DP = 1 with 2 tunnels of 358 and 104 Å3 (for V = 983 Å3)

[Si4Ti3O17]6- , orthorhombic, SG = Pmc21

Ring apertures16+8

Trigonal prisms :

Page 54: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD2200205, P = 52.3%, FD = 14.9, DP = 3 [Si6TiO15]2- , orthorhombic, SG = Pmma

Ring apertures10 x 8 x 6

Page 55: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD2200199, P = 52.3%, FD = 14.9, DP = 3 [Si6TiO15]2- , monoclinic, SG = P2/m

Ring apertures10 x 8 x 6

Page 56: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

PCOD3200052, P = 53.7%, FD = 15.2, DP = 3 to DP = 1 and 0

[Si12TiO27]2- , trigonal, SG = P-31c

Ring apertures8 x 6 x (8+6)

Page 57: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

IV – Opened doors, Limitations, Problems

GRINSP limitation : exclusively corner-sharing polyhedra.

Opening the door potentially to > 50.000 hypothetical compounds.

More than 10.000 should be included into PCOD before the end of 2006.

Then, their powder patterns will be calculated and possibly used for search-match identification.

Page 58: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Expected improvements :

Edge, face, corner-sharing, mixed.

Hole detection, filling them automatically, appropriately, for electrical neutrality.

Using bond valence rules or/and energy calculationsto define a new cost function.

Extension to quaternary compounds, combining more than two different polyhedra.

Etc, etc.

Page 59: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

For zeolites, identification to one of the 150 known structure-types is fast, this is not the case for most other

structures (lack of efficient and reliable descriptors independent of the cell parameters and symmetry which

would have to be included into the ICSD, and user friendly).

Improving the PCOD(Predicted Crystallography Open Database)

Need for automatization for fast growing, but this is incompatible with some details :

It is better if all these hypothetical structures are examined by a crystallographer’s eye.

Page 60: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Problem with identification

due to cell parameters inaccuracy

« New similarity index for crystal structure determination from X-ray

powder diagrams, » D.W.M. Hofmann and L. Kuleshova,

J. Appl. Cryst. 38 (2005) 861-866.

Page 61: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Problem with identification due to errors on the powder patterns intensities

These titanosilicates, niobiosilicates, zirconosilicates, vanadophosphates, gallophosphates, etc, etc, hypothetical

compounds have to be filled with appropriate cations and re-optimized so as to obtain better cell parameters and more precise

predicted powder pattern intensities.

Page 62: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

What GRINSP may also do :

Predict ice structures (if modified for distorted OH4 tetrahedra)

Study oxygen vacancies in perovskites (already done)

Predict of tetrahedral, octahedral (etc) (inter)metallic structures

(GRINSPM version working already)

Etc

Page 63: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

Two things that don’t work well enough up to now…

- Ab initio calculations (WIEN2K, etc) : not fast enough for classifying > 10000 structure candidates

(was 2 months for 12 AlF3 models)

- Identification of the known structures (ICSD) among >10000 hypothetical compounds

Page 64: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

One advice

Send your data (CIFs) to the PCOD, thanks…(no proteins, no nucleic acid, not 1.000.000 zeolites)

Page 65: Microporous Titanium Silicates Predicted by GRINSP Armel Le Bail Université du Maine, Laboratoire des oxydes et Fluorures, CNRS UMR 6010, Avenue O. Messiaen,

V - CONCLUSIONS

Structure and properties prediction is THE challenge of this XXIth century in crystallography.

Advantages are obvious (less serendipity and fishing-type syntheses).

We have to establish databases of predicted compounds, preferably open access on the Internet.

If we are unable to do that, we have to stop pretending to understand and master the crystallography laws.


Recommended