+ All Categories
Home > Documents > Microscale instability and mixing in driven and active...

Microscale instability and mixing in driven and active...

Date post: 18-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
30
Microscale instability and mixing in driven and active suspensions Michael Shelley, Applied Math Lab, Courant Institute Collaborators: Lisa Fauci Tulane Christel Hohenegger CIMS Eric Keaveny CIMS David Saintillan UIUC Joseph Teran UCLA Becca Thomases UC-Davis
Transcript
Page 1: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Microscale instability and mixingin driven and active suspensions

Michael Shelley, Applied Math Lab, Courant Institute

Collaborators:Lisa Fauci TulaneChristel Hohenegger CIMSEric Keaveny CIMSDavid Saintillan UIUCJoseph Teran UCLABecca Thomases UC-Davis

Page 2: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Dynamics and interactions of micro-structure in complex fluids

Dynamics of non-Newtonian fluids Reinforced composite materialsBiological locomotionElastic “turbulence” & low Re mixingGroisman & Sternberg ’00, ’01, …

Microfluidic rectifiersGroisman, Enzelberger, & Quake ‘03

B. subtilis – one and manyC. Dombrowski et al ’05, 07

microscale mixing – Groisman & Steinbergmicrofluidic rectifier – Groisman & Quake

I-SA phase trans -- PPM

Page 3: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Experiments: V. Steinberg & A. GroismanViscoelastic fluid – Elastic “turbulence” - Efficient mixing

(Low Re, “High” Wi)Rotating plates

Mixing in micro channels

Arratia et al, PRL 2006Elastic fluid instabilities near hyperbolic points

Page 4: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Stokes-Oldroyd-B ( Re<<1 )• model of a “Boger” elastic fluid (normal stresses, no shear thinning)• derives from a microscopic, dilute theory of polymer coils• one of the standard viscoelastic flow models; Little known

about large data solutions.

0

( )

andp

Wi

β∇

−∇ + Δ = − ∇⋅ − ∇ ⋅ =

= − −p

p p

u σ f u

σ σ I

Upper convected time derivative

transport and dissipationof polymer stress

momentum and mass balance

T

Weissenberg number

coupling strength

polymer viscosity so

( )

;

lvent visco t

;

si y

p

f

f

p

DDt

Wi

G

GWi

ττ

τβ

μτ

βμ

∇•

= − ∇ ⋅ + ⋅∇

=

=

⋅ =

• =

pp p p

σσ u σ σ u

ratio of polymer relax. timeto flow time-scale

f LFμτ

ρ=

Material constant; fix to ½ as in expts of Arratia et al

solvent viscosity; = external force scale = polymer relaxation time; = background poly. stressp

FG

μτ=

Page 5: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

( )21 1

1= tr2

Has decaying "strain" energy:

2

E

E Wi E β− − ⎡ ⎤+ = − ∇ + ⋅⎣ ⎦

∫ ∫

pσ - I

u u f

ˆ ˆˆ ˆˆ( ) ( )

ˆ with

ppL P

t∂

= +∂

=

σk σ k f

k k/ | k |

Use the Fourier transformto solve the linearizedproblem

But lacks of scale dependent dissipation:

Properties:(1)

(2)

(4)

(3)

Existence of large-data solutions is unknown, even in 2d

Polymer stress tensor:

is s.p.d.

Cν= =pσ fr rrAssume linear

Hooke’s law for bead forces

Simulations: De-aliased Fourier based spectral method; second order time stepping.

Page 6: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

0 1 2 3 4 5 60

1

2

3

4

5

6

Background force

With Newtonian fluid yields

2sin cos2cos sin

x yx y

−⎛ ⎞= ⎜ ⎟⎝ ⎠

f

Vorticity field for Newtonian fluid

Four – roll mill geometry

sin coscos sin

x yx y

⎛ ⎞= ⎜ ⎟−⎝ ⎠

u

Creates hyperbolic pointsin background flow ala Arratia et al., PRL 2006

Also Berti et al ’08, Xi & Graham ‘09Becherer, Morozov, van Saarloos ’08, 09

Thomases & Shelley PF 2007

Page 7: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

tr( )p →σ

Wi=5.0Wi=0.6Wi=0.3

ω →

( )

Evolution for initial stress:

0p t = =σ I

smooth cusp

divergence

11

slices of

p

→σ

Page 8: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Local Model – fix strain-rate α – determined by flow -- and advectstress field by local straining velocity

11pu = ( , ); = ; ;

(1 2 ) 1 0 t x y

x y t Wi t Wi

x y

α α ϕ σ ε α

ϕ ε ϕ ε ϕ ε ϕ

− → ⋅ = ⋅

+ − + − − =

(2 1)11

1= ( , )1-2

t t te H xe yeε ε εϕε

− −+

General solution :

11 with ( , ) ( ) ( ) ~| | |as |qH a b h b h b b b= →∞Relevant solution :

Why? Choose q to eliminate long time t – dependence 1 21 2 1| | |

1 2tq C yε

εε ϕε ε

→∞

−⇒ = ⇒ = +

steady states also studiedby Rallison & Hinch ‘88

and M. Renardy ‘06

Page 9: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

( ) 1 2;Wi Wi q εε αε−

= =

q > 1 0 < q < 1cusp in stress

q < 0Divergence in stress

1 1

2 2

1/ 3 0.51/ 2 0.9

WiWi

εε= ≈= ≈

Note ε < 1 implies q > -1 so the stress is integrable.

measured at centralhyperbolic point

q = -1

Page 10: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Full disclosure: Small amount of polymer stress diffusion added to control gradient growth

x

y

0 1 2 3 4 5 60

1

2

3

4

5

6

Mixing and Symmetry-Breaking: Thomases & Shelley ’09 The SOB system is also unstable to symmetry-breaking;see Poole et al ’07, Xi & Graham ‘08

0 2 4 60

1

2

3

4

5

6

−5

0

5

10

x 10−3

( ) ( )2p 0 ~ 10O −−σ I ( )0 Stokesω ω−

Page 11: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Long-time behavior with increasing Wi:Wi=0.5 Wi=5 Wi=6 Wi=10

Slow relaxationto asymmetric state

Persistentoscillations

Wi=6.0

relaxation tosymmetric state

Arratia et al ‘06

Page 12: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

ptr(σ )ω

2 primary frequencies

Page 13: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Larger Wi:• multiple frequencies

of oscillation• robust GRS of viscoelastic flows• well-mixed fluid outside of GRS

Need new experiments,stability analyses.

Wi=6, t=2000

Smaller Wi:symmetry breaking, little mixing

Page 14: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Update:(1) 1 of 10 simulations using random amplitude/phase initial

perturbations for polymer stress.

(2) What if the number of vortex cells is increased?(3) Now investigating in a new expt’l rig in the AML

16 counter-rotatingrotors driving a PAAviscoelastic solutionw. Bin Liu, J. Zhang

Page 15: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Collective dynamics of active suspensions (bacterial baths)

R. Goldstein, J. Kessler, and coworkers150 μm

• A complex fluid driven by dynamics of its microstructure –many body interactions mediated by fluid.

• collective behavior leads to strong mixing.• Role of body geometry? Emergence or role of orientational ordering?• Competition of hydrodynamic coupling vs. attractive gradients?

Observation: meandering jet and vortices of scale 50-100 μm, speeds 50-100 μm/sec in jetsScale of B. subtilis ~ 4 μm (plus tail); swimming speed 20-30 μm/sec

Page 16: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Some of the experiments:• Wu & Libchaber ’00:“brownian” motion of test particles in bacterial baths.• Dombrowski et al ’04: large-scale flow structures (many body lengths).• Kim & Breuer ’04, enhanced mixing using bacteria in micro-fluidic device.• Paxton et al, ’04, fabricated chemically-driven nano-rod-swimmers.• Dreyfus et al, ’05, bio-mimetic swimmers driven by magnetic fields• Short et al, 06, expts and model of Volvox swimming.• Sokolov et al, ’07, expts on concentration dependencies in thin films.•…

Some of the theory:• bioconvection: Childress & Spiegel, Pedley and many others• Simha & Ramaswamy ’02: predict instability of long-wave oriented states• Hernandez-Ortiz et al, ’05: simulations of force-dipole suspensions show

emergence of large-scale structures• Toner et al, ’05: models of flocking.• Sambelashvili, Lau, & Cai ’07, ordering of 2d rod locomotors by local

steric interactions• Pedley, Ishikawa et al, interactions of squirmers (specified surface velocity)• Saintillan & Shelley, 07, ‘08, particle simulations, kinetic theory of moving rod suspensions• Keaveny & Maxey, ’08, theory and simulations for bio-mimetic swimmers• Kanevsky et al, ’09, simulations of interacting stress-actuated swimmers•…

Page 17: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Surface tractions:

prescribed unknown

Integrated traction (force per unit length):

prescribed unknown

Force and torque balances:

Slender-body swimmer driven by surface stressSaintillan & Shelley PRL 2007 , motivated by Volvox model of Short, Goldstein, et al;(simulation of multi-V interactions by Kanevsky, Shelley, Tornberg, ’08)

Page 18: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Single particle flow fields

Page 19: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Saintillan & Shelley, PRL ‘072500 swimming “pushers” in periodic box of dimensions

10 x 10 x 3effective volume fractionn (L/2)3 = 1; n = # density(strongly interacting)

All initially aligned in the z direction – nematic order –with randomized positions

10

Page 20: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Spatially organized instability destroys long-range order. Predicted bySimha & Ramaswamy ‘02

( )21 2

Loss of global orientational order:order p

1 3 1

arameters:

& 2

S S= ⋅ = ⋅ −p z p z

Emergence of large-scale dynamical flowas in Dombrowski et al, Hernandez-Ortiz et al

Page 21: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

( )

( ) ( )t

Pose Fokker-Planck equation for distribution function of particle

center of mass and (unit) swimming director (rod theory, Doi & Edwards,

, ,

'86) :

with

w. "

1 0 x p x p

t

dV dS nV

Ψ

Ψ +∇ Ψ +∇ Ψ = Ψ =∫ ∫

x p

x p

x pi i

( ) ( )( )( ) ( )

( ) ( )[ ]

0

0

Background fluid velocity:

driven by active swimming stress (Kirkwood theory; Batchelor '70):

:

particle" fluxes , ln

ln

0

, , , /

and

3

x

p

a

ap

Pushers

U t D

d

q

t dS t

γ

σ

= + −∇ Ψ

= − + −∇ Ψ

∇ −Δ = ∇ ∇ =

= Ψ −∫

x p u x

p I pp E W p

u Σ u

Σ x x p pp I

i i

( )

0 0

0 0

: ;

Important d'less parameter

0 0

U: 1 , /s 1, c

Pullers

O L L l

σ σ

σ α

< >

→ → = →

A kinetic theory for active suspensions S&S, PRL ‘08, PF ‘08

Page 22: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

A useful special caseNeglecting diffusion, consider a locally aligned suspension:

Setting D=d=0 The full kinetic equations reduce exactly to:

with 2 , 0ax x x xq∇ −∇ = −∇ ∇ =u Σ ui i

( )( ) , / 3p c tα= −Σ x nn I

( )( )

( ) ( ) (pr

0

eserv ) s 1e

x

x x

c ct

t

∂+∇ =

∂∂

+ ∇ = ∇ =∂

n + u

n n + u n I - nn un n n

i

i i

and particleextra stress

( ) ( ) ( )( ), , ,t c t tδΨ = −x,p x p n x

Page 23: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Stability analysis II: uniform isotropic case

( ) ( ) ( )

( ) ( ) ( )

2

'

A nearly isotropic uniform suspension:

Derive relation:

where

App

1, , 14

ˆ3 (1) = 2

ˆ ˆ ˆ'

lyi g

'

n

'

p

i tt e

ii Dk

dS

λε

π

αγπ λ

⋅ +⎡ ⎤Ψ = + Ψ⎢ ⎥⎣ ⎦

⋅ ⎡ ⎤Ψ − ⋅ Ψ⎣ ⎦+ ⋅ +

⎡ ⎤Ψ = − ⋅ Ψ⎣ ⎦ ∫

k

k k

k k

k xx p p

k p p Fk p

F I kk p k p p

( ) ( )3 4 2 2

operator to , and evaluation of the integral, yields the eigen

3 4 12 log 1 - /2 3

value relation:

w. 1

(1)

i aa a a a a i Dk kk aαγ λ−⎡ ⎤− + − = = +⎢ ⎥+⎣ ⎦

F

Page 24: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

( )Eigenfunctions: 0

p

a

c dS

⊥ ⊥

= Ψ =

Σ = +∫k k

k

p

kk k k

( )(pushers),1 =1 rod 0s , Dα γ= − =

Reλ Imλ

Suspensions of pushers are unstable at long wavelengths.pullers are stable

(eigen-solutions do not describe small-scale behavior – Hohenegger & Shelley ’09)

no concentration fluctuationsin linear theory.

active stress eigen-modes areshear-stresses.

Page 25: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Non-linear simulations (2-d)

Initial condition:

Concentration field c Mean director field n

Page 26: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Long-time dynamics: velocity field

concentration bands

The concentration bands are located inside shear layers.These shear layers become unstable, leading to the formation of vortices and to the

break-up of the bands, which then reform in the transverse direction.

Page 27: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

( )

0 0

0

22

0 0

2 2

0 0

only for

But ... from the momentum

l

equations:

n

0; =03 1: ln ln

: 2

1 ln

:

6

x p

ax x p x p

aa x x

x x p x p

S dV dS

dS dV dV dS D ddt

P t dV dV

dS dV dV dS D ddt

α

α

⎛ ⎞ ⎛ ⎞Ψ Ψ= ⎜ ⎟ ⎜ ⎟Ψ Ψ⎝ ⎠ ⎝ ⎠≥ Ψ ≡ Ψ

⎡ ⎤= − Ψ ∇ Ψ + ∇ Ψ⎢ ⎥⎣ ⎦Ψ Ψ

= − =

−= − Ψ ∇ Ψ + ∇

Ψ Ψ

∫ ∫

∫ ∫ ∫

∫ ∫

E Σ

E Σ E E

E2

( ): fluctuations, as measured by , will dissipate.( ): the input power increases fluctuations,

until limited by diffusive proc

ln

>0

esse0

s.

SPullersPushers

αα

⎡ ⎤Ψ⎢ ⎥⎣ ⎦

<

∫ ∫

Configurational entropy:

( ) rate of viscous dissipation balances the active power input of the swi rst mmeaP

Page 28: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

total entropypushers

pullers

Pa(t)

( ) ( )( ) ( ) ( ) ( )( )

Active swimmer power density:

For to be positive w. , expect to be aligned with extensional a

, , , ; ,

<0 xis of a x

a

p t dp t t P t dV p t

P t

α

α

= − Ψ =∫ ∫Tx p E x p x,p x

p E

entropy growth saturates;system in statistical equil.

fluctuations in pullersuspension quicklydissipate

Page 29: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

Efficient convective fluid mixing is achieved by stretching and folding of fluid elements during the formation and break-up of the concentration bands. After approximately 4 cycles, good mixing is achieved in the suspension.

Mixing by active suspensions

1/ 2

From Mathew '07:

mixing norm": || ||H

et al

s −

Page 30: Microscale instability and mixing in driven and active ...warwick.ac.uk/fac/sci/maths/research/...Stokes-Oldroyd-B ( Re

ConclusionsAligned suspensions of swimming rods destabilize as a result of hydrodynamic

interactions. The chaotic flow fields arising in suspensions of swimming rods are dominated

locally by near uniaxial extensional (pushers) and compressional (pullers) flows.At steady state, particle orientations show a clear correlation at short length

scales owing to the disturbance flow and to hydrodynamic interactions. This correlation results in an enhancement (or decrease) of the mean particle swimming speed.

Dynamics in thin liquid films are characterized by a strong particle migration towards the gas/liquid interfaces.

Kinetic theory predicts instabilities for both aligned and isotropic suspensions. In the isotropic case, the instability is driven by the particle shear stress.

Non-linear simulations show that active suspensions evolve toward non-uniform distributions as a result of these instabilities. More precisely, the shear stress instability causes the local polar alignment of the particles, which in turn results in the formation of concentration inhomogeneities.


Recommended