+ All Categories
Home > Documents > MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Date post: 17-Feb-2022
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
18
Case Study: Osc2 Design of a C-Band VCO Presented by Michael Steer Reading: Chapter 20, §20.5,6 Based on material in Microwave and RF Design: A Systems Approach, 2 nd Edition, by Michael Steer. SciTech Publishing, 2013. Presentation copyright Michael Steer MICROWAVE AND RF DESIGN Index: CS_Osc2 Case Study Osc2: Design of a C-Band VCO Slides copyright 2013 M. Steer. 2 4.4 to 5.5 GHz Oscillator 2k 47.5 TL 1 10pF 2.2nH 10pF 2.2pF 3.6nH 8.2nH 8.2nH 8.2nH 0.5pF 0.5pF 10pF 10pF 8.2nH CHOKE L C a C b V out Z L V tune D 1 D 3 D 4 D 2 V cc I cc Outline Reflection oscillator principles Common base Colpitts oscillator Reflection oscillator operation Resonator and active network topologies Point of oscillation 3 Reflection oscillator r Y = G +jB r r d Y = G +jB d d Device Tank V Γ r Γ d At the frequency and amplitude of oscillation: r d Y Y 1 r d 1 r d When the oscillation signal is small, i.e. for oscillation start-up: d r gets smaller as the oscillation signal builds up. d All equivalent. 4
Transcript
Page 1: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Case Study:Osc2Design of aC-Band VCO

Presented by Michael Steer

Reading:Chapter 20, §20.5,6 Based on material in Microwave and RF

Design: A Systems Approach, 2nd Edition, by Michael Steer. SciTech Publishing,

2013.Presentation copyright Michael Steer

MICROWAVE AND RF DESIGN

Index: CS_Osc2

Case Study Osc2:Design of a C-Band VCO

Slides copyright 2013 M. Steer.2

4.4 to 5.5 GHz Oscillator

2k

47.5

TL110pF

2.2nH

10pF

2.2pF3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

Vtune

D1

D3

D4

D2

VccIcc

Outline● Reflection oscillator principles● Common base Colpitts oscillator● Reflection oscillator operation● Resonator and active network topologies● Point of oscillation

3

Reflection oscillator

rY = G +jBrr dY = G +jBdd

DeviceTank

V

Γr Γd

At the frequency and amplitude of oscillation:

r dY Y 1r

d

1r d

When the oscillation signal is small, i.e. for oscillation start-up:

d r gets smaller as the oscillation signal builds up.d

All equivalent.

4

Page 2: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Common base Colpitts oscillator

LBRL

CBCR LR

chokeLOutputVtune

The CR and LR circuit is called a resonator but resonate at a frequency below the oscillation frequency so the network looks like an effective capacitance.

C2C1

L 3

C2

C1L 3 Feedback output

Colpitts Oscillator Feedback Form

ColpittsTransistor Configuration

H

Vin outVL

Drain sourceCapacitance (could also add additional capacitance)

5

Reflection oscillator operation

One‐port oscillator

As the amplitude of the oscillation increases, the magnitude of the device conductance, |Gd|decreases while the conductance of the tank circuit, Gr is constant.

As the frequency of the oscillation increases the susceptance of the tank circuit, Br, changes while, Bd (ideally) does not change.

rY = G +jBrr dY = G +jBdd

DeviceTank Bd

Sus

cept

ance

Frequency, f

rB

Gd

Con

duct

ance

G

Amplitude A

r

6

LBRL

CBCR LR

chokeLOutputVtune

Ideal

Ideal

Active device ideal response

One‐port oscillator

rY = G +jBrr dY = G +jBdd

DeviceTank Bd

Frequency, f

dG

Gd

B

Amplitude A

d

7

Results in low phase noise.

A small variation in Bdwith respect to frequency is ok  (and unavoidable at RF).    Also often necessary for oscillator start‐up., especially for VCOs

Results in constant amplitude across the tuning range.

Results in low phase noise.

Active networkResonator network

2k

47.5

TL110pF

2.2nH

10pF

2.2pF3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

Vtune

D1

D3

D4

D2

VccIcc

Common base oscillator

LBRL

CBCR LR

chokeLOutputVtune

rY = G +jBrr dY = G +jBdd

DeviceTank

V

Γr Γd

8

Page 3: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

(x)

Active networkResonator network

(x)

(x)

r

Vtune

D1

D3

D4

D2

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc

Resonator network

LBRL

CBCR LR

chokeLOutputVtune

Stacked varactor diodes increase RF breakdown voltage. (Varactors have tunable capacitance.)

Inductors are RF open circuits.

Transmission line replaces LR and has lower loss.

9

5.0 GHz

6 GHz4 GHz

3 GHz

Increasing frequency

(x)

(x)

r

V tune

D1

D3

D4

D2

r

Resonator reflection coefficient

tune 3 VV

10

(x)

Active networkResonator network

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc

Active network

d

(x)

(x)

Vout ZL Vcc

Ca Cb

RF SHORT

RF SHORT

Ca and Cb adjust d so that

0dBV

RF SHORT

11

Gd

B

Amplitude A

d

Ideal

RF OPEN

d1/3 GHz

6 GHz

Increasing signallevel

Active device reflection coefficient

d

(x)

(x)

Vout ZL Vcc

(Small signal)

Increasing frequency

12

Page 4: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

d

5.0 GHz

6 GHz

r(3 V)

4 GHz

3 GHz

Increasing frequency

Oscillation point6 GHz

3 GHz

rIncreasing frequency

Intersection

Intersection defines oscillation frequency and amplitude.

Want just one intersection for single frequency oscillation.

Rotation in opposite directions and with parallel trajectories results in low phase noise.

rY = G +jBrr dY = G +jBdd

DeviceTank

V

Γr Γd

Increasing amplitude

13

d

5.0 GHz

6 GHz

r(3 V)

4 GHz

3 GHz

Increasing frequency

Oscillation point

6 GHz

3 GHz

rIncreasing frequency

Intersection

So phase noise is even better than ideal situation.

rY = G +jBrr dY = G +jBdd

DeviceTank

V

Γr Γd

Large amplitude

14

0dBf

0rB

f

r dY Y Oscillation condition:

r dG G r dB B

Note that

Summary

● Topology outlined.● Initial design objective stated.● Goal is stable single frequency oscillation with

low phase noise and high efficiency.● To consider next:

– Detailed design strategy.– Oscillator start-up requirements.– Strategies for avoiding multiple oscillations.

15

Case Study Osc2: Part BOscillation Conditions

Slides copyright 2013 M. Steer.16ADA

rY = G +jBrr dY = G +jBdd

DeviceTank

1. Oscillation condition (variation of conductance and susceptance)Known as Kurokawa oscillation condition 

2. Conditions for start‐up of oscillation

d rG G If stable single‐frequency oscillation occurs, then                     and d rB B

1/r d That is,                   ,                      , or  1/d r 1r d

Page 5: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Kurokawa oscillator condition

0 0,

0d dr r

V V

G BB GV V

Kurokawa condition for stable single-frequency oscillation:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

The subscript 0 refers to the operating point.

Describes a single crossing of the reflection coefficient curves

For a fixed frequency RF oscillator Gr is very small so second term is negligible.

Kurokawa condition simplifies to:

17

For an RF VCO, Gr is not small due to varactor loss. So design can be complex.

0 0,

0d r

V V

G BV

Gd

G

Amplitude A

r

B

Frequency, f

rB

d

rGGd

Kurokawa oscillator condition for microwave VCO design

0 0,

0d dr r

V V

G BB GV V

Kurokawa condition for stable single-frequency oscillation:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

Achieving single-frequency oscillation can be a challenge for microwave fixed frequency oscillator design, and the design complexity is much higher for a microwave VCO.

Design using the full Kurokawa condition is found to be too limiting at microwave frequencies.

There are other considerations such as• minimizing phase noise, e.g. we want the frequency of oscillation to be

independent of the oscillation amplitude (this minimizes phase noise).• minimizing DC power consumption.• conditions for oscillator start-up.

18

Kurokawa oscillator condition simplification

0 0,

0d dr r

V V

G BB GV V

Kurokawa condition for stable single-frequency oscillation:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

So in VCO design the design procedure must be kept simple, and thisopens up the design space to enable optimization of other characteristics.

Microwave VCO design strategy: choose a topology that• Has an effective device susceptance that is independent of signal

amplitude (i.e., ∂Bd /∂V = 0).• Has a loaded resonator conductance that is independent of

frequency (i.e., ∂Gr/∂ω = 0).

190 0,

0d r

V V

G BV

Kurokawa condition for simplified design:

Simplified Kurokawa oscillator condition

0 0,

0d r

V V

G BV

Kurokawa condition for simplified design:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

r

d

d

d

dd

Γr Γd

0dBV

Design tank network so that 0rG

0 0,

0d dr r

V V

G BB GV V

Recall unmodified Kurokawa condition:

20

Design device network so that

Page 6: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Alternative simplified Kurokawaoscillator condition

0 0,

0d r

V V

G BV

Kurokawa condition for simplified design:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

r

d

Γr Γd

21

Simplified Kurokawa oscillator condition

r

d

22

r

d

d

d

dd

Fixed frequency oscillatorVery little loss in resonator

Voltage controlled oscillatorSignificant resonator loss (due to varactor diodes)

Active networkResonator network

2k

47.5

TL110pF

2.2nH

10pF

2.2pF3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

Vtune

D1

D3

D4

D2

VccIcc

Common base Colpitts oscillator

LBRL

CBCR LR

chokeLOutputVtune

23

Γr Γd

Colpitts point of oscillationr

d

24

r

d

d

d

dd

POINT OF OSCILLATIONHERE                                             

1 2For a fixed frequency oscillator either region of oscillation is suitable.For a microwave VCO region 2 is required because of resonator loss.

OR                 HERE

Page 7: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

(x)

Active networkResonator network

(x)

(x)

r

Vtune

D1

D3

D4

D2

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc

Resonator network

LBRL

CBCR LR

chokeLOutputVtune

Stacked varactordiodes

Inductors are RF open circuits.

25

Simulated reflection coefficient of the resonator, Γr, of the C-band VCO.

26

(x)

(x)

r

Vtune

D1

D3

D4

D2

Stacked varactor diodes

Inductors are RF open circuits.

5.0 GHz

r

3.3 GHz

6 GHz4 GHz

(1 V)

3 GHz

4.8 GHz

5.0 GHz

4.6 GHz

4.5 GHz

r (1 V)

4.5 GHzr (3 V)r (1 V)

4.9 GHz

4.6 GHz

4.4 GHz

4.3 GHz

4.2 GHz

4.7 GHz

Legend4.5 GHz

4.7 GHz

3.7 GHz

3 GHz

6 GHz3 GHz

3.3 GHz

6 GHz

4.5 GHz

r (3 V)

Reflection coefficient of the resonator at different biases

27

(x)

(x)

r

Vtune

D1

D3

D4

D2

5.0 GHz

r

3.3 GHz

6 GHz4 GHz

(1 V)

3 GHz

Comparison of oscillation points

28

r15 GHz

20 GHz

Oscillator Case Study #1

Point of oscillation in this region.

Point of oscillation in this region.

Oscillator Case Study #2

Page 8: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

(a) |Γd| = 1.4(b) |Γd| = 2(c) |Γd| = 4 versus the device reflection 

coefficient angle.(d) is the oscillator Q for |Γd| = 2.

Required angle of device

29

rY = G +jBrr dY = G +jBdd

DeviceTank

Gd

Con

duct

ance

G

Amplitude A

r

Want high RP = 1/Gr so Gr is small.

RP = 1/Gr

Summary oscillation conditions

30

r

d

d

d

dd

Voltage controlled oscillatorSignificant resonator loss (due to varactor diodes)

3. Condition for oscillator start‐up (for a VCO with a lossy resonator).

0 0,

0d dr r

V V

G BB GV V

1. Kurokawa condition for stable single-frequency oscillation:

2. Simplified Kurokawa condition (easy to design to):

0 0,

0d r

V V

G BV

Require that ( ∂Bd /∂V = 0) and ( ∂Gr /∂ω = 0). (If lossy resonator.)

Case Study Osc2: Part CResonator Design

Slides copyright 2013 M. Steer.31

rY = G +jBrr dY = G +jBdd

DeviceTank

d rG G d rB B

At oscillation

Vtune

D1

D3

D4

D2

Kurokawa oscillator condition simplification

0 0,

0d dr r

V V

G BB GV V

Kurokawa condition for stable single-frequency oscillation:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

32

0 0,

0d r

V V

G BV

Kurokawa condition for simplified design:

0dBV

0rG

So, ideally want

and

-B

Amplitude

d

Also want

Br

Gd

G

Amplitude

r

andKeeps phase noise low as oscillation frequency does not depend on amplitude.

dGV

rB

is +ve so

must be +ve

Γr Γd

Page 9: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Resonator characteristic

rY = G +jBrr dY = G +jBdd

DeviceTank

V

33

0rG

So,

r

Increasing frequency

Con

duct

ance

G

Amplitude A

r

Also

B r

Line of constant conductance

No dependence on amplitude

rB

must be +ve

Γr ΓdResonator characteristic

rY = G +jBrr dY = G +jBdd

DeviceTank

V

34

Oscillator start‐up.

r

Γr Γd

Also tunable, must be able to rotate r by varying a tuning voltage.

Resonator design

r

35

LB

CBCR LR

chokeLVtune

2. LR and CR result in high rB

and can control magnitude.3. GR comes from LR (transmission line) and CR (varactor).

4. Dependence of Gr and Br on amplitude comes from varactor.

1. Keep resonator as a simple parallel LC circuit.

Γr Γd

Tank Device

r

Vtune

D

Resonator network design

varactor diode

Inductor is an RF open circuit.

36

DC block

LBCR LR

chokeLVtune

Γr Γd

Tank Device

V+

V

I Cj

A reversed biased diode is a variable capacitor.

Wide (low impedance) microstrip transmission line.

Page 10: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Vtune

D

Varactor diode, Vtune

37

V

Cj

I0

VB

I

V

VI+

−Vtune

−Vtune

Want negligible current flow (low shot noise).

RF signal.1. Choose Vtune to minimize DC current.

3. But a good resonator will have a large RF voltage swing.4. Make sure Vtune minimizes current flow.

2. Minimize current flow and Gr.

RF signal.

What if RF voltage swing is too large?

0dBV

Recall that we want

Vtune

D

Varactor stack reduces

38

V

Cj

−Vtune

RF signal.

RF signal.

0rBV

Vtune

D1

D3

D4

D2

V

Ceff

−4Vtune

RF signal.

RF

RF signal.

Vtune

Varactor stack reduces and

39

V

Cj

−Vtune

rG

Vtune

rGV

I0

VB

I

V

VI+

V

Ceff

−Vtune RF 4RF

RFI0

4VB

I

VRF

Greater tuning range since high current regions can be avoided.

Vtune

Varactor stack increases tuning range

40

V

Cj

−Vtune

Vtune

I0

VB

I

V

VI+

V

Ceff

−Vtune RF 4RF

RFI0

4VB

I

VRF

Greater tuning range since high current regions can be avoided.

Page 11: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Final resonator

r

Vtune

D1

D3

D4

D2

Adjustable short circuit

41

Adjustments

r

Vtune

D1

D3

D4

D2

A

B

C

A

C

B

Provide impedance transformation.

RF chokes

DC block

Capacitance adjustment (also DC block)

Model

TL

TL

42

4.8 GHz

5.0 GHz

4.6 GHz

4.5 GHz

r (1 V)

4.5 GHzr (3 V)r (1 V)

4.9 GHz4.6 GHz

4.4 GHz

4.3 GHz

4.2 GHz

4.7 GHz

Legend4.5 GHz

4.7 GHz

3.7 GHz

3 GHz

6 GHz3 GHz

3.3 GHz

6 GHz

4.5 GHz

r (3 V)

Reflection coefficient of the resonator at different biases

(x)

(x)

r

Vtune

D1

D3

D4

D2

If crossover of r and 1/dis as shown by

then changing the tuning voltage from 1 V to 3 V changes the oscilaltionfrequency from 4.5 GHz to 4.8 GHz.

43

(x)

(x)

r

Vtune

D1

D3

D4

D2

Summary: final resonator network

● Transmission line reduces loss compared to an inductor

● Varactor stack reduces resonator conductance.

● Varactor stack reduces dependence of resonator admittance on signal amplitude.

● Adjustments provided by A, B and C

● B fixed after layout

TL1

AB

C

44

Page 12: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Case Study Osc2: Part DActive Network Design

Slides copyright 2013 M. Steer.45

rY = G +jBrr dY = G +jBdd

DeviceTank

d rG G d rB B

At oscillation

d

Vout ZL Vcc

Reflection oscillator operation

One‐port oscillator

As the amplitude of the oscillation increases, the magnitude of the device conductance, |Gd|decreases while the conductance of the tank circuit, Gr is constant.

As the frequency of the oscillation increases the susceptance of the tank circuit, Br, changes while, Bd (ideally) does not change.

rY = G +jBrr dY = G +jBdd

DeviceTank Bd

Sus

cept

ance

Frequency, f

rB

Gd

Con

duct

ance

G

Amplitude A

r

46

LBRL

CBCR LR

chokeLOutputVtune

Ideal

Ideal

Active network operation

One‐port oscillator

Keep Gd independent of amplitude to reduce phase noise. 

Curve (a) is simple ideal response, curve (b) response is even better.rY = G +jBrr dY = G +jBdd

DeviceTank Bd

Frequency, f

rB

Gd

B

Amplitude A

d

47

LBRL

CB

Output

(b)

(a)

(x)

Active networkResonator network

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc

Active network

d

(x)

(x)

Vout ZL Vcc

Ca Cb

RF SHORT

RF SHORT

Ca and Cb adjust d so that and d ( f )

is parallel to r ( f ).

0dBV

RF SHORT

Ideal

RF OPEN

LBRL

CBLR

Output

The resistors are required for biasing.

48

Page 13: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Kurokawa oscillator condition

0 0,

0d r

V V

G BV

Kurokawa condition for simplified design:

rY = G +jBrr dY = G +jBdd

DeviceTank

V

r

d

d

d

dd

Γr Γd

0dBV

and 0dG

49

Design device circuit so that

Oscillation startup

Small and large signal 1/d

0dBV

0dG

50

r

d

d

d

dd

Want 1.

(low phase noise)

3. (uniform amplitude of oscillation across tuning range )

2.

Large |Gd| at small signal levels. (|1/d| is small at a small signal level).

(fast start up of oscillation)

Increasing frequency

Increasing amplitude

Simulated reflection coefficient of the resonator, Γr, and the inverse of the small‐signal reflection coefficient of the active device, 1/Γd, of the C‐band VCO for various values of the compensation capacitors Ca and Cb.

d1/

3 GHz

6 GHz

d1/

5.0 GHz

Legend

CC C =a 0, C =b 0.5 pF

AA C =a 0.5 pF, C =b 0BB C =a 0.5 pF, C =b 0.5 pF

DD C =a 0, C =b 0

6 GHz

r (3 V)

4 GHz

AB

C

D

AD

BC

3.7 GHz

3 GHz

Reflection coefficient shaping

51

Simulated reflection coefficientCa = 0.5 pF Cb= 0.5 pF.

d1/

3 GHz

6 GHz

d1/

5.0 GHz

6 GHz

r (3 V)

4 GHz

B

B

3.7 GHz

3 GHz

Increasing amplitude

52

Increasing

leveloscillation

Page 14: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Simulated reflection coefficient of the resonator, Γr, and the inverse of the small‐signal reflection coefficient of the active circuit, 1/Γd, with Ca = 0.5 pF and without Cb.

d1/3 GHz

d1/6 GHz

5.0 GHz

Increasing

level

6 GHz

r(3 V)

4 GHz

3 GHz

3.7 GHz

Multiple crossings

d

Vout ZL Vcc

Ca Cb

53d1/

3 GHz

d1/6 GHz

5.0 GHz

Increasing

level

6 GHz

r(3 V)

4 GHz

3 GHz

3.7 GHz

Multiple simultaneous oscillation

Measured

54

Pi attenuator (with 294 Ω resistors in the shunt legs and a 17.4 Ω series resistor).

The output filter is a 50 Ω  BPF.

Active network

55

d

Vout ZL Vcc

Summary: active network design

d

Vout ZL Vcc

CaCb

d

Vout ZL

Vcc

Ca Cb

RF OPEN

Circuit at RF:

● Active network needs to be optimized using measurements (cannot model sufficiently).

● Ca and Cb enable shaping of 1/d

● Need to avoid multi oscillation.

● Need Gd independent of frequency. (Constant amplitude oscillation.)

● Need large | Gd | for fast startup.

56

Page 15: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Case Study Osc2: Part EFinal Iteration on VCO Design

Slides copyright 2013 M. Steer.57

(a)

(b)

(c)

(x)

Active networkResonator network

d

(x)

(x)

L

Vout ZL Vcc

(x)

(x)

r

V tune

D1

D3

D4

D2

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc

VCO schematic

58

Adjustable features

Final VCO circuit

Active network

Resonator network

Adjustable features 59

Resonator and active device circuits.

60

Active network

Resonator network

Page 16: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Measurement of the active circuit with a 50 Ω test fixture at the interface of the resonator and active networks. The card was cut at the interface to make the connection. 

The 35 ps delay is due to the length of the SMA connector is required to reference measurements to the circuit card edge.

Measurement of the active network

The period of a 5 GHz signal is 200 ps.

So the connector has an electrical length of 63o.

The reflection coefficient is rotated by 126o. So measurements must be corrected.

The SMA connector also has parasitic capacitance and inductance. Correction will not be perfect.

61

Measured Γr at 3 V. r

3.8 GHz

3 GHz

6 GHz

5.3 GHz

Resonatormeasurements

Actual measurements rotated by −126o

Corrected

Raw

62

Measured Γr at 3 V. 

Ca = 0.5 pF and Cb = 0.

1/Γd moves to the right as the signal level increases.  

The intersection of 1/Γd and Γrdetermines the oscillation frequency and the signal level.

d1/

r

3.8 GHz

4.4 GHz

4.8 GHz

5.4 GHz

3 GHz

3 GHz

6 GHz

Small signal

5.3 GHzMeasurement

d3 GHz

6 GHz

5.0 GHz

Increasing

level

6 GHz4 GHz

3 GHz

3.7 GHz

Comparison

Measured

64

d

r

3.8 GHz

4.4 GHz

4.8 GHz

5.4 GHz

3 GHz

3 GHz

6 GHz

5.3 GHz

Simulated

Ca = 0.5 pF and Cb = 0.  Vtune = 3 V Small signal

r

0.4 S2.5 

Page 17: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Simulation and measurement accuracy

● 21/2 D EM simulation used but side wall capacitances not taken into account.

● Model limitations.

● Connection resistances are not accounted for.

● Full effect of SMA connector not accounted for.

● Parasitics of connector

● Field lines terminate on flange.

Simulation fidelity Measurement fidelity

65

Γr for 0V (curve a)to 9 V (curve g)

Large signal 1/Γd.

r

d

3.5 GHz

4.5 GHz

3 GHz

6 GHz

3 GHz

f

a

bcd

ge

6 GHz

5.3 GHz

4.8 GHz

5.3 GHz

Locus of oscillationLarge signal10 dBm

RR

RR

4.5 GHz

Large signal characteristic

66

(x)

(x)

r

D1

D3

D4

D2

Resonator adjustments

● Adjustments provided by A, and C

TL1

A

C

67

C

A

Active network adjustments

d

Vout ZL

Vcc

Ca Cb

Circuit at RF:

● Ca and Cb enable shaping of 1/d

68

CaCb

Page 18: MICROWAVE AND RF Case Study Osc2: Design of a C-Band VCO

Measured tuning curve

69

At Vout (before the bandpass filter) indicating low‐level harmonic content.

Measured output power and harmonics

70

Phase noise measured

71

Summary: C band (5 GHz) VCO● Microwave VCO design is

a methodical process.

● Simulation together with measurements leads to a methodical design process.

● Build in adjustability in design.

● Microwave circuits nearly always require tuning of each item.

72

50

47.5

2k

47.5

TL 1

(x)

10pF

2.2nH

10pF2.2pF

3.6nH

8.2nH

8.2nH

8.2nH

0.5pF 0.5pF

10pF

10pF

8.2nHCHOKEL

Ca Cb

VoutZL

V tune

D1

D3

D4

D2

VccI cc


Recommended