+ All Categories

misimob

Date post: 05-Apr-2018
Category:
Upload: hao-nguyen
View: 219 times
Download: 0 times
Share this document with a friend

of 81

Transcript
  • 8/2/2019 misimob

    1/81

    Evolution of services in 3GNetwork

    Lecture Notes

    DEA MISI 1March 04

  • 8/2/2019 misimob

    2/81

    Access Network

    Core Net

    Service

    UE UE

    WirelessInterface

    Wired

    Interface

    Functional Organisation of a telecommunication network

    UNI UNI

    NNI

  • 8/2/2019 misimob

    3/81

    User PlaneControl Plane

    Management Plane

    Three planes Architecture

    Lower Layers

    Higher Layers

    Layers Management

  • 8/2/2019 misimob

    4/81

    Services available over a satellite

    network FSS : fixed satellite service

    Direct-To-Home (DTH)

    VSAT

    BSS : Broadcast Satellite Service

    Digital Video Broadcast (DVB)

    Digital Audio Broadcast (DAB)

    Digital Data Broadcast (DirecPC)

    LMSS: Land Mobile Satellite Service

    MMSS : Maritime Mobile Satellite Service

  • 8/2/2019 misimob

    5/81

    Services and TeleservicesServices in telecommunication network

    bearer services : describe the technical characteristics

    provided by the network (rate, error probability, transmission

    mode ...) to a communication required by a network user

    Teleservices : describe the higher and the lower layers

    (bearer services) provided by the network to the userapplications (telephony, message transmission, fax, WEB

    services, )

    Supplementary services : may be bearer services or

    teleservices (call identification, call transfer, free phone,

    CCC, ...

    These are provided by the network to the user in order to transport the user

    applications within the framework of a Service Level Agreement SLA

  • 8/2/2019 misimob

    6/81

    Service Attributes

    Low layers attributes : Information Transfer Attributes, Access

    Attributes High layers attributes : Type of User Information, Higher LayerProtocol Functions

    General attributes : Supplementary services provided, QOS,Interworking possibilities, Operational and commercial

    These attributes define the scope of the service from the point of

    view of the user and are exchanged at the UNI level with Signalling

    Protocols.

  • 8/2/2019 misimob

    7/81

    Example of Services (2.5 G)

    Digital phone

    Urgent Call Short Message Service : This service needs the

    presence of a Short Message Service Center SMSC anda reliable communication between the terminal and the

    SMSC. The message length is limited to 160 characters

    in the point to point (reliable) mode and to 93 characters

    in broadcast (transparent) mode.

    Data Services (GPRS)

  • 8/2/2019 misimob

    8/81

    Intelligent Network Approach

    Flexibility in the design, test and update of

    new services Rapid service creation and deployment

    Service creation by the end users Possibility of maintaining within the

    network an IN and non-IN technologieswithin a context of multivendor operations

  • 8/2/2019 misimob

    9/81

    Universal Personal Telephony UPT

    UPT is an IN service to be provided by the UniversalMobileTelephony System UMTS

    Network and terminal independent user identificationbased on UPT number UPTN

    Personal mobility support

    Universal access procedures across multiple networks Personal charging and billing based on UPT number

    Personal user control and flexibility based on UPT

    service profile Security, privacy and protection from fraudulant use

  • 8/2/2019 misimob

    10/81

    UPT Service Control Procedures

    Personal mobility procedures

    UPT call handling procedures UPT service profile management

    Supplementary services procedures Exceptional procedures

  • 8/2/2019 misimob

    11/81

    3G Deployment Scheme

    UMTS

    Satellite

    Global

    Suburban Urban

    In- Building

    Pico-Cell

    Micro-Cell

    Macro-Cell

    Home-Cell

    Roaming UMTS/GSM

    FDD/TDD FDD/TDD TDDFDD

    Target for UMTS

    initial development :high density and

    business areas

  • 8/2/2019 misimob

    12/81

    2.5G/3G deployment (R.99)

    BSS

    BSC

    RNS

    RNC

    CN

    Node B Node B

    A IuPS

    Iur

    Iubis

    USIM

    ME

    MS

    Cu

    Uu

    MSCSGSN

    Gs

    GGSNGMSC

    GnHLR

    Gr

    GcC

    D

    E

    AuCH

    EIR

    F Gf

    GiPSTN

    IuCSGb

    VLR

    B

    Gp

    VLRG

    BTSBTS

    Um

    RNC

    Abis

    SIM

    SIM-ME i/f or

    MSC

    B

    PSTNPSTN

    cell

    Q Of S QOS G

  • 8/2/2019 misimob

    13/81

    Quality Of Service QOS General

    Principles The QOS is associated with transfer classes : ATM

    ATCs, MAC MTCs, DiffServ service classes ,

    The QOS may be found within several layers of theprotocols stack (between the MAC and the applicationlayers) up to the user level (subjective QOS),

    The QOS is defined by a set of performance parameters, the most important parameters

    are the user call blocking probability, the packet delay(distribution, mean, variance, jitter), the PDU error probability,

    the PDU rate (peak, sustainable, minimum). These QOSparameters should be measurable and enforceable.

    A traffic contract between the user and the service provider(SLA)

  • 8/2/2019 misimob

    14/81

    The radio interface (mobile network

    case) The radio channel is a rare resource.

    Given the available bandwidth, a large number ofuser may want to access concurrently the radiochannel.

    The MAC layer handles the access to the radiochannel by the users.

    The radio resource allocation is handled by the layer

    3 of the control plane. This allocation is not specifiedby the standards.

    In order to ensure an efficient access scheme,

    (proprietary) scheduling mechanisms are requiredwithin a multi-service network (2.5G, 3G)

  • 8/2/2019 misimob

    15/81

    General Packet Radio Service

    GPRS

    Packet switching service without usingthe circuit switching network resources

    Point to point data service

    Point to multi-point

    Connection oriented or connectionless

    data service

    Terminals: data, video (H263, MPEG4)

  • 8/2/2019 misimob

    16/81

    GPRS services

    Conversational (mobile office) : Telnet Retrieval (mobile office) : WWW, FTP

    Messaging (mobile office) : Email Conferencing (mobile office) : Video

    Tele-action (telematics) : E-commerce Distribution (Road Traffic and Transport

    Informatics RTTI) : Road guidance

  • 8/2/2019 misimob

    17/81

    SGSN/GGSN

    Routeing

    info

    Intranet

    HLR

    SGSN

    External Data DomainMobililty Management

    Session Management- QoS

    - Security

    - Attach/Detach

    SGSN Internet

    Servers

    ClientGGSN

    MAP

    Signalling

    MAP

    Signalling(GGSN)

    (SGSN)

    - Routing

    - Signalling- Resource Mgt.

    Client

    BSS

    PCU

    BSS

    PCU

    BSS

    PCU

    BSSPCU

    BSS

    PCU

  • 8/2/2019 misimob

    18/81

    GPRS : Layered Architecture

    Relay

    Network

    Service

    GTP

    Application

    IP / X.25

    SNDCP

    LLC

    RLC

    MAC

    GSM RF

    SNDCP

    LLC

    BSSGP

    L1bis

    RLC

    MAC

    GSM RF

    BSSGP

    L1bis

    Relay

    L2

    L1

    IP

    L2

    L1

    IP

    GTP

    IP / X.25

    Um Gb Gn GiMS BSS SGSN GGSN

    Network

    Service

    UDP /

    TCP

    UDP /

    TCP

    User Plane

  • 8/2/2019 misimob

    19/81

    GPRS QoS Attribute (1)Mean Delay

    (128 octets)

    95 % (128

    octets)

    Mean Delay

    (1024 octets)

    95 % (1024

    octets)

    Class 1

    (predictive)

    0.5 s 1.5 s 2 s 7 s

    Class 2

    (predictive)

    5 s 25 s 15 s 75 s

    Class 3

    (predictive)

    50 s 250 s 75 s 375 s

    Class 4 (best

    effort)

    ot s ecified Not s ecified ot s ecified ot s ecified

  • 8/2/2019 misimob

    20/81

    Charging Charging methods similar to those used

    in the existing PDN

    Subscription fees paid regularly for a

    fixed period Traffic fees paid as a function of

    the data volume type of service request

    QoS

  • 8/2/2019 misimob

    21/81

    QOS Generic Mechanisms

    Admission Control (CAC)

    User Parameters Control (shaping,policing) & Measurements (metering)

    Traffic classification Service differentiation and scheduling

  • 8/2/2019 misimob

    22/81

    UMTS QOS Architecture

    TE MT UTRAN CN Iu

    EDGE

    NODE

    CN

    Gateway

    TE

    UMTS

    End-to-End Service

    TE/MT Local

    Bearer Service

    UMTS Bearer Service External Bearer

    Service

    UMTS Bearer Service

    Radio Access Bearer Service CN BearerService

    Backbone

    Bearer Service

    Iu Bearer

    Service

    Radio Bearer

    Service

    UTRA

    FDD/TDD

    Service

    Physical

    Bearer Service

  • 8/2/2019 misimob

    23/81

    UMTS QOS Classes

    4 classes

    Conversational class : Real Time, Low delay andjitter ex : VoIP, Video conferencing

    Streaming classStreaming class :: One way streams, Real time,

    tolerant jitter ex : Video-on-demand Interactive class : Request-response pattern,

    preserve payload content, ex : Web browsing, server

    access, data base retrieval Background class : Preserve payload content, ex :

    E-mails, MMS/SMS

  • 8/2/2019 misimob

    24/81

    The user plane protocols architecture

    PHY PHY

    ATM

    DchFP

    ATM

    DchFP

    IubUE NodeB CRNC/SRNCUu

    MAC-d

    DCCH DTCH

    MAC-d

    PHY

    AAL2 AAL2

    DTCH DCCH

  • 8/2/2019 misimob

    25/81

    Rseau de

    transport

    RNC

    Node B

    RLC

    MAC

    FP

    ATM

    AAL2

    RLC

    MAC

    FP

    ATM

    AAL2

    ATM

    AAL2

    AAL2/ATM

    Last mile link

    Interface Iub

    Terminal mobile

    Canaux radio

  • 8/2/2019 misimob

    26/81

    Transport channels Transport channels are classified into

    two groups : Common transport channels : RACH, FACH, DSCH,

    SCH, these are shared among several users. Dedicated transport channels : DCH, dedicated to one

    user at a call by call basis.

    Transport channels will be transportedover the AAL2 network

  • 8/2/2019 misimob

    27/81

    AAL2 structureSAP

    SAP

    Common Part Sublayer

    SAPSAP

    Service Specific

    Assured Data Transfer

    CPS

    AAL

    SSSAR

    SSTED

    SS

    ADT

    Service SpecificTransmission Error Detection

    Service SpecificSegmentation and Reassembly

    SEG-SSCS

    Primitives

    Primitives

    Primitives

    SSADTSSSARSSTED

    Service Specific Assured Data TransferService Specific Segmentation and ReassemblyService Specific Transmission Error Detection

    AALCPSSAPSEG-SSCS

    ATM Adaptation LayerCommon PartSublayer (I.363.2)Service Access Point

    Segmentation and Reassembly Service Specific Convergence Sublayer (I.366.1)

  • 8/2/2019 misimob

    28/81

    AAL2 organisation Structure of the segmentation SSCS

    SS-SAR : simple function of segmentation of messageswhich may have a length up to 65536 octets into a blocks of45 octets, the last massage block may have a length lessthan 45 octets. The re-assembly process is the symmetrical

    one. SS-TED : errors detection (Transmission Error Detection) :

    bit errors, lost cells (similar functions with the ones availablewithin the AAL5 CPCS)

    SS-ADT : errors correction (Assured Data Transfer)

    Well adapted for transportation of real time low bitrate (short packet) traffic

    Differences with AAL5 : no bit stuffing

  • 8/2/2019 misimob

    29/81

    Minicell

    L ICID UUI HEC CPS-INFO

    ointer on

    ext minicell

    Payload par1 Payload par2... .2

    Minicell header

    Stuffing b

    5 oct. 5 oct.

  • 8/2/2019 misimob

    30/81

    Minicell

    L ICID UUI HEC CPS-INFO

    ointer on

    ext minicell

    Payload par1 Payload par2... .2

    Minicell header

    Stuffing b

    5 oct. 5 oct.

  • 8/2/2019 misimob

    31/81

    Differentiation of Services RRC/RLC/MAC protocols stack : the

    MAC layer scheduler does not alter the statistic of the

    real time (voice) traffic and smoothes the non real

    time (data) traffic

    AAL2 Network : There is only one SAP (ServiceAccess Point) at the SSSAR sublayer, so the

    services differentiation is done at the connection setup time using the AAL2 signalling protocol

  • 8/2/2019 misimob

    32/81

    QOS within the access network(Release 99 case)

    Main issues is the definition of the QOSat the AAL2 level able to express the application needs

    use the ATM QOS Present situation :

    ATC CBR of the ATM is assumed to beused

    Voice and data are multiplexed within the

    same VC or on two separate VCs

  • 8/2/2019 misimob

    33/81

    QOS within UTRAN (R99) Multiplexing of AAL2 connections over ATM

    VC Needs of scheduling mechanisms able to

    satisfy real time constrains

    CAC for radio and AAL2 network resources atthe call set up and the HO levels

    Dynamic bandwidth allocation and statisticalmultiplexing of flows at the ATM level

    Needs for tractable traffic models at the call

    and the activity levels

  • 8/2/2019 misimob

    34/81

    Interface Iub

    NODEBRNC

    IP

    L2

    phy

    IP

    PPP mux

    ML-MC

    HDLC/phy

    IP

    phy

    IP

    MPLS/ATM

    phy

    IP

    MPLS /ATM

    phy

    IP

    L2

    phy

    RLC

    MAC

    FP

    PPP/AAL2

    /ATM

    - Les flux transports dansle rseau de transport ne

    sont pas multiplexes.- Plusieurs Classes deservice peuvent tre

    supportes

    Qualit de service point point

    QoS2

    QoS1

    Phy

    UDP UDP

    Rseau de transport

    - Le multiplexage est ralis sur leLast Mile Link

    - La diffrenciation des services peuttre ralise sur le Last Mile Link

    Edge Router

    Last Mile Link

  • 8/2/2019 misimob

    35/81

    Sources models Importance of the time scale : call, transaction

    request/response, micro-flot, packet Important for simulation purpose

    Some standard models : Poisson, ON/OFF,MMPP

    Recent model : Fractal processes (auto-

    similar) rather suitable for traffic aggregationmodeling within large scale networks like theInternet or a wide area packet switching

    networks (very difficult mathematicaltractability)

  • 8/2/2019 misimob

    36/81

    Sources models (cont.) Point Processes over the plane : allow to model a

    non homogeneous traffic distribution over the space(satellites constellation, ad hoc network)

    Communication distribution duration (exponential)

    Packet length distribution (Pareto)

    Packet interarrival time distribution (exponential, log-

    normal)

    Sojourn time distribution within a cell (exponential)

    Radio channel holding time (exponential taking into

    account the above assumptions)

  • 8/2/2019 misimob

    37/81

    Traffic aggregation

    The superposition of Poisson processes isPoisson

    The superposition ON/OFF processes is afinite state birth and death process where thenumber of states is equal to the number of

    superposed processes The superposition of MMPP processes is

    MMPP (numerical difficulties)

    Important for simulation purpose

  • 8/2/2019 misimob

    38/81

    Parameters identificationPoisson : intensity parameter

    ON/OFF : ON and OFF periods parameters

    MMPP : number of phases, sejourn time

    within a phase

    3GPP T ffi d l

  • 8/2/2019 misimob

    39/81

    3GPP Traffic sources models

    Voice Modeloice Model

    20 ms

    . .

    20 ms

    OFF (expo)ON (expo)

    Web Modeleb Model

    .. . ..

    Packet-call Reading-time

    Packet-size ~ Pareto with cut-off

    S i t di d ithi th AAL2

  • 8/2/2019 misimob

    40/81

    Scenario studied within the AAL2

    network

    real time VC

    voice

    non real time VC

    data

    common VC

    voice

    data

    scenario (a) scenario (b)

  • 8/2/2019 misimob

    41/81

    Timer CU Study

    0

    0,4

    0,8

    1,2

    1,6

    2

    2,4

    2,8

    3,2

    3,6

    10 30 50 70 90 110 130 number of voice streams

    95percentiledelay(m

    s) Timer-CU = 0

    Timer-CU = 100usTimer-CU = 200us

    Timer-CU = 1ms

    Timer-CU = 3ms

    Timer-CU = inf

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    10 30 50 70 90 110 130

    number of voice s treams

    StdDevofdelay(m

    s) Timer-CU = 0

    Timer-CU = 100usTimer-CU = 200us

    Timer-CU = 1ms

    Timer-CU = 3ms

    Timer-CU = inf

    60

    65

    70

    75

    80

    8590

    95

    100

    105

    10 30 50 70 90 110 130 number of voice streams

    fillingratio(%)

    Timer-CU = 0Timer-CU = 100us

    Timer-CU = 200us

    Timer-CU = 1ms

    Timer-CU = 3ms

    Timer-CU = inf

  • 8/2/2019 misimob

    42/81

    Timer CU Study (cont.)voice 20%

    UDD64 80%

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1 2 5 10 100

    Timer-CU [T]

    95percentileda

    ta

    delay(ms) PCR = 500KbpsPCR = 1Mbps

    PCR = 2MbpsPCR = 6Mbps

    voice 20%

    UDD64 80%

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1 2 5 10 100 Timer-CU [T]

    95percentilevoice

    delay(ms)

    PCR = 500KbpsPCR = 1MbpsPCR = 2MbpsPCR = 6Mbps

    voice 20%

    UDD64 80%

    50

    60

    70

    80

    90

    100

    1 2 5 10 100 Timer-CU [T]

    fillingratio(%

    )

    PCR = 500KbpsPCR = 1MbpsPCR = 2MbpsPCR = 6Mbps

  • 8/2/2019 misimob

    43/81

    Timer CU Studyvoice 80%

    UDD64 20%

    0

    2

    4

    6

    8

    10

    12

    14

    16

    1 2 5 10 100 Timer-CU [T]

    95percentilevoic

    edelay

    (ms)

    PCR = 500Kbps

    PCR = 1MbpsPCR = 2MbpsPCR = 6Mbps

    voice 80%

    UDD64 20%

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    22

    24

    1 2 5 10 100 Timer-CU [T]

    95percentiledatadelay

    (ms)

    PCR = 500Kbps

    PCR = 1MbpsPCR = 2MbpsPCR = 6Mbps

    voice 80%

    UDD64 20%

    50

    55

    60

    65

    70

    75

    8085

    90

    95

    100

    1 2 5 10 100 Timer-CU [T]

    fillingratio(%

    )PCR = 500KbpsPCR = 1MbpsPCR = 2MbpsPCR = 6Mbps

    Timer CU Study

  • 8/2/2019 misimob

    44/81

    Timer CU Study

    (conclusions) The filling ratio depends on the Timer-CU value which depends

    on the T period of the PCR. Even under heavy load conditions,the Timer-CU does have a (small) influence on the filling ratio,

    however, under these conditions the Timer-CU does not have

    any impact on the delay.

    Under light load condition, the delay depends on the Timer-CUvalue but does not depend of the PCR.

    The value of the Timer-CU chosen within the context of a mono-

    service VC is still appropriate for the multiservice VC under thesame load conditions.

    A value of the Timer-CU between 1ms and 2ms may be

    considered as quasi- optimal .

  • 8/2/2019 misimob

    45/81

    Study of the statistical multiplexing

    Timer-CU = 1ms

    0

    5

    10

    15

    20

    25

    3035

    40

    45

    50

    55

    60

    1

    8

    2

    0

    2

    2

    2

    4

    2

    6

    2

    8

    3

    0

    3

    2

    3

    4

    3

    6

    5

    0

    5

    2

    5

    4

    5

    6

    5

    8

    6

    0

    6

    2

    6

    4

    6

    6

    6

    8

    7

    0

    7

    2

    7

    4

    7

    6

    11

    8

    12

    2

    12

    6

    13

    0

    13

    4

    13

    8

    14

    2

    14

    6

    15

    0

    15

    4

    15

    8

    number of voice streams

    99,9percentiledelay(ms) PCR=500Kbps

    PCR=1MbpsPCR=2Mbps

    Timer-CU = 1ms

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    number of voice streams

    VCload(%)

    PCR=500KbpsPCR=1Mbps

    PCR=2Mbps

    Study of the scheduling mechanisms

  • 8/2/2019 misimob

    46/81

    (1)Probability distribution for voice

    Voice + UDD64Kbps

    20% voice, 80% data

    VC load = 65%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,0

    1

    0,1

    3

    0,2

    5

    0,3

    7

    0,4

    9

    0,6

    1

    0,7

    3

    0,8

    5

    0,9

    7

    1,0

    9

    1,2

    1

    1,3

    3

    1,4

    5

    1,5

    7

    1,6

    9

    1,8

    1

    1,9

    3

    delay(ms)

    proba

    bility

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITYWRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

    Probability distribution for data

    Voice + UDD64Kbps

    20% voice, 80% data

    VC load = 65%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,1

    0,7

    1,3

    1,9

    2,5

    3,1

    3,7

    4,3

    4,9

    5,5

    6,1

    6,7

    7,3

    7,9

    8,5

    9,1

    9,7

    probability

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITYWRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

    Study of the scheduling mechanisms(2)

  • 8/2/2019 misimob

    47/81

    (2)

    Probability distribution for voice

    Voice + UDD64Kbps

    50% voice, 50% data

    VC load = 60%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,0

    10,3

    0,5

    9

    0,8

    8

    1,1

    7

    1,4

    6

    1,7

    5

    2,0

    4

    2,3

    3

    2,6

    2

    2,9

    13,2

    3,4

    9

    3,7

    8

    4,0

    7

    4,3

    6

    4,6

    5

    4,9

    4

    delay(ms)

    prob

    ability

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITYWRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

    Probability distribution for data

    Voice + UDD64Kbps

    50% voice, 50% data

    VC load = 60%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,1

    0,7

    1,3

    1,9

    2,5

    3,1

    3,7

    4,3

    4,9

    5,5

    6,1

    6,7

    7,3

    7,9

    8,5

    9,1

    9,7

    delay(ms)

    probability

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITY

    WRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

    Study of the scheduling mechanisms(3)

  • 8/2/2019 misimob

    48/81

    (3)

    Probability distribution for voice

    Voice + UDD64Kbps

    80% voice, 20% data

    VC load = 60%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,0

    1

    0,1

    3

    0,2

    5

    0,3

    7

    0,4

    9

    0,6

    1

    0,7

    3

    0,8

    5

    0,9

    7

    1,0

    9

    1,2

    1

    1,3

    3

    1,4

    5

    1,5

    7

    1,6

    9

    1,8

    1

    1,9

    3

    delay(ms)

    probability

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITYWRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

    Probability distribution for dataVoice + UDD64Kbps

    80% voice, 20% data

    VC load = 60%

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,1

    0,7

    1,3

    1,9

    2,5

    3,1

    3,7

    4,3

    4,9

    5,5

    6,1

    6,7

    7,3

    7,9

    8,5

    9,1

    9,7

    delay(ms)

    p

    robability

    EDF(2ms voice,20ms data)EDF(2ms voice,50ms data)EDF(5ms voice,100ms data)FIFOPRIORITYWRR(4/5 voice,1/5 data)WRR(1/2 voice,1/2 data)WRR(1/5 voice,4/5 data)

  • 8/2/2019 misimob

    49/81

    Study of the scheduling mechanisms

    The probability distribution is defined as

    Prob{delay > t}

    Priority scheduling policy is the best one

    for voice but the worst one for data

    FIFO gives the opposite results (the

    best for data and the worst for voice) EDF and WRR appear to be a

    compromise

    QOS View

  • 8/2/2019 misimob

    50/81

    QOS View

    IP layer :

    DiffServ : EF, AF, BE Scheduling : Priority, WFQ

    Traffic conditioning & queue management

    SLA

    DiffServ mechanisms

  • 8/2/2019 misimob

    51/81

    DiffServ mechanisms

    Four mechanisms are implemented within the ingress nodes :

    Traffic classification :

    Flow selection based on the DSCP (Behaviour Aggregate,BA)

    Selection based on one or header fields : source ordestination address, DS fields, protocol identifier, source ordestination port number, etc. (Multi-Field, MF)

    Traffic conditioning :

    4 components : meter, marker, shaper, dropper

    Traffic scheduling

    Traffic forwarding

    DiffServ Classification and conditioning

    ( i i )

  • 8/2/2019 misimob

    52/81

    (generic view)

    Classifier Marker Meter

    Shaper

    Dropper

    in

    outout

    out

    Per Hop Behaviour PHB

  • 8/2/2019 misimob

    53/81

    Per Hop Behaviour PHB

    Expedited forwarding (EF) Also called premium service

    Code point 101110

    Minimum rate guaranteed Requires a low transit delay and a low delay jitter

    Should be used with interactive real time flows

    The traffic shaper will drop packets which are not in conformance

    with the SLA Requires resources allocation

    Assured Forwarding (AF) 4 classes with 3 priority levels (packets loss)

    Low loss probability May use shaper, in this case packets which are not in conformanceof the SLA are marked (dropped in case of congestion)

    Best Effort (BE)

    QOS elements in DiffServ

  • 8/2/2019 misimob

    54/81

    QOS elements in DiffServ

    Committed Access Rate CAR

    Generic traffic Shaping GTS Weighted Fair Queuing WFQ scheduling

    mechanism Weighted Random Early detection

    (WRED) queue management

  • 8/2/2019 misimob

    55/81

    Ordonnancement

    Priorit de EF sur AF

    AF

    EF

    AF1

    AF2

    OrdonnancementWFQ

    QOS elements within MPLS

  • 8/2/2019 misimob

    56/81

    Q

    Peak Data Rate (PDR),

    Peak Burst Size (PBS), Committed Data Rate (CDR),

    Committed Burst Size (CBS), Excess Burst Size (EBS).

  • 8/2/2019 misimob

    57/81

    0 1 2 30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|0|0| Type = 0x0810 | Length = 24 |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    | Flags | Frequency | Reserved | Weight |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    | Peak Data Rate (PDR) |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Peak Burst Size (PBS) |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    | Committed Data Rate (CDR) |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    | Committed Burst Size (CBS) |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+| Excess Burst Size (EBS) |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    DiffServ + MPLS Mechanisms

  • 8/2/2019 misimob

    58/81

    DiffServ MPLS Mechanisms

    1) Identifie le BA du paquet entrant par le biais du DSCP.

    2) Dterminer le LSP/label reprsentant le FEC et le BA correspondants.3) Marquer le champ Exp pour reflter le BA du paquet.

    Mobile IP in 2.5G/3G

  • 8/2/2019 misimob

    59/81

    UMTS Rel 5 Architecture

  • 8/2/2019 misimob

    60/81

    Iu-CS

    UTRANR

    TE MT

    MS/UE

    CS domain

    PST/Legacy/E

    Netwo

    MSC

    Iu-PS

    PS domain

    Gn

    SGSN GGSN

    MultiNetw

    CSCF

    IM Subsystem

    Gm

    UuGMSC

  • 8/2/2019 misimob

    61/81

    Interface Iub

    NODEBRNC

    IP

    PPPmuxML/MC

    L2TP

    IP

    L2

    L1

    IP

    PPPmuxML/MC

    L2TP

    IP

    PPP

    HDLC/

    phy

    IP

    PPP

    HDLC/

    phy

    IP

    MPLS

    phy

    IP

    MPLS

    phy

    IP

    L2

    L1

    1 QoS

    Une seule Classe deservice pour les fluxtransports entre leNode B et le RNC

    RLC

    MAC

    FP

    Multiplexage de bout en bout

    UDP UDP

    Rseau de transport

    Tunnel

    Qualit de service de bout en bout

    Last Mile

    Edge Router

  • 8/2/2019 misimob

    62/81

    Interface Iub

    NODEBRNC

    IP

    L2

    phy

    IP

    PPP muxML-MC

    HDLC/phy

    IP

    phy

    IP

    MPLS/ATM

    phy

    IP

    MPLS/ATM

    phy

    IP

    L2

    phy

    RLC

    MAC

    FP

    PPP/AAL2/ATM

    - Les flux transports dansle rseau de transport nesont pas multiplexes.- Plusieurs Classes deservice peuvent tre

    supportes

    Qualit de service point point

    QoS2

    QoS1

    Phy

    UDP UDP

    Rseau de transport

    - Le multiplexage est ralis sur leLast Mile Link

    - La diffrenciation des services peuttre ralise sur le Last Mile Link

    Edge Router

    Last Mile Link

    UMTS core network in Rel 5

  • 8/2/2019 misimob

    63/81

    UMTS Rel 5 defines a new Core Network architecturedivided into three domains :

    PS domain : is the evolution of GPRS packetdomain, it offers bearers for IP based applications.

    CS domain : is the evolution of GSM NSS, it offers

    bearers for circuit services. From Rel 4, 3 GPP group has introduced to the CS domain the

    NGN (Next Generation Network) concept which allows to separatecontrol part from the transport part

    IP Multimedia Subsystem : this domain is theinnovative part of UMTS Rel5. It is expected to supportIP multimedia applications between two end users.

    IN / GSM Convergence

  • 8/2/2019 misimob

    64/81

    The initial GSM architecture does not follow the IN model.

    The enhancement of this architecture toward the IN model is done with

    CAMEL (Customized Application for Mobile network Enhanced Logic).

    This defines A protocol : CAMEL Application Part CAP between the MSC and the

    SCP

    A new function gsmSSF within the MSC

    Originating CAMEL Subscriber Information which identifies thesubscriber and the address of the SCP the MSC has to contact

    CAP Message Set (reduced)

    CAP-BCSM defined

    Trends

  • 8/2/2019 misimob

    65/81

    Trend 1 ( All IP UMTS network)

    Packet-switched circuit switched

    Multimedia support in core network Trend 2 (Open Service Architecture,OSA)

    Provide third party service provider access to their UMTS service

    architecture The concept of service portability was called VHE in 3GPP

    standardization

    VHE philosophy:

    Make it possible for third party service providers to develop UMTS

    applications

    VHE(service capabilities)

  • 8/2/2019 misimob

    66/81

    Three fundamental architecture improvements from

    GSM

    Wideband access: high bit rate Mobile-fixed-Internet convergence

    Cross domain service

    e.g. Tracking a users location

    Automatically adapting the content of his incoming messages to

    SMS, voice message, fax or e-mail.

    VHE is the enabler of this service portability across networks and

    terminals in the different domains. Flexible service architecture

    VHE(service capabilities)

  • 8/2/2019 misimob

    67/81

    VHE

    A system concept for personalized service portability across

    network boundaries and between terminals. virtual at home Allows a user to personalize the set of services across different

    types of networks- mobile, PSTN, Internet and terminals-mobile,

    laptop, fixed phone, PDA,PC

    e.g. from 9h00 to 17h00 I want to receive incoming messagesfrom my office

    Layered architecture, see figure.1

    Network layer Service layer

    Allow faster, easier and more flexible creation, deployment, and

    operation of new personalized applications/services

    VHE(service capabilities)

  • 8/2/2019 misimob

    68/81

    VHE(service capabilities)

  • 8/2/2019 misimob

    69/81

    VHE (continued) Open interface OSA

    Object oriented Application Programming Interface (API)

    SCSs (Service Capability Servers)

    defined as all those servers in the network that provide functionalityused to construct services.

    Group into software interface classes. SCFs (Service Capability Features)

    The classes of the OSA interface

    e.g. call control, location.positioning and notification.

    Secure Service layer access to the SCFs of all the SCSs in the network

    layer

    Additional authentication, authorization, accounting and

    management

    VHE(Open Standardized

    Interface/SCSs)

  • 8/2/2019 misimob

    70/81

    )

    The functionality represented by the SCFs is offered via

    an open standardized interface, OSA interface.

    GSM/UMTS protocol MAP

    CAP

    WAP

    VHE(Open Standardized

    Interface/SCSs)

  • 8/2/2019 misimob

    71/81

    )

    UMTS call control servers

    Only MSC for Circuit Switch Call Control, 24.08 CC is UMTS CallControl protocol

    HLR( Home Location Register) Location and subscriber information, MAP

    MExE server (Mobile Execution Environment )

    JVM, WAP browser, WAP and WTP (Wireless Telephony Application)

    SIM Application Toolkit (SAT) server

    SIM card contains certain subscriber and security related information.

    Some small application (phone book, calendar..)

    Pro-active command from SIM CAMEL( customized Application for Mobile Network Enhanced

    Logic)

    IN (prepaid service)

    Invoke via trigger

    VHE(Open Standardized Interface/SCSs)

  • 8/2/2019 misimob

    72/81

    Why VoIP ?

  • 8/2/2019 misimob

    73/81

    New features introduced in R00 Provisioning of IP-based multimedia service

    Packet based network transport. Replace circuit switchedtransport

    IP transport within the UTRAN

    Network architecture is independent of the transport layer, based

    on IP or ATM R00 support two types of real-time service

    Circuit switched voice service

    IP-based multimedia service

    R00s MSC is split into A control part : MSC server

    A transport part : Media Gateway Controller MGC

    VoIP(All-IP UMTS solution)

  • 8/2/2019 misimob

    74/81

    About IMS

  • 8/2/2019 misimob

    75/81

    IMS : Provides UMTS packet domain with session control plane

    Protocol chosen to perform call control is SIP (Session Initiation Protocol)

    QOS is negotiated end-to-end at the application level via SIP protocol, thenthis QOS is translated to UMTS QOS to allocate CN bearer.

    Enables UMTS customers to be reachable anytime anywhere thanks tothe SIP identifier

    Note that in R99 and Rel 4 mobiles can not receive packet based calls fromend users.

    Enables enhanced services in conjunction with service platform andarchitecture (OSA, CAMEL).

    New services via packet domain : VoIP, videoconference, games

    Path followed by IMS Signaling and

    Multimedia Data

  • 8/2/2019 misimob

    76/81

    UMTS Packet Domain

    GGSNS GSN

    IMS

    E xternal

    Network

    Signalling Flow

    Data Flow

    UE

    Fixed/Wireless Convergence

  • 8/2/2019 misimob

    77/81

    IP Core Network

    Media Access System

    End User

    Servicesand

    Applications

    ADSL

    Satellite NetworkWLAN/Bluetooth

    GSMGPRS/EDGE

    UTRAN

    Network Design Issues

  • 8/2/2019 misimob

    78/81

    Access network and core network design

    Traffic modelling Traffic engineering

    Handover management Roaming management

    Hierarchical cellular organisation

    Policy Based Network PBN

  • 8/2/2019 misimob

    79/81

    Architecture PEP : Policy Enforcement Point

    PDP : Policy Decision Point

    LDAP : Lightweight Directory Access

    Protocol

    Management FunctionPolicy RepositoryPolicy Server

  • 8/2/2019 misimob

    80/81

    PDP

    PEP

    Node

    LDAP

    SNMP

  • 8/2/2019 misimob

    81/81

    PDP

    Policy Server

    PEP

    Node A

    LPDP

    PDP

    PEP

    PDP

    Node D

    Policy Server

    PEP

    Node B

    LPDP

    PEP

    Node C

    AD 1

    AD 2

    AD 3