+ All Categories
Home > Documents > Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and...

Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and...

Date post: 03-Dec-2018
Category:
Upload: trantu
View: 233 times
Download: 0 times
Share this document with a friend
93
1 Dr. A.S.Rukhlenko [email protected] Neuchâtel, 2005 www.intraSAW.com Mixed Scattering Matrix: Properties and Applications
Transcript
Page 1: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

1

Dr. A.S.Rukhlenko

[email protected]

Neuchâtel, 2005

www.intraSAW.com

Mixed Scattering Matrix: Properties and Applications

Page 2: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

2

Outline

Introduction

1. Admittance, Wave Scattering, and Mixed ScatteringMatrices of the Multi-Port Network

2. Mixed Scattering Matrix of a SAW Transducer

3. SAW Filter Simulation

4. Modeling in the Quasi-Static Approximation

5. Modeling of Reflective SAW Transducers (COM-Analysis)

Conclusions

Page 3: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

3

Part 1. Admittance, Wave Scattering, and Mixed Scattering Matrices of the

Multi-Port Network

Page 4: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

4

Multi-Port Network

a1b

1

I1

V1 V 2

b 2a 2

I 2

b Na N bk

ak

V NV

kIkI N

N-port network[S], [Y], [M]

1 2

kN

B=SA (scattering matrix)I =YV (admittance matrix)

Fig. 1. An arbitrary N-port microwave network specified in terms of the S- and Y-matrices

Page 5: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

5

Wave Scattering and Admittance Matrices

1 11 12 1 1

2 21 22 2 2

1 2

N

N

N N N NN N

b s s s ab s s s a

b s s s a

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

……

A=[a1 a2 … aN]T vector of the incident waves B=[b1 b2 … bN]T vector of the reflected wavesI= [I1 I2 … IN]T vector of the terminal currentsV=[V1 V2 …VN]T vector of the terminal voltagesS=[sik] scattering matrix (dimensionless)Y=[Yik] admittance matrix (W-1)

(1)

(2)

(3)

(4)

Scattering Matrix Admittance Matrix

B=SA I=YV

1 11 12 1 1

2 21 22 2 2

1 2

N

N

N N N NN N

I y y y VI y y y V

I y y y V

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

……

Page 6: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

6

Mixed Scattering Matrix

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

aa ae aa ae

ea ee ea ee

B M M M MA= M=

I M M M MV(5)

11 12 1 1, 1 1, 2 1,1

21 22 2 2, 1 2, 2 2,2

1 2 1, 1 , 2 ,

1,1 1,2 1, 1, 1 1, 2 1,1

2,1 2,22

m m m m n

m m m m n

m m mm m m m m m m nm

m m m m m m m m m m n

m m

n

m m m m m mbm m m m m mb

m m m m m mbm m m m m mIm mI

I

+ + +

+ + +

+ + + +

+ + + + + + + + +

+ +

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ =⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

… ……

…… ……

1

2

1

2, 2, 2 2, 2

,1 ,2 , , 2 ,

m

m m m m m m n

m n m n m n m m n m m n m n n

aa

aV

m m m V

m m m m m V

+ + + + +

+ + + + + + +

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

(6)

Mixed scattering matrix M is a mixed units hybrid of the scattering matrixS and admittance matrix Y.

Page 7: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

7

Nomenclature

m number of the acoustic wave portsn number of the electric portsN=m+n total number of the portsA=[a1 a2 … am] vector of the incident waves on the acoustic portsB=[b1 b2 … bm] vector of the reflected waves from the acoustic

portsI =[I1 I2 … In] vector of the terminal currents on the electric portsV=[V1 V2 … Vn] vector of the terminal voltages on the electric portsM mixed scattering matrix of size N x NMaa acoustic matrix block of size m x m (dimensionless)Mae acoustoelectric matrix block of size m x n (mixed units)Mea electroacoustic matrix block of size n x m (mixed units)Mee electric matrix block of size n x n (W-1)

Page 8: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

8

Generalized Wave Amplitudes and Electric Variables

Variables Matrix Scalar

Incident and reflected waves

Terminal current and voltages

Characteristic admittance

Average delivered power

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 0

0 0

1A = ( Y V+ Z I)21B = ( Y V - Z I)2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

I = Y (A -B)V = Z (A+B)

01

02

0

10 0

0 00 0

0 0 00 0 N

YY

Y

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− ==Y Z

……

Re

Re

*

*

* *

1P = VI =21 (A + B)(A - B) 21 1P = AA - BB2 2

=

1( )21( )2

k ok k ok k

k ok k ok k

a Y V Z I

b Y V Z I

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= +

= −

( )( )

k ok k k

k ok k k

I Y a bV Z a b

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

= −= +

0 01/k kY Z=

*

* *

22

1 21 ( )( - )21 12 2

k k k

k k k k

k k k

P Re V I

Re a b a b

P a b

= =

= +

= −

BA*-AB*=2ImBA* purely imaginary.

bk ak*-ak bk*=2Im bk ak* purely imaginary.

(7) (8)

(10)(9)

(12)(11)

(14)(13)

Page 9: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

9

Conversion Between Admittance, Scattering, andMixed Scattering Matrices

S Y Me -1M -M (Y +M ) Maa ae ee ea0

e -1 e2M (Y +M ) Yae ee0 0e e -1- Y (Y +M ) Mee ea0 0

e e -1 e eY (Y +M ) (Y -M ) Zee ee0 0 0 0

SaaSaeSeaSee

SaaSaeSeaSee

1

1( )( )( ) ( )

= − + ==

=

S E Y E YE+Y E-Y

Y Z Y Z0 0

(15) (16)

YaaYaeYeaYee

a -1 aY (E+M ) (E-M ) Yaa aa0 0a -1-2 Y (E+M ) Maa ae0

-1 aM (E+M ) Yea aa 0-1M -M (E+M ) Mee ea aa ae

(18)

YaaYaeYeaYee

1

1( )( )( ) ( )

−= − + == + −=

Y E S E SE S E S

Y Z Y Z0 0(17)

-1S -S (E+S ) Saa ae ee ea-1 eS (E+S ) Yae ee 0

e -1-2 Y (E+S ) See ea0e -1 eY (E+S ) (E-S ) Yee ee0 0 −

=

-1(E+Y ) (E-Y )aa aa-1 a-(E+Y ) Z Yaa ae0

a -12Y Z (E+Y )aaea 0a -1 aY Y Z (E+Y ) Z Yaaee ea ae0 0

a aY Z Y Zaa aa0 0

MaaMaeMeaMee

MaaMaeMeaMee

(19) (20)

Page 10: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

10

Mutual Conversion

S Y

M

Page 11: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

11

Reciprocity and Power ConservationParametersNetwork

Y S M

Reciprocal

Lossless

Reciprocal & Lossless

T

T

T

M = Maa aaM = -2Mea aeM = Mee ee

= S Sik ki

TS=S= Y Yik ki

TY = Y(21)

*M M = Eaa aa* *M = 2M Mea aa ae

*ReM = M Mee ae ae*

1

*N

S Sji jk ikjδ=∑

=

=S S EY =0Re ik

ReY=0(22)

* *1 1

* *N N

S S S Sji ijjk kj ikj jδ= =∑ ∑

= =

= =S S SS E =* *M M = M M Eaa aa aa aa* *M = 2M Mea aa ae

1 *M = M Mae aa ea2*ReM = M Mee ae ae

(23)= - *Y Yik ki

−Y = Y*

10

i kik i kδ

⎧⎪⎪⎪⎨⎪⎪⎪⎩= =

≠T matrix transposition, * Hermitian conjugation

Page 12: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

12

Matrix Properties (Reciprocal and Lossless Networks)

1. The admittance matrix Y is symmetric for reciprocal networks and purely imaginary for lossless networks.

2. The scattering matrix S is symmetric for reciprocal networks andunitary for lossless networks.

3. The dot product of any column/row of the scattering matrix S with aconjugate of a different column/row gives zero (orthogonality condition)for reciprocal and lossless networks.

4. The acoustic block Maa of the mixed scattering matrix M satisfies theunitary matrix property, with the acoustoelectric and electroacousticblocks Mae and Mea converted to each other.

Page 13: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

13

Reference Plane Transformation

a1

I1

V1 V 2

a 2I 2

bk

ak

V NV

kIkI N

N-port network[S], [Y], [M]

1 2

kN

ak 'b

k 'lk

b 2b

1

b Na N

Fig. 2. Shifting reference planes for an N-port network (outward)

Page 14: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

14

Reference Plane Transformation Equations

Type Matrix Scalar

Transformation

Wave scattering matrix

Mixed scattering matrix

1

2

0 00 0

0 0 N

j l

j l

j l

ee

e

β

β

β

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

=E

……

' E SES =

'aa aa aa aa'ae aa ae'ea ea aa'ee ee

M = E M EM = E MM =M EM =M

⎧⎪⎪⎪⎨⎪⎪⎪⎩

'

-1 '

A = EA

B = E B'

1 'k k k

k k k

a e ab e b−

⎧ =⎪⎪⎨⎪ =⎪⎩kj l

ke e β−=

( )' i kj l liik ik k ikS S e e S e β− += =

'

'

'

'

, ,

, ,, ,

, ,

iik ik k

iik ik

ik ik k

ik ik

i k mM M e eM M e i m k mM M e i m k mM M i m k m

≤== ≤ >= > ≤= > >

(24) (25)

(29)

(26)

(27)

(28)

Page 15: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

15

Transformation Law

1. The reference plane shift at the i-th and k-th ports changes the phase of the scattering matrix element Sik in accordance with theacoustic path change li+ lk for the incident and reflected wavestraveling throughout these ports.

2. It is only the elements of the mixed scattering matrix related to theacoustic ports which are subject to change due to reference planetransformation while elements referred to electrical ports remainunchanged.

3. Shifting the reference planes in the inward direction may beaccounting for by reversing the exponent sign in Eqs. (24-29).

Page 16: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

16

Part 2. SAW Transducer Mixed Scattering Matrix

Page 17: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

17

Mixed Port Representation of a SAW Transducer

1, 2 – acoustic ports, 3 – electric port

a1

b1

a2

b2

1 2

3VI

L

Fig. 3. Three-port representation of a SAW transducer

Page 18: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

18

Mixed Scattering Matrix of a SAW Transducer

Mixed scattering matrix of a SAW transducer

1 11 12 13 1

2 21 22 23 2

31 32 33

b m m m ab = m m m aI m m m V

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦Block-matrix form

eeI M Vaa ae

ea

B M M AM

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦=

where A=[a1 a2]T is the vector of the incident waves, B=[b1 b2]T is the vector of the reflected waves at the acoustic ports, I is the terminal current, V is the voltage applied to the transducer bus-bars at the electric port.

(30)

(31)

An ideal SAW transducer is a reciprocal and lossless three-portacoustoelectric network with two acoustic and one electric ports.

Page 19: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

19

Physical Meaning of Matrix BlocksNotation Block Type Meaning Mode

Maa AcousticScattering coeffcients of a short-circuit SAW transducer

Passivegrating,

V=0

Mae AcoustoelectricAcoustoelectricconversion by a SAW transducer with the voltage V applied to the transducer bus-bars

SAW excitation,

V≠0

Mea ElectroacousticTerminal short-circuit current induced by the incident acoustic waves

SAW detection,

V=0

Mee ElectricTransducer admittance seen at the electric port when there are no incident waves at the acoustic ports

One-portelectricalnetwork

V≠0

11 12

21 22

m mm m⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

[ ]T13 23m m

[ ]31 32m m

33m

Page 20: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

20

Mixed Scattering Matrix Elements

Element Definition Mode Meaning Units

m11 b1/a1Short-circuit,V=0, a2=0

Reflection coefficient of the short-circuit transducer at the left acoustic port 1

-

m22 b2/a2Short-circuit,V=0, a1=0

Reflection coefficient of the short-circuit transducer at the right acoustic port 2

-

m12 b1/a2Short-circuit,V=0, a1=0

Transmission coefficient of the short-circuit transducer in the left direction

-

m21 b2/a1Short-circuit,V=0, a2=0

Transmission coefficient of the short-circuit transducer in the right direction

-

Page 21: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

21

Mixed Scattering Matrix Elements (Cont’d)

Element Definition Mode Meaning Units

m13 b1/V SAW excitation,a1=a2=0, V≠0

Acoustoelectric conversionfunction, left direction (port 1)

m23 b2/V SAW excitation,a1=a2=0, V≠0

Acoustoelectric conversion function, right direction (port 2)

m31 I/a1SAW detection,

short-circuit,a2=0, V=0

Electroacoustic conversion function from the left direction (current induced by the wave a1=1 at the left acoustic port 1)

m32 I/a2SAW detection,

short-circuit,a1=0, V=0

Electroacoustic conversion function from the right direction (current induced by the wave a2=1 at right acoustic port 2)

m33 I/V One-port electrical network,

a1=a2=0, V≠0

Transducer admittance at the electric port

Ω-1

1/ Ω

1/ Ω

1/ Ω

1/ Ω

Page 22: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

22

Conversion of the Mixed Scattering Matrix to the Wave Scattering Matrix

00 0

0 00 0

2ae eaaa ae

ea

YY Y Y Y

Y Y YY Y Y Y

aa aeea ee

M MM MS SS = S S

M

⎡ ⎤⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− + +=

−− + +or in the scalar form

2 0 1313 31 13 3211 12

0 0 02 0 2323 31 23 32

21 220 0 0

0 31 0 32 00 0 0

Y mm m m mm m

Y Y Y Y Y Y

Y mm m m mm m

Y Y Y Y Y Y

Y m Y m Y YY Y Y Y Y Y

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− −+ + +

= − −+ + +

−− −

+ + +

S

where Y0 =1/Z0 is the characteristic admittance at the electric port, Y=m33 is the transducer admittance.

Scattering matrix of a SAW transducer

(32)

(33)

Page 23: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

23

Lossless Condition

* * * *

* * * * 1aa ae aa ae aa aa ae ae aa ea ae ee

ea ee ea ee ea aa ee ae ea ea ee ee

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

= + += =+ + T

E 0S S S S S S S S S S S SSS*S S S S 0S S S S S S S S

or

aa aa ae aeaa ea ae eeea ea ee ee

⎧⎪⎪⎪⎨⎪⎪⎪⎩

* ** ** *

S S +S S = ES S +S S = 0S S +S S =1

(34)

(35)

For a lossless SAW transducer the wave scattering matrix S is unitary.

Page 24: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

24

Properties of Reciprocal and Lossless SAW TransducerEquationProperty

Matrix Scalarm12= m21

m31=-2 m13

m32=-2 m23

Reciprocity

|m |2 +|m |2=1

m11 m12* + m22*m21=0

11 12

|m22|2 +|m21|2=1

m13=-( m23*+ m22* m23) /m21*m23=-( m13*+ m11* m13) /m12*Rem33=|m13|2 +|m23|2

Causality

Power conservation

aa aaTM M=

2ea aeTM M=−

*aa aa =M M E

*12ae aa eaM M M=

*33 ae aeRe m M M=

Re Im H=ee eeM M'

'3333 '

( )1 Re mIm m dω ωπ ω ω

−∞=

−∫2

11 22 12 21 12 11 11 12, 1 , 2m m m m m m πθ θ= = ⇒ = − = ±Particular Case: (42)

Page 25: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

25

Summary of SAW Transducer Properties

1. The mixed scattering matrix M of a SAW transducer contains threeindependent elements m11, m13 , m33 to be determined, in general case.

2. The transmission coefficient m12 can be deduced from the reflectioncoefficient m11 using Eq. (41). The coefficients m11 and m12 are in thephase quadrature, with the phase ambiguity of π in general case.

3. Given the acoustoelectric conversion function m13 and the scatteringcoefficients m11 and m12, the electroacoustic function m23 can be foundby Eq. (39).

4. The electroacoustic conversion functions m31 and m32 can be found byreciprocity using Eqs. (37).

5. The real part (radiation conductance) G(w) of the transducer admittanceY(w)=G(w)+jB(w)+ jw C can be found from the power conservation low Eq. (40).

6. The imaginary part (radiation susceptance) B(w) can be found by theHilbert transformation of G(w) (the causality principle).

7. The transducer static capacitance C should be found from the solutionof the electrostatic problem in the closed-form or numerically.

Page 26: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

26

Mixed Scattering and Transmission Matrices

The mixed transmission matrix T=[tik], i,k=1,2,3 describes the relationship of the acoustic waves a1, b1 at the left acoustic port 1 (as input) and the terminal current I with the waves a2, b2 at the right acoustic port 2 (as output) and the transducer bus-bar voltage V

11 12 13

21 22 23

31 32 33

1 2

1 2

a t t t ab t t t bI t t t V

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= (43)

Why Transmission Matrix?

The mixed transmission matrix T is appropriate for cascading SAWelements as it relates the waves at the input and output acoustic ports.

Page 27: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

27

Conversion between Scattering and Transmission

Scattering S Transmission T

S

T

11 12 13

21 22 23

31 32 33

m m mm m mm m m

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

2322

21 21 21

11 2311 11 2212 13

21 21 21

31 22 31 31 2332 33

21 21 21

1 mmm m m

m mm m mm mm m mm m m m mm mm m m

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− −

− −

− −

21 1321 12 2122 23

11 11 11

1312

11 11 11

31 12 31 13 3132 33

11 11 11

1

t tt t tt tt t t

ttt t tt t t t tt tt t t

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

− −

− −

− −

11 12 13

21 22 23

31 32 33

t t tt t tt t t

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Page 28: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

28

Part 3. SAW Filter Simulation

Page 29: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

29

SAW Filter Representation

A1

B1

A2

B2

a1

b1

V1 V2

I1 I2

M1 M21 2

3 4

L

5a)

Fig. 4. Multi-port SAW filter representation in terms of:a) mixed scattering matrices (M-matrices),b) mixed transmission matrices (T-matrices)

A1

B1

A2

B2

a1

b1

V1 V2

I1 I2

T1

T2

3 4

1 2

L

5b)

Page 30: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

30

Cascading Mixed Scattering Matrices

1 1 111 12 131 11 1 1

1 21 22 23 11 1 11 131 32 33

m m mB Ab m m m aI Vm m m

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦

=

Mixed scattering matrix for each transducer

2 2 211 12 131 12 2 2

2 21 22 23 22 2 22 231 32 33

m m ma bB m m m AI Vm m m

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=

(44)

(45)

Input:

Output:

Page 31: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

31

Overall Mixed Scattering Matrice

Total acoustoelectric system (SAW filter), no acoustic coupling conditions imposed

1 1 111 13 12

2 2 222 23 21

1 1 131 33 32

2 2 232 33 312 2 212 13 11

1 1 121 23 22

1 1

2 2

1 1

2 2

1 1

1 1

0 0 00 0 0

0 0 00 0 00 0 0

0 0 0

m m mm m m

m m mm m mm m m

m m m

B AB AI VI Va ab b

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= (46)

Block-matrix form3

2 3

3 32 33

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=11 12 1

21 2 2

1

B M M M AI M M M VC M M M C

(47)

Page 32: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

32

Nomenclature

A=[A1 A2]T vector of the incident waves at the external acousticports 1, 2

B=[B1 B2]T vector of the reflected waves at the external acousticports 1, 2

C=[a1 b1]T vector of the traveling waves at the internal(coupled) acoustic ports 5

I =[I1 I2]T vector of the currents at the electric ports 3, 4V =[V1 V2]T vector of the voltages at the electric ports 3, 4

Page 33: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

33

General SolutionBy excluding the unknown vector C we find the following solution of the matrix system of equations (47)

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= aa ae

ea ee

M MB AM MI V

where the mixed scattering matrix of a SAW filter ⎡ ⎤⎡ ⎤⎡ ⎤

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

13 -111 12aa ae33 31 32

ea ee 21 22 23=

MM MM MM = + (E-M ) M MM M M M M

(48)

(49)

11 11311 12

22 22322 21

1 1 131 33 32

2 2 232 33 31

22 21312 11

11 12321 22

00 0, ,

00 0

0 0 0, ,

0 0 0

00 0, ,

00 0

mm mmm m

m m mm m m

mm mmm m

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡⎢ ⎥⎢ ⎥ ⎢⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦

= = =

= = =

= = =

11 12 13

21 22 23

31 32 33

M M M

M M M

M M M⎤⎥⎥⎦

Page 34: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

34

Particular Case: Isolated Acoustoelectric System

There are no incident waves at the external acoustic ports * (A=0, electrical two-port)

I = YV

1M

=

∆+

ee-1

22 23 33 32

22 23 33 32

Y = M = M +M (E-M ) M

M + M (E M )M

(50)

where a system admittance matrix

2 111 22

1 2 1 1 1 233 11 32 23 32 13

1 2 2 1 2 223 31 33 22 31 13

,

1 1

1 1

1

m m m m m mM Mm m m m m mM M

M m m

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

+ ∆ ∆=+∆ ∆

∆ = −

Y (52)

(51)

Page 35: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

35

Reflectionless SAW Transducer: Quasi-Static Approximation

In the quasi-static approximation (reflectionless SAW transducer)

Therefore,

(53)

1,2 1,211 22 0.m m= =

1 1 2 1 1 233 32 13 33 23 13

1 2 2 1 2 223 31 33 23 13 33

22

m m m m m mm m m m m m

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−=

−Y

In the quasi-static approximation (reflectionless SAW transducers), the self-admittances Y11, Y22 are defined by the admittance of the inputand output SAW transducers, with the cross-admittance Y12= Y21 givenby the product of the acoustoelectric functions of both transducers.

Page 36: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

36

Cascading Mixed Transmission Matrices

Augmented transmission matrices of SAW transducers:

(54)

2 2 21 11 12 13 2

2 2 221 21 22 23

112 2 2 22 31 32 33

00

0 0 1 00

a t t t ABb t t tVVVI t t t

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

=

1 1 1111 12 131

1 1 11 121 22 23

1 1 11 131 32 332 2

000

0 0 0 1

at t tAB bt t tI Vt t tI I

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=

(55)

Input: Output:

1,21,2

1,2 1,2 1,21,2 1,2 1,211 12 13 1,2 1,21,2 1,2 1,2

1,2 1,21,2 1,2 1,221 22 23 1,2 1,21,2 1,2 1,231 32 33 1,2 1,2 1,2

1,2 1,21,2 1,2

2322

21 21 21

11 2311 11 2212 13

2121 21

31 22 3132 33

21 21

1

t t tt t tt t t

mmm m m

m mm m mm mmm m

m m mm mm m

⎡ ⎤⎢ ⎥ =⎢ ⎥⎢ ⎥⎣ ⎦

− −

− −

−1,2 1,2

1,231 23

21

m mm

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

where

Page 37: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

37

Overall Mixed Transmission Matrix

1 2 1 2 1 2 1 2 1 1 2 1 211 11 12 21 11 12 12 22 13 11 13 12 23

11 12 1 2 1 2 1 2 1 2 1 1 2 1 221 11 22 21 21 12 22 22 23 21 13 22 23

21 22 1 2 1 2 1 2 1 2 1 1 231 11 32 21 31 12 32 22 33 31 13

t t t t t t t t t t t t tT T

t t t t t t t t t t t t tT T

t t t t t t t t t t t t

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

+ + +

+ + += =

+ + +

13

23

31 32 33

T

T T

T T T1 232 23

2 2 231 32 330

t

t t t

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

The overall mixed transmission matrix is given by the product ofthe augmented mixed transmission matrices

11 121 2

1 21 22 2

1 3

T TA AB T T B

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

=13

23

3 32 3

TT

I VT T T(56)

Block-matrix form

(57)

Page 38: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

38

Particular Case: Isolated Acoustoelectric System

There are no incident waves at the external acoustic ports * (A1=B2=0, electrical two-port)

(58)111T −= −33 31 13Y T T T

Substitution of Eqs. (55), (57) into Rq. (58) gives the same result (52).

Page 39: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

39

Brief Summary on Cascading Techniques

1. Two basic techniques for SAW transducer cascading are: direct interconnection of the mixed scattering matricescascading the mixed transmission matrices.

2. Both techniques give the identical results.

3. Cascading techniques can be generalized to the case of N SAWtransducers following similar guidelines as in the particular caseof two in-line SAW transducers.

Page 40: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

40

SAW Filter S-ParametersOnce two-port admittance matrix (Y-parameters) in the form of (51) or (58) has been determined, the scattering matrix S (S-parameters) can be found by using the matrix equation

1( ) ( ) −= 0 0S Y - Y Y + Y

0 1 1 0 2 2 1 2 2 1 1 2 0

2 1 0 0 1 1 0 2 2 1 2 2 1

( ) ( ) 212 ( ) ( )

Y Y Y Y Y Y Y YY Y Y Y Y Y Y Y Y

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

− + + −= ∆ − + − +S

0

0

00

YY

⎡ ⎤⎢ ⎥⎣ ⎦

=0Y where Y0=1/Z0 is characteristic admittance (typically, Z0=50 Ω)

Closed-form S-parameters

(59)

0 1 1 0 2 2 1 2 2 1( ) ( )Y Y Y Y Y Y Y∆ + + −=The denominator ∆Y accounts for the multiple reflections due to the regenerated signal (triple transit echo (TTE)) between the input and output SAW transducers loaded by the characteristic admittance Y0 at each end.

(60)

Page 41: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

41

Particular Case: High-Loss SAW Filter

Assumptions: Y11 << Y0, Y22 << Y0, and Y12Y21 << Y02

(61)1 2 1 20 23 13 23 13

122 4120

YS Z m m m m

Y= − = ∼

1. In general case, the SAW filter transfer function S12 is no longer proportional to the cross-admittance Y12 and therefore it has morecomplicated frequency behavior rather than just the product of theacoustoelectronic functions of the input and output SAWtransducers (an idealized SAW filter frequency response).

2. This frequency response distortion must be accounted andcompensated for at the SAW filter synthesis step.

Page 42: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

42

Part 4. SAW Transducer Modeling in Quasi-Static Approximation

Page 43: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

43

Mixed Scattering Matrix

Basic Assumption: A short-circuit SAW transducer is reflectionless, i.e. m11= m22=0.

Practicality: Valid if the central frequency f0 of a SAW transducer is faraway from the synchronous frequency fp=v/2p where v is SAW velocity and p is the transducer period (pitch).

In the quasi-static approximation the mixed scattering matrix of a SAW transducer

,*

*

00

2 2L Np

j

j

j

e me m em m e Y

β β

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

Φ = =

− Φ

−Φ − Φ

− Φ= −

−M

m=m13 acoustoelectric functionL=Np total acoustical length of a SAW transducer (port-to-port)β=ω/v SAW wave number

(62)

Page 44: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

44

Mixed Transmission Matrix

In the quasi-static approximation the mixed transmission matrix of a SAW transducer

m=m13 acoustoelectric functionL=Np total acoustical length of a SAW transducer (port-to-port)

β=ω/v SAW wave number

(63)

*

*33

00

2 2 Im

j

j

j j

e me m

me m e m

Φ

− Φ

Φ − Φ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

=−

T

Φ=βL total phase lag

Page 45: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

45

Phase Reference

The mixed scattering and transmission matrices take the simplestform when the phase is referenced to the transducer center (F=0):

(63)

*

*

1 00 12 2 Im

mm

m m Y

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

=−

T

*

*

0 11 02 2

mm

m m Y

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

= −−

M

(64)

The independent matrix elements are m and Y to be determined in thequasi-static approximation.

Page 46: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

46

SAW Transducer ParametersSAW Transducer Parameters

In the quasi-static approximation, the mixed scattering matrix of a SAW transducer is characterized by three independent parameters:

1) effective SAW velocity v2) acoustoelectric conversion (transfer) function m3) transducer admittance Y=G+jB+jωC where C is the

transducer static capacitance

The acoustic conductance G and susceptance B are interrelated viathe Hilbert transform due to the causality principle.

Page 47: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

47

Periodic SAW Transducer

1V0 V1 VN-1

ap

L=Np

…a1

b1

a2

b2

2

Fig. 5. Cross-section view of the finite length periodic SAW transducer

Page 48: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

48

Acoustoelectric Conversion FunctionThe acoustoelectric conversion (transfer) function of a SAW transducer

2

1

0a

bmV =

=

where b1 is the generalized SAW amplitude of the wave traveling in the left direction, V is the voltage applied across the transducer.

* * *0

1 1 12 2 4

WP aa Y ωφφ φφ= = =Γ

generalized SAW amplitudef surface potential accompanying a SAW of the amplitude aY0=ω W/2Γ acoustic characteristic admittance (after D.P.Morgan)Γ=K2/2ε substrate material constantK2 piezoelectric coupling factorε=ε0+εp surface effective permittivityε0 permittivity of the medium above the substrateεp effective permittivity of the substrate

0a Y φ=

SAW power flow carried by the uniform acoustic beam of the width W

(65)

(66)

Page 49: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

49

Closed-Form Equation (D.P.Morgan)

In the quasi-static approximation (D. P. Morgan), a potential φ of the surface acoustic wave launched by a periodic SAW transducer in the left direction is

/ 2( ) ( ) ( ) j Lj V F e βφ β ε ξ β β −= Γ

β=ω/v SAW wave numberξ(β) element factor F(β) array factorL=Np transducer lengthN number of electrodes (fingers) p finger pitch (period).

(67)

An element factor ξ(ω) characterizes frequency behavior of the acoustic sources and depends on the metallization ratio.An array factor F(ω) accounts for SAW filter selectivity and related with the finger polarity sequence by the Fourier transform.

Page 50: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

50

Element Factor

2sin( ) (cos )( cos ) nP

P ν

πνξ ν−

= ∆− ∆

ν=ϕ/2π-n normalized frequency variable (base band)ϕ=βp phase lag per period pn=[ϕ/2π] space harmonic number (n ≤ ϕ/2π ≤ n+1)Pn(-cos∆) Legendre polynomialP-ν(-cos∆) Legendre function∆=πη dimensionless variable related to the electrode geometryη=a/p metallization ratio (duty factor)a finger width.

In the quasi-static approximation, the element factor can be found from the electrostatic solution for the periodic strip array and takes the form

(68)

To the first order ξ(ν)~sinπν.

Page 51: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

51

Array Factor

1( )2 2

1 11( )20 0

1 1( )kN NN jj k

k kk k

F V e V eV Vϕϕϕ

Φ+ −− −− −− −

= === ∑ ∑ (69)

Φ=βL= Nj is the total phase lag throughout the transducer, V is the voltage between transducer bus-bars. The phase in Eq. (69) is referenced to the transducer center.

The array factor F(ϕ) is given by the Fourier transform of a set of the electrode potentials Vk, k=0,N-1:

Acoustoelectric Function

/20 2 ( ) ( )2j

VY jam WK F eVφ

ω εξ ϕ ϕ − Φ== =

In the quasi-static approximation the acoustoelectric function

(70)

Fourier Transform Relation

Page 52: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

52

Unapodized Periodic SAW Transducers

Fig. 6. Charge distribution in the finite length periodic SAW transducer

Page 53: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

53

Basic Structure and Guard Electrodes

Fig. 7. Cross-section view of the periodic SAW transducer with guard electrodes

V0 V1 VN-1

1 2

VN-1 VN-1

…V0V0

basicstructure

k=0, 1, …, N-1

right guardelectrodes

k>N-1

left guardelectrodes

k<0

0 1 … N-1 N N+1 …-1-2…

Guard electrodes are introduced in the finite length SAW transducer tosuppress electrostatic end effects.

Page 54: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

54

Contribution of Guard Electrodes to Acoustoelectric Conversion (Particular Case)

Potentials on the guard electrodes

Particular case: all equipotential (grounded) guard fingers V0=VN-1=01

0

1 1( )N

jk jkk k

k kF V e V eV V

ϕ ϕϕ∞ −

− −

= −∞ === ∑ ∑

The finite summation in Eq. (71) gives the correct result for the infinite structure including guard electrodes contribution.

0

1

, 0, 1k

N

V kV

V k N−

⎧ <⎪⎪= ⎨⎪ > −⎪⎩(70)

(71)

left guard electrodesright guard electrodes

Page 55: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

55

Contribution of Guard Electrodes to Acoustoelectric Conversion (General Case)

General case: Non-equipotential guard electrodes at the ends V0πVN-1

1 1

0 10

1 11 0 1 0

10 0

( ) ( ) ( )

( )1 1

Njk jk jk jk

k k Nk k k k N

jNN Njk jkN N

k k Nj jk k

left guard basic right guard

V e V e V e V e

V e V V VV e V V e

e e

ϕ ϕ ϕ ϕ

ϕϕ ϕ

ϕ ϕ

∞ − − ∞− − − −

−=−∞ =−∞ = =

−− −− −− −

−− −= =

= + + =

− −= + = − +

− −

∑ ∑ ∑ ∑

∑ ∑where the following identities have been used

1 1

0 0 0

1 1, lim1 1

jNN Njk jk jk

j jNk k k

ee e ee e

ϕϕ ϕ ϕ

ϕ ϕ

±− ∞ −± ± ±

± ±→∞= = =

−= = =− −∑ ∑ ∑

(72)

101

10

1( ) ( )1

Njk N

jk Nk

V VF V V e

V eϕ

ϕϕ−

− −−−

=

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

−= − +

−∑ (73)

In the particular case of the grounded guard fingers V0=VN-1=0, Eq. (73) reduces to Eq. (71).

Page 56: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

56

Finger and Gap Taps

The sum in Eq. (73) can be transformed to another formϕϕ ϕ ϕ

ϕ ϕ

⎛ ⎞∞ − −⎟⎜ − +⎟⎜− − − + ⎟⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎟⎜=−∞ = = =⎝ ⎠= − = ∆

−∑ ∑ ∑ ∑11 1 ( )( ) 2

1 0 0

1 12 sin /21

N N M j kjk jk j k 1k k k kj

k k k kV e V e V e V eje

(74)

where ∆Vk= Vk+1- Vk is the voltage in the k-th gap between two adjacent fingers having the potentials Vk+1 and Vk, respectively, M=N-1 is number of the gaps in the basic sructure.

As the last gap voltage in Eq. (74) ∆VN-1=VN-VN-1=0, the summation corresponds to the number of gaps M in the basic structure. The factor e-jϕ/2 accounts for the gap position offset with respect to the finger center.

According to Eq. (74), the array factor can be alternatively expressed in terms of the Fourier transform of the gap voltages ∆Vk that gives zero contribution of the guard fingers to the overall response regardless a set of the potentials Vk.

Page 57: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

57

Finger and Gap Taps Properties

1. Finger taps are located in the electrode centers, with amplitudes proportional to the electrode potentials Vk.

2. Gap taps are attributed to the interelectrode gaps, with amplitudes proportional to the gap voltages DVk= Vk+1- Vk.

3. Using the voltages ∆Vk instead of the potentials Vk excludes implicitly a uniform potential applied across the transducer.

4. Both finger and gap taps give exactly the same results if applied correctly. However, a special care must be taken while using in modeling finger taps.

Page 58: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

58

Acoustoelectric Function (Gap Taps)

The sum in Eq. (73) can be transformed to another form

where the gap element factor ζ(ϕ)

( ) (cos )( ) , /2 .2sin /2 ( cos )nP

ξ ϕζ ϕ ν ϕ πϕ −

∆= = =− ∆

(76)

and the gap array factor(77)

/ 221 ( ) ( )2jm WK F eω εζ ϕ ϕ − Φ= ∆

(74)

1 1( )20

( ) 2 sin / 2 ( )M j k

kk

F j F V e ϕϕ ϕ ϕ− − +

== = ∆∑

The acoustoelectric conversion function in terms of gap voltages

1 1 1( )( ) 21 0 0

1 12 sin / 21

N N M j kjk jk j k 1k k k kj

k k k kV e V e V e V eje

ϕϕ ϕ ϕϕ ϕ

⎛ ⎞∞ − −⎟⎜ − +⎟⎜− − − + ⎟⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎜ ⎟=−∞ = = =⎝ ⎠= − = ∆

−∑ ∑ ∑ ∑

(75)

Page 59: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

59

Element Factor Properties

Fig. 7. Normalized element factor at first five space harmonicsfor different metallization ratios:

- - -h=0.25, — h= 0.5, − - − h= 0.75

0 1 2 3 4 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency ν = f/2f0

Nor

mal

ized

am

plitu

de ζ

( ν)

0 1 2 3 4 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency ν = f/2f0

Nor

mal

ized

am

plitu

de ξ

( ν)

a) finger element factor x(n) b) gap element factor z (n)

Page 60: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

60

Misusing Finger Taps

1 1 1( ) 2

00 0, .

sin ( )2( ) ( 1) 1sin ( )2

N N Njjk jkk

k k

NfF e e e f

ϕϕ ϕ πϕ π

ϕ ϕ πϕ π

− − −−− − −

= =

−= − = = =

−∑ ∑

What is the passband width of the solid (unsplit) finger unapodized SAW transducer with the number of fingers N and the central frequency f0 ?

0 .22 , where fF f f N∆ = ∆ ∆ =

In terms of the finger taps Vk=(-1)k, the frequency response

The main lobe (pass band) width

Problem:

Solution 1 (wrong):

In terms of the gap taps, we can find the correct result as0 0 .

2 22 , where 1f fF f f M N=∆ = ∆ ∆ =

Solution 2 (correct):

i.e. the main lobe width is proportional to 1/M > 1/N where M=N-1 is the number of gaps in the transducer.

Page 61: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

61

Merits of Gap Taps Against Finger Taps

1. Both models are theoretically equivalent if correctly applied. However, in general case the finger taps model is awkward to account for a contribution of the guard electrodes to the overall frequency response requiring more sophisticated equations.

2. Contrary to finger taps, the gap taps model gives identically a zero contribution of the guard electrodes to the overall response, regardless a set of the potentials Vk in the basic structure.

3. The gap taps model comprises the finite summation over the gaps in the basic structure, with the total number of gaps M=N-1.

4. Since we use the gap voltages ∆Vk instead of the potentials Vk, this excludes any uniform potential applied across the transducer while in the finger taps model this uniform potential must be implicitlytaken into consideration and included into equations.

Page 62: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

62

Merits of Gap Taps Against Finger Taps (Cont’d)

5. Some textbooks refer to wrong equations in terms of the of the finger taps model which are valid in the particular cases only.

6. The gap element factor has the simpler shape and weaker (flatter) frequency dependence if compared to the finger element factor.

7. It is highly recommended to use the gap taps model rather than thefinger taps model wherever possible as misusing the finger tapsmodel may cause troubleshooting in SAW filter simulation, inparticular, for wideband SAW filters.

Page 63: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

63

Apodized Periodic SAW Transducers

yi

yk+1

yi-1

+∆V/2

-∆V/2

i-1 i k k+1

yk

y=0∆yi ∆yk

y

Fig. 8. Finger and gap tap weights of the apodized SAW transducer

Wdy

Page 64: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

64

Basic Assumptions

1. The propagating wavefront launched by an apodized SAW transducer isintercepted by the uniform receiving SAW transducer or multistrip coupler.

2. Each electrode is connected to either of two parallel bus-bars and complemented by a dummy finger for the wave front equalization.

3. Transversal electrostatic end effects are neglected.4. The diffraction and beam steering effects are ignored.

/2

/2

1( ) ( , )W

W

x x y dyWφ φ−

= ∫ (78)

A detected signal is not affected if the actual two-dimensional distribution φ(x,y) of the surface wave potential is replaced by the averaged distribution over the acoustic aperture W.

Page 65: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

65

Generalization of Finger Taps

Fourier transform of Eq. (78) gives

In terms of the finger taps the averaged array factor

(79)/2

/2

/2

1( ) ( , ) ( ) ( )W

j L

Wy dy j V F eW

βφ β φ β ε ξ β β −

−= =∫

1/ 2 1 ( )2

0/ 2

1 1( ) ( , )NW N j k

kkW

F F y dy V eW V

ϕϕ ϕ

−− − −

=−

= =∆ ∑∫ (80)

The mean potential averaged across the aperture W can be found as/2 /2

/2 /2

1 1 1( ) ( ) ( )k

k

yW Wkk k k k

yW W

yV V y dy V y dy V y dy VW W W W− −

= = + = − ∆∫ ∫ ∫ (81)

where ∆V is the voltage applied to the transducer bus-bars.

kVTo determine the averaged potentials across the aperture W, we consider a structure with a set of finger potentials Vk=±∆V/2.

Page 66: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

66

Generalization of Gap TapsFrom Eq. (81) the mean gap voltage is given by

1k

k k kyV V V V

W+

∆∆ = − = − ∆ (82)

where ∆yk= yk+1- yk is the overlap of the adjacent fingers with the transversal gap positions yk+1 and yk, respectively.

1. The effective finger and gap taps and are essentially fractions of the bus-bar voltage ∆V weighted by the normalized transversal gappositions yk /W or finger overlaps ∆yk /W, respectively.

kV kV∆

kV kV∆

2. For apodized SAW transducers, the acoustoelectric conversion

function can be found in terms of the effective tap weights and

replacing the conventional potentials Vk or gap voltages ∆Vk.

Page 67: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

67

Example of SAW Filter Simulation

Specifications

Central frequency f0 70 MHzPass band width at -3 dB 9.4 MHzPass band width at -40 dB 10.6 MHzShape factor (-40/-3 dB) 1.13Pass band ripple (peak-to-peak) 0.5 dBStop band attenuation -50 dBInsertion loss (matched) 25 dB

Page 68: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

68

Example of SAW Filter Simulation

Design Parameters

Synchronous frequency fp=2f 0

Number of fingers per wave length 4 (split fingers)Number of fingers (unapodized IDT) 48Number of fingers (apodized IDT) 700Acoustic aperture 2.5 mm (≈53 λ)Substrate material 112o LiTaO3Die size 11.9 x 3.1 mm

Page 69: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

69

Frequency Response

50 55 60 65 70 75 80 85 90-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency, MHz

Log

mag

nitu

de, d

BF1(ω)

F2(ω)F(ω)

Fig. 9. SAW filter ideal frequency response:F1(ω) – input, F2(ω) – output, F(ω) =F1(ω) F2(ω) - SAW filter

Page 70: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

70

Time Response

Fig. 10. SAW filter ideal impulse response

0 0.5 1 1.5 2 2.5 3 3.5 4-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Time, µsec

Tim

e R

espo

nse,

dB

Delay = 1.685 µsec

Page 71: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

71

Input/Output Admittance

Fig. 11. SAW filter admittance Y1,2(ω)=G1,2(ω)+jB1,2(ω): 1 - input, 2 - output

50 55 60 65 70 75 80 85 900

0.5

1

1.5

2

2.5

3

3.5x 10

-3

Frequency, MHz

Con

duct

ance

G1, G

2, mhO

G1 G

2

50 55 60 65 70 75 80 85 900

0.005

0.01

0.015

0.02

0.025

Frequency, MHz

Sus

cept

ance

B1, B

2, mhO

< si070v1_1.s >

B2

B1

a) conductance b) susceptance

Page 72: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

72

S-Parameters (Unmatched)

Fig. 12. SAW filter S-parameters (unmatched)

50 55 60 65 70 75 80 85 90-1.5

-1

-0.5

0

Frequency, MHz

Log

Mag

nitu

de S

11, S

22, d

B

|S11|

|S22|

50 55 60 65 70 75 80 85 90-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency, MHz

Log

mag

nitu

de |S

12|,

dB

Insertion Loss = -31.50 dB

a) reflection coefficient S11, S22 b) transmission coefficient S12= S21

Page 73: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

73

S-Parameters (Matched)

Fig. 13. SAW filter S-parameters (matched)

a) reflection coefficient S11, S22 b) transmission coefficient S12= S21

50 55 60 65 70 75 80 85 90-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Frequency, MHz

Log

Mag

nitu

de S

11, S

22, d

B

< si070v1_1.ms >

|S11

|

|S22

|

50 55 60 65 70 75 80 85 90-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency, MHz

Log

mag

nitu

de |S

12|,

dB

Insertion Loss = -24.8 dB

Page 74: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

74

Pass Band Response

Fig. 14. SAW filter passband response without distortion compensation: 1 – ideal, 2 – unmatched, 3 - matched

65 66 67 68 69 70 71 72 73 74 75-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Frequency, MHz

Log

mag

nitu

de |S

12|,

dB

< si070v1_1.ms > : Insertion Loss = -25.53 dB

1

32

65 66 67 68 69 70 71 72 73 74 75-10

-8

-6

-4

-2

0

2

4

6

8

10

Frequency, MHz

Pha

se, d

egs

3

2

1

a) magnitude b) phase

Page 75: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

75

Pass Band Response

Fig. 15. SAW filter passband response after distortion compensation: 1 – ideal, 2 – unmatched, 3 - matched

a) magnitude b) phase

65 66 67 68 69 70 71 72 73 74 75-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Frequency, MHz

Log

mag

nitu

de |S

12|,

dB

1,3 2

65 66 67 68 69 70 71 72 73 74 75-5

-4

-3

-2

-1

0

1

2

3

4

5

Frequency, MHz

Pha

se, d

egs

1

2

3

Page 76: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

76

Smith Chart

Fig. 16. SAW filter passband response after distortion compensation: 1 – ideal, 2 – unmatched, 3 - matched

a) unmatched b) matched

< si070v1_1.s >

OC∞210.50.20SC

2j

1j

0.5j

0.2j

-0.2j

-0.5j

-1j

-2j

OC∞210.50.20SC

2j

1j

0.5j

0.2j

-0.2j

-0.5j

-1j

-2j2 1

< si070v1_1.ms >

OC∞210.50.20SC

2j

1j

0.5j

0.2j

-0.2j

-0.5j

-1j

-2j

OC∞210.50.20SC

2j

1j

0.5j

0.2j

-0.2j

-0.5j

-1j

-2j

1

2

Page 77: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

77

Modeled Time Response

Fig. 17. Modeled time response: 1 – unmatched, 2 – matched

0 1 2 3 4 5 6-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Time, µsec

Tim

e R

espo

nse,

dB

Delay = 1.687 µsec

2 2

1

TTE

Page 78: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

78

Matching Circuit

Fig. 18. Matching circuit configuration

L1

C1

L2 50

1204.3

100 50

Page 79: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

79

Part 5. Modeling of Reflective SAW Transducers

Page 80: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

80

Coupling-of-Modes (COM) Model

Forward and backward traveling surface acoustic waves a(x) and b(x)

2

2

( ) ( )( ) ( )

Kj x

Kj xa x A x eb x B x e

+=

=(83)

where A(x) and B(x) are the slowly varying complex amplitudes and K=2π /p is the grating wave number.

For a reciprocal and lossless SAW transducer, the wave excitation andpropagation are described by the following system of differential COM-equations

* *

*2 2

d A j A j B j Vd xd B j A j B j Vd xd I j A j B j C Vd x

δ κ ζ

κ δ ζ

ζ ζ ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

= − + +

= − + −

= − − +

(84)

Page 81: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

81

COM-Parameters

δ=k-K/2 detuning parameterk unperturbated SAW wave numberκ coupling coefficientζ excitation functionC static capacitance per unit lengthI, V SAW transducer current and voltage at the electric port

Page 82: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

82

COM Mixed Scattering MatrixThe solution of the system of COM-equations (84) can be found in the closed-form by imposing the boundary conditions on acoustic and electric ports. The elements of the mixed scattering matrix take the form

*

11sinm jκ Φ

= −∆

12 21 ( 1)Nm m γ= = −

( )*13 1

1 sin (1 cos )m jζ γ ζ= Φ + − Φ∆

( )23 2( 1) sin (1 cos )

N

m jζ γ ζ−

= Φ + − Φ∆

*33 1 2 1 2

4 sin(1 cos ) 2 ( )( )m Npγζ ζ ζ ζζ ζ ζ Φ= − − Φ − + −

∆ ∆

(85)

cos sinjγ δ∆ = Φ + Φ* *

1 2

δζ κ ζζγ+

=*

2 2

δζ κζζγ+

=

22 2γ δ κ= − N pγΦ =2

2 2WK

p pξ ω εζ = ≈

*jrp

κ =where

Page 83: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

83

COM Example: Reflectivity vs Finger Number

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04-30

-25

-20

-15

-10

-5

0

Normalized frequency f/f0

Ref

lect

ion

coef

ficie

nt |M

11|,

dB1

2 3

Fig. 19. SAW transducer reflection: finger reflection coefficient r=- 0.01j1 – N=50, 2 – N=100, 3 – N=200

Page 84: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

84

Fig. 20. SAW transducer reflection: number of fingers N= 200,1 – r=-0.01j, 1 – r=-0.015j, 1 – r=-0.02j

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04-30

-25

-20

-15

-10

-5

0

Normalized frequency f/f0

Ref

lect

ion

coef

ficie

nt |M

11|,

dB2

1 3

COM Example: Reflectivity vs Reflection Coefficient

Page 85: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

85

COM Example: Acoustoelectric Conversion

Fig. 21. Acoustoelectric conversion function: number of fingers N=100, 1 – r =-0.01j, 2 – r =0, 3 – r =+0.01j

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04-40

-35

-30

-25

-20

-15

-10

-5

0

5

Normalized frequency f/f0

Nor

mal

ized

aco

usto

elec

tric

func

tion

|M13

|, dB

1 2

3

Page 86: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

86

Fig. 21. SAW transducer admittance: number of fingers N=1001 – r =-0.01j, 2 – r =0, 3 – r =+0.01j

COM Example: Radiation Admittance

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04-1.5

-1

-0.5

0

0.5

1

1.5

Nor

mal

ized

radi

atio

n su

scep

tanc

eB=

ImM

33

33

1

2

3

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.040

0.5

1

1.5

Normalized frequency f/f00

Nor

mal

ized

radi

atio

n co

nduc

tanc

e G

=Re

M33

1 3

2

Normalized frequency f/f0a) conductance b) susceptance

Page 87: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

87

COM Example: Acoustoelectric Conversion

Fig. 21. Acoustoelectric conversion function: number of fingers N=100, 1 – r =-0.01j, 2 – r =0, 3 – r =+0.01j

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04-40

-35

-30

-25

-20

-15

-10

-5

0

5

Normalized frequency f/f0

Nor

mal

ized

aco

usto

elec

tric

func

tion

|M13

|, dB

1 2

3

Page 88: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

88

Conclusions: General

1. The mixed scattering matrix M is a convenient and powerful modeling tool for simulation of the acoustoelectric devices comprising acoustic and electric ports.2. This mixed units matrix combines properties of the classical wave scattering matrix S (S-parameters) and the admittance matrix Y (Y-parameters) following by the reciprocity, power conservation, and causality.3. The mixed scattering matrix M, the wave scattering matrix S, and the admittance matrix Y are interrelated via the closed-form block-matrix equations.4. A special care must be preserved at selecting and changing the reference planes at the acoustic ports as the change in the reference planes affects the phases of the mixed scattering matrix elements.5. The closed-form expressions can be simplified by the adequate choiceof the reference planes.

Page 89: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

89

Conclusions: SAW Transducer Analysis

1. The mixed scattering matrix of a SAW transducer is a particular case of the mixed scattering matrix, with two acoustic and one electric ports.2. In general case, the mixed scattering matrix of a SAW transducer contains three independent elements m11, m13, and m33 to be determined analytically or numerically while the other elements can be found by reciprocity and power conservation.3. The electroacoustic conversion function m13 plays the key role in the SAW transducer simulation.4. In the quasi-static approximation, the closed-form equations for the mixed scattering elements can be deduced for reflectionless periodic SAW transducers.5. For reflective unapodized SAW transducers with the regular polarity sequence, the mixed scattering matrix can be deduced in the closed-form from the COM-theory.

Page 90: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

90

Conclusions: SAW Filter Modeling

1. The mixed scattering matrix can be converted to the mixed transmission matrix relating the acoustic waves at the input and output ports as well as the electric current and voltage at the electric port.2. The overall mixed scattering matrix of the multiport/multitransducer SAW device can be found by the direct interconnecting of the constituent mixed scattering matrices or by the recurrent cascading the mixed transmission matrices.3. A SAW filter comprising two in-line SAW transducers is fully characterized by the closed-form two-port admittance matrix Y (Y-parameters) that can be converted to the wave scattering matrix S (S-parameters).4. In general case, the SAW filter transmission coefficient S12 is no longer proportional the cross-admittance Y12 and therefore it has more complicated behavior than just the product of the acoustoelectric conversion functions.5. For high-quality performance SAW filters, the distortion of the function S12 must be accounted and compensated for at the SAW filter synthesis.

Page 91: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

91

Conclusions: Quasi-Static Approximation

1. In the quasi-static approximation for periodic SAW transducers, the acoustoelectric conversion function m13 can be represented as the product of the element factor ξ(ω) and the array factor F(ω), provided for a sufficient number of guard fingers at each side to suppress the electrostatic end effects.2. The element factor is the function of the metallization ratio (duty factor) and it does not depend on the particular SAW filter topology.3. It is the array factor F(ω) that specifies the frequency selective properties of SAW transducers, with the shape of the frequency response given by the Fourier Transform of a set of the electrode potentials (finger taps) or gap voltages (gap taps).3. While both the finger and gap taps models give the same results if correctly applied, the gap model is simpler as it excludes implicitly any uniform potential applied to the transducer.4. The gap element factor has weaker frequency dependence over the wide frequency range if compared to the finger element factor.

Page 92: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

92

Conclusions: Quasi-Static Approximation (Cont’d)

5. The SAW filter Y-parameters take the simplest form in the quasi-static approximation where the self-admittances Y11 and Y22 are virtually the admittances of the input and output SAW transducers while the cross-admittance Y12 is given by the product of the acoustoelectric conversion functions of both transducers.6. Examples of SAW filter modeling are given.7. Author’s design experience has confirmed good correspondence between the modeled and experimental results.

Page 93: Mixed Scattering Matrix: Properties and Applications · Mixed Scattering Matrix: Properties and Applications. 2 ... V 1 2 b 2 a 2 I 2 b N a N b k a k V N V k I I N k N-port network

93

The End

Thanks for your attention.

Questions?


Recommended