+ All Categories
Home > Documents > Modal Analysis

Modal Analysis

Date post: 15-Oct-2015
Category:
Upload: vasundhara-kumari-peddinti
View: 68 times
Download: 7 times
Share this document with a friend
Description:
Basics of Modal analysis,Experimental Modal Analysis,FRF Matrix
Popular Tags:

of 117

Transcript
  • Friday, February 07, 2003Dr. Peter Avitabile [email protected] 1

    Presentation Topics

    Modal Overview

    Modal Analysis & Controls Laboratory

    University of Massachusetts Lowell

    Dr. Peter Avitabile

    Excitation Considerations

    IMAC 19Young Engineer Program

    TUTORIAL:

    Basics of Modal Analysis

    Linear Algebra

    MDOF Theory

    MPE Concepts

    SDOF Theory

    Measurement Definitions

    Intent

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryIntent of Young Engineer Program

    Intent of Young Engineer Program

    The intent of the Young Engineer Program is to expose the newor young engineer to some of the basic concepts and ideas

    concerning analytical and experimental modal analysis.

    It is NOT intended to be a detailed treatment of this material.

    Rather it is intended to prepare one for some of the in-depthpapers presented at IMAC so that the novice has some

    appreciation of the detailed material presented in these papers.

    This presentation is intended to identify the basic methodologyand techniques currently employed in this field and to expose

    one to the typical modal jargon used in the field.

  • Experimental Modal Analysis 1 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Experimental Modal Analysis

    Could you explain

    modal analysis

    Illustration by Mike Avitabile Illustration by Mike Avitabile

    and how is itused for solving dynamic problems?

    Illustration by Mike Avitabile

    A Simple Non-Mathematical PresentationDr. Peter Avitabile

    Mechanical Engineering - UMASS Lowell

  • Experimental Modal Analysis 2 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Analytical Modal Analysis

    Equation of motion [ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM nnnnnnn =++ &&&Eigensolution [ ] [ ][ ]{ } { }0xMK nnn =

  • Experimental Modal Analysis 3 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Could you explain modal analysis for me ?

    Simple time-frequency response relationship

    FORCE

    RESPONSE

    time

    increasing rate of oscillation

    frequency

  • Experimental Modal Analysis 4 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Could you explain modal analysis for me ?

    Sine Dwell to Obtain Mode Shape Characteristics

    MODE 1

    MODE 2

    MODE3

    MODE 4

  • Experimental Modal Analysis 5 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Just what are the measurements called FRFs ?

    1 2 3

    8

    5

    2

    8

    0

    -3

    8 -7

    6

    A simple input-output problem

    -1.0000

    1.0000

    RealMagnitude

    Phase Imaginary

  • Experimental Modal Analysis 6 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Just what are the measurements called FRFs ?

    Response at point 3due to an input at point 3

    1 2 3

    1

    2

    3

    h 33

    DrivePointFRF

    1 2 3

    1

    2

    3

    h 32

    1 2 3

    1

    2

    3

    h 31

  • Experimental Modal Analysis 7 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Why is only one row/column of FRFs needed ?

    The third row of the FRF matrix - mode 1

    The peak amplitude of the imaginary part of theFRF is a simple method to determine the mode shapeof the system

  • Experimental Modal Analysis 8 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Why is only one row/column of FRFs needed ?

    The second row of the FRF matrix is similar

    The peak amplitude of the imaginary part of theFRF is a simple method to determine the mode shapeof the system

  • Experimental Modal Analysis 9 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Why is only one row/column of FRFs needed ?

    Any row orcolumn can beused to extractmode shapes

    - as long as it isnot the node ofa mode !

    ? ?

  • Experimental Modal Analysis 10 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    More measurements better defines the shape

    DOF # 1

    DOF #2

    DOF # 3

    MODE # 1

    MODE # 2

    MODE # 3

  • Experimental Modal Analysis 11 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Whats the difference between shaker and impact ?

    h32

    1 2 3

    1

    2

    3

    h33h31

    1 2 3

    1

    2

    3

    h23

    h33

    h13

    Theoretically - - - NOTHING ! ! !

  • Experimental Modal Analysis 12 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What measurements do I actually make ?

    Actual time signals

    INPUT OUTPUT

    OUTPUT INPUT

    FREQUENCY RESPONSE FUNCTION COHERENCE FUNCTION

    ANTIALIASING FILTERS

    ADC DIGITIZES SIGNALS

    INPUT OUTPUT

    ANALOG SIGNALS

    APPLY WINDOWS

    COMPUTE FFT LINEAR SPECTRA

    AUTORANGE ANALYZER

    AVERAGING OF SAMPLES

    INPUT/OUTPUT/CROSS POWER SPECTRA COMPUTATION OF AVERAGED

    INPUT SPECTRUM

    LINEAR OUTPUT

    SPECTRUM

    LINEAR

    INPUT

    SPECTRUM POWER

    OUTPUT

    SPECTRUM POWER CROSS

    SPECTRUM POWER

    COMPUTATION OF FRF AND COHERENCE

    Analog anti-alias filterDigitized time signalsWindowed time signalsCompute FFT of signal

    Average auto/cross spectra

    Compute FRF and Coherence

  • Experimental Modal Analysis 13 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Whats most important in impact testing ?

    Hammers and Tips40

    -60

    dB Mag

    0Hz 800Hz

    COHERENCE

    INPUT POWER SPECTRUM

    FRF

    40

    -60

    dB Mag

    0Hz 200Hz

    COHERENCE

    INPUT POWER SPECTRUM

    FRF

  • Experimental Modal Analysis 14 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Whats most important in impact testing ?

    Leakage and Windows

    ACTUAL TIME SIGNAL

    SAMPLED SIGNAL

    WINDOW WEIGHTING

    WINDOWED TIME SIGNAL

  • Experimental Modal Analysis 15 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    Whats most important in shaker testing ?

    AUTORANGING AVERAGING WITH WINDOW

    1 2 3 4

    AUTORANGING AVERAGING

    1 2 3 4

    AUTORANGING AVERAGING

    1 2 3 4

    Randomwith

    Hanning

    BurstRandom

    SineChirp

    Differentexcitationtechniques areavailable forobtaining goodmeasurements

  • Experimental Modal Analysis 16 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    How do I get mode shapes from the FRFs ?

    1

    2

    3

    4

    5

    6

    MODE 1

    1

    2

    3

    4

    5

    6

    MODE 2

  • Experimental Modal Analysis 17 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    How do I get mode shapes from the FRFs ?

    a ij1

    a ij2 a ij3

    1

    2

    3

    3

    2

    1

    The FRF is made upfrom each individualmode contributionwhich is determinedfrom the frequency, damping, residue

  • Experimental Modal Analysis 18 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    How do I get mode shapes from the FRFs ?

    The task for the modal test engineer is todetermine the parameters that make up the piecesof the frequency response function

    SDOF

    MDOF

  • Experimental Modal Analysis 19 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    How do I get mode shapes from the FRFs ?

    Mathematicalroutines help todetermine thebasic parametersthat make upthe FRF

    HOW MANY POINTS ???

    RESIDUAL EFFECTS RESIDUAL

    EFFECTS

    HOW MANY MODES ???

  • Experimental Modal Analysis 20 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    Why and How Do Structures Vibrate?

    INPUT TIME FORCE

    INPUT SPECTRUM OUTPUT SPECTRUM

    f(t)

    FFT

    y(t)

    IFT

    f(j ) y(j )h(j )

  • Experimental Modal Analysis 21 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    If I make measurements on a structure at anoperating frequency, sometimes I get somedeformation shapes that look pretty funky .Maybe they are just noise?Is that possible ???

  • Experimental Modal Analysis 22 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    But if I make a measurement at an operatingfrequency and its close to a mode, I can easilysee what appears to be one of the modes

    MODE 1 CONTRIBUTION MODE 2 CONTRIBUTION

  • Experimental Modal Analysis 23 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    And if I make a measurement at an operatingfrequency and its close to another mode, I caneasily see what appears to be one of the modes

  • Experimental Modal Analysis 24 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    I think I just answered my own question !!!

    I think Im starting to understand this now !!!

  • Experimental Modal Analysis 25 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    What is operating data ?

    The modes of the structure act like filterswhich amplify and attenuate input excitations

    on a frequency basis

    INPUT SPECTRUM

    OUTPUT SPECTRUM

    f(j )

    y(j )

  • Experimental Modal Analysis 26 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    So what good is modal analysis ?

    The dynamicmodel can beused for studiesto determine theeffect ofstructuralchanges of themass, dampingand stiffness

    EXPERIMENTAL MODAL

    TESTING

    FINITE ELEMENT MODELING

    MODAL PARAMETER

    ESTIMATION

    PERFORM EIGEN

    SOLUTION

    DEVELOP MODAL MODEL

    STRUCTURAL CHANGES REQUIRED

    USE SDM TO EVALUATE STRUCTURAL

    CHANGES

    Repeat until

    desired characteristics

    are obtained

    DONE

    No

    Yes

    STIFFNER RIB

    DASHPOT

    SPRING

    MASS

    STRUCTURAL DYNAMIC

    MODIFICATIONS

  • Experimental Modal Analysis 27 Dr. Peter AvitabileModal Analysis & Controls Laboratory

    So what good is modal analysis ?

    Simulation, Prediction, Correlation, to name a fewFREQUENCYRESPONSE

    MEASUREMENTS

    FINITEELEMENT

    MODELCORRECTIONS

    PARAMETERESTIMATION

    EIGENVALUESOLVER

    MODALPARAMETERS

    MODALPARAMETERS

    MODELVALIDATION

    MASS, DAMPING,STIFFNESS CHANGES

    REAL WORLDFORCES

    FORCEDRESPONSE

    SIMULATION

    STRUCTURALDYNAMICS

    MODIFICATION

    MODIFIEDMODALDATA

    STRUCTURALRESPONSE

    SYNTHESISOF A

    DYNAMIC MODAL MODEL

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    Single Degree of Freedom Overview

    100

    10

    1

    /n

    =0.1%=1%=2%

    =5%

    =10%

    =20%

    =0.1%=1%

    =2%=5%

    =10%=20%

    0

    -90

    -180/n

    kcsms1)s(h 2 ++=

    m

    k c

    x(t) f(t)

    X

    t t

    T = 2/ n1

    1 2

    X2

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF Definitions

    lumped mass

    stiffness proportionalto displacement

    damping proportional tovelocity

    linear time invariant

    2nd order differentialequations

    Assumptions

    m

    k c

    x(t)

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF Equations

    Equation of Motion

    )t(fxkdtdxc

    dtxdm 22

    =++ )t(fxkxcxm =++ &&&

    Characteristic Equation

    Roots or poles of the characteristic equation

    0kscsm 2 =++

    mk

    m2c

    m2cs

    2

    2,1 +

    =

    or

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF Definitions

    Poles expressed as

    Damping Factor

    Natural Frequency

    % Critical Damping

    Critical Damping

    Damped Natural Frequency

    POLE

    CONJUGATE

    j

    n

    d

    ( ) d2n2nn2,1 js ==

    n=mk

    n=

    ccc=

    nc m2c =2

    nd 1 =

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Harmonic Excitation

    100

    10

    1

    /n

    =0.1%=1%=2%

    =5%

    =10%

    =20%

    =0.1%=1%

    =2%=5%

    =10%=20%

    0

    -90

    -180/ n

    ( ) ( )222st 211x

    +=

    = 21 12tan

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Damping Approximations

    12

    n

    21Q

    ==

    n 21

    MAG

    0.707MAG

    X

    t t

    T = 2/ n1

    1 2

    X2

    = 2xxln2

    1

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Laplace Domain

    Equation of Motion in Laplace Domain

    System Characteristic Equation

    System Transfer Function

    )s(f)s(x)kscsm( 2 =++ ( ) )kscsm(sb 2 ++=with

    and)s(f)s(x)s(b = )s(f)s(h)s(f)s(b)s(x 1 ==

    kcsms1)s(h 2 ++=

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Transfer Function

    Polynomial Form

    Pole-Zero Form

    Partial Fraction Form

    Exponential Form

    kcsms1)s(h 2 ++=

    )ps)(ps(m/1)s(h *

    11 =

    )ps(a

    )ps(a)s(h *

    1

    *1

    1

    1

    +=

    tsinem1)t(h d

    t

    d

    =

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Transfer Function & Residues

    Residue

    d

    ps1

    1

    jm21

    )ps)(s(ha

    1

    =

    =

    related tomode shapes

    Source: Vibrant Technology

  • 10 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Frequency Response Function

    )pj(a

    )pj(a)s(h)j(h *

    1

    *1

    1

    1js +== =

  • 11 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Frequency Response Function

    0.707 MAG

    Bode Plot Coincident-Quadrature Plot

    Nyquist Plot

  • 12 Dr. Peter AvitabileModal Analysis & Controls LaboratorySDOF Overview

    SDOF - Frequency Response Function

    DYNAMIC COMPLIANCE DISPLACEMENT / FORCE

    MOBILITY VELOCITY / FORCE

    INERTANCE ACCELERATION / FORCE

    DYNAMIC STIFFNESS FORCE / DISPLACEMENT

    MECHANICAL IMPEDANCE FORCE / VELOCITY

    DYNAMIC MASS FORCE / ACCELERATION

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Multiple Degree of Freedom Overview

    F3F2

    D3

    D2

    F1

    R3

    R2

    R1

    D1

    { } { } { } [ ] { }FUp\

    K\

    p\

    C\

    p\

    M\

    T=

    +

    +

    &&&

    m

    k

    1

    1 c1

    mp

    3

    3

    c3

    m

    k

    2

    2 c2

    f3

    k 3

    p 2 f2f1p 1

    MODE 1 MODE 2 MODE 3

    ( )[ ] ( )[ ] ( )[ ]( )[ ]( )[ ]

    ( )[ ]sBdetsA

    sBdetsBAdjsHsB 1 ===

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF Definitions

    lumped mass

    stiffness proportionalto displacement

    damping proportional tovelocity

    linear time invariant

    2nd order differentialequations

    Assumptions

    m

    m

    k

    k

    c

    c

    1

    1

    2

    2

    1

    2

    f 1

    f 2

    x1

    x2

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF Equations

    Equation of Motion - Force Balance

    Matrix Formulation

    ( ) ( ) ( )( )tfxkxkxcxcxm

    tfxkxkkxcxccxm

    22212221222

    1221212212111

    =++=++++

    &&&&&&&&

    ( )

    ( )

    =

    ++

    ++

    )t(f)t(f

    xx

    kkkkkxx

    ccccc

    xx

    mm

    2

    1

    2

    1

    22

    221

    2

    1

    22

    221

    2

    1

    2

    1

    &&

    &&&& Matrices and

    Linear Algebraare important !!!

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF Equations

    Equation of Motion[ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM =++ &&&

    Eigensolution

    Frequencies (eigenvalues) andMode Shapes (eigenvectors)

    [ ] [ ][ ]{ } 0xMK =

    [ ] { } { }[ ]L212221

    2 uuUand\\

    \=

    =

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Modal Space Transformation

    Modal transformation

    Projection operation

    Modal equations (uncoupled)

    { } [ ]{ } { } { }[ ]

    ==M

    L 21

    21 pp

    uupUx

    [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }FUpUKUpUCUpUMU TTTT =++ &&&

    { } { }{ } { }

    =

    +

    +

    MMM&&

    M&&&&

    FuFu

    pp

    \k

    kpp

    \c

    cpp

    \m

    mT

    2

    T1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Modal Space Transformation

    Diagonal Matrices - Modal Mass Modal Damping Modal Stiffness

    Highly coupled system

    transformed intosimple system

    { } { } { } [ ] { }FUp\

    K\

    p\

    C\

    p\

    M\

    T=

    +

    +

    &&&

    m

    k

    1

    1 c1

    mp

    3

    3

    c3

    m

    k

    2

    2 c2

    f3

    k 3

    p 2 f2f1p 1

    MODE 1 MODE 2 MODE 3

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Modal Space Transformation

    [ M ]{p} + [ C ]{p} + [ K ]{p} = [U] {F(t)}T

    m

    k

    1

    1 c1

    f1p1

    MODE 1

    m

    k

    2

    2 c2

    p2 f2

    MODE 2

    mp

    3

    3

    c3

    f3

    k3

    MODE 3

    MODAL

    [M]{x} + [C]{x} + [K]{x} = {F(t)}

    {x} = [U]{p} = [

    SPACE

    ++ {u }p 33{u }p 22{u }p 11

    {u } 3{u } 2{u } 1 ]{p}

    .. .

    .. .

    +

    +

    =

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - Laplace Domain

    Laplace Domain Equation of Motion

    System Characteristic (Homogeneous) Equation

    [ ] [ ] [ ][ ] dkkk2 jp0KsCsM ==++

    [ ] [ ] [ ][ ] ( ){ } ( )[ ] ( ){ } 0sxsB0sxKsCsM 2 ==++

    Damping Frequency

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - Transfer Function

    System Equation

    System Transfer Function

    ( )[ ] ( ){ } ( ){ } ( )[ ] ( )[ ] ( ){ }( ){ }sFsxsBsHsFsxsB 1===

    ( )[ ] ( )[ ] ( )[ ]( )[ ]( )[ ]

    ( )[ ]sBdetsA

    sBdetsBAdjsHsB 1 ===

    ( )[ ]( )[ ]sBdet

    sA Residue Matrix Mode Shapes

    Characteristic Equation Poles

  • 10 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - Residue Matrix and Mode Shapes

    Transfer Function evaluated at one pole

    can be expanded for all modes

    ( )[ ] { } { }Tkk

    kkss upsqusH

    k ==

    ( )[ ] { }{ }( ){ }{ }( )*k

    T*k

    *kk

    m

    1k k

    Tkkk

    psuuq

    psuuqsH += =

  • 11 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - Residue Matrix and Mode Shapes

    Residues are related to mode shapes as

    ( )[ ] { }{ }Tkkkk uuqsA =

    =

    OMMMLLL

    OMMMLLL

    k3k3k2k3k1k3

    k3k2k2k2k1k2

    k3k1k2k1k1k1

    kk33k32k31

    k23k22k21

    k13k12k11

    uuuuuuuuuuuuuuuuuu

    qaaaaaaaaa

  • 12 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - Drive Point FRF

    h ja

    j pa

    j pa

    j pa

    j pa

    j pa

    j p

    ijij ij

    ij ij

    ij ij

    ( )( ) ( )

    ( ) ( )

    ( ) ( )

    *

    *

    *

    *

    *

    *

    = + + +

    + +

    1

    1

    1

    1

    2

    2

    2

    2

    3

    3

    3

    3

    h jq u uj p

    q u uj p

    q u uj p

    q u uj p

    q u uj p

    q u uj p

    iji j i j

    i j i j

    i j i j

    ( )( ) ( )

    ( ) ( )

    ( ) ( )

    *

    *

    *

    *

    *

    *

    = + + +

    + +

    1 1 1

    1

    1 1 1

    1

    2 2 2

    2

    2 2 2

    2

    3 3 3

    3

    3 3 3

    3

  • 13 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    MDOF - FRF using Residues or Mode Shapes

    h ja

    j pa

    j pa

    j pa

    j p

    ijij ij

    ij ij

    ( )( ) ( )

    ( ) ( )

    *

    *

    *

    *

    = + + + +

    1

    1

    1

    1

    2

    2

    2

    2

    L

    h jq u uj p

    q u uj p

    q u uj p

    q u uj p

    iji j i j

    i j i j

    ( )( ) ( )

    ( ) ( )

    * * *

    *

    * * *

    *

    = + + + +

    1 1 1

    1

    1 1 1

    1

    2 2 2

    2

    2 2 2

    2

    L

    a ij1

    a ij2a ij3

    1

    2

    3

    3

    2

    1

    F3F2

    D3

    D2

    F1

    R3

    R2

    R1

    D1

  • 14 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Time / Frequency / Modal Representation

    m

    k

    1

    1 c1

    f1p1

    MODE 1

    m

    k

    2

    2 c2

    p2 f2

    MODE 2

    mp

    3

    3

    c3

    f3

    k3

    MODE 3

    TIME FREQUENCY

    MODAL

    +

    + +

    +

    +

    +

    PHYSICAL

    MODE 1

    MODE 2

    MODE 3

    ANALYTICAL

  • 15 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMDOF Overview

    Overview Analytical and Experimental Modal Analysis

    [B(s)] = [M]s + [C]s + [K]2

    [B(s)] = [H(s)]-1

    LAPLACEDOMAIN

    TRANSFERFUNCTION

    [ A(s) ]det [B(s)]

    [K - M]{X} = 0

    FINITEELEMENT

    MODEL

    MODALTEST

    FFT

    X (t)j

    F (t)i

    X (j )jF (j )i

    H(j ) =

    H(j )

    [U]

    MODALPARAMETERESTIMATION

    q u {u }k j k [U]

    LARGE DOFMISMATCH

    ANALYTICALMODEL

    REDUCTION

    EXPERIMENTALMODAL MODEL

    EXPANSION

    A NT

    N U A

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurement Definitions

    -1.0000

    1.0000

    -16 15.9375-10 0 10-14 -12 -8 -6 -4 -2 2 4 6 8 12 14-100

    0

    -70

    - 90

    - 80

    -60

    -50

    -40

    -30

    -20

    -10

    dB

    SYSTEMINPUT OUTPUT

    Hu(t) v(t)

    n(t) m(t)

    x(t) y(t)

    ACTUAL

    NOISE

    MEASURED

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurement Definitions

    Actual time signals

    INPUT OUTPUT

    OUTPUT INPUT

    FREQUENCY RESPONSE FUNCTION COHERENCE FUNCTION

    ANTIALIASING FILTERS

    ADC DIGITIZES SIGNALS

    INPUT OUTPUT

    ANALOG SIGNALS

    APPLY WINDOWS

    COMPUTE FFT LINEAR SPECTRA

    AUTORANGE ANALYZER

    AVERAGING OF SAMPLES

    INPUT/OUTPUT/CROSS POWER SPECTRA COMPUTATION OF AVERAGED

    INPUT SPECTRUM

    LINEAR OUTPUT

    SPECTRUM LINEAR

    INPUT

    SPECTRUM POWER

    OUTPUT

    SPECTRUM POWER CROSS

    SPECTRUM POWER

    COMPUTATION OF FRF AND COHERENCE

    Analog anti-alias filterDigitized time signalsWindowed time signalsCompute FFT of signal

    Average auto/cross spectra

    Compute FRF and Coherence

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Leakage

    T

    ACTUALDATA

    CAPTUREDDATA

    RECONTRUCTEDDATA

    T

    ACTUALDATA

    CAPTUREDDATA

    RECONTRUCTEDDATA

    T

    TIME

    FREQUENCY

    Periodic Signal

    Non-Periodic Signal

    Leakage due tosignal distortion

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Windows

    -16 15.9375-10 0 10-14 -12 -8 -6 -4 -2 2 4 6 8 12 14-100

    0

    -70

    - 90

    - 80

    -60

    -50

    -40

    -30

    -20

    -10

    dB

    Time weighting functionsare applied to minimizethe effects of leakage

    Rectangular Hanning Flat Top and many others

    Windows DO NOT eliminate leakage !!!

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Windows

    Special windows areused for impact testing

    Force window

    Exponential Window

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Linear Spectra

    SYSTEMINPUT OUTPUT

    x(t) h(t) y(t)

    Sx(f) H(f) Sy(f)

    x(t) - time domain input to the system

    y(t) - time domain output to the system

    Sx(f) - linear Fourier spectrum of x(t)

    Sy(f) - linear Fourier spectrum of y(t)

    H(f) - system transfer function

    h(t) - system impulse response

    TIME

    FREQUENCY

    FFT & IFT

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Linear Spectra

    +

    = dfe)f(S)t(x ft2jx

    +

    = dfe)f(S)t(y ft2jy

    +

    = dfe)f(H)t(h ft2j

    +

    = dte)t(x)f(S ft2jx

    +

    = dte)t(y)f(S ft2jy

    +

    = dte)t(h)f(H ft2j

    Note: Sx and Sy are complex valued functions

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Power Spectra

    SYSTEMINPUT OUTPUT

    TIME

    FREQUENCY

    FFT & IFT

    Rxx(t) Ryx(t) Ryy(t)

    Gxx(f) Gxy(f) Gyy(f)

    Rxx(t) - autocorrelation of the input signal x(t)

    Ryy(t) - autocorrelation of the output signal y(t)

    Ryx(t) - cross correlation of y(t) and x(t)

    Gxx(f) - autopower spectrum of x(t) G f S f S fxx x x( ) ( ) ( )*=

    Gyy(f) - autopower spectrum of y(t) G f S f S fyy y y( ) ( ) ( )*=

    Gyx(f) - cross power spectrum of y(t) and x(t) G f S f S fyx y x( ) ( ) ( )*=

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Linear Spectra

    )f(S)f(Sde)(R)f(G

    dt)t(x)t(yT1

    Tlim)]t(x),t(y[E)(R

    )f(S)f(Sde)(R)f(G

    dt)t(y)t(yT1

    Tlim)]t(y),t(y[E)(R

    )f(S)f(Sde)(R)f(G

    dt)t(x)t(xT1

    Tlim)]t(x),t(x[E)(R

    *xy

    ft2jyxyx

    Tyx

    *yy

    ft2jyyyy

    Tyy

    *xx

    ft2jxxxx

    Txx

    ==

    +=+=

    ==

    +=+=

    ==

    +=+=

    +

    +

    +

  • 10 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Derived Relationships

    xy SHS =H1 formulation

    - susceptible to noise on the input- underestimates the actual H of the system

    *xx

    *xy SSHSS =

    xx

    yx*xx

    *xy

    GG

    SSSS

    H ==

    H2 formulation- susceptible to noise on the output- overestimates the actual H of the system

    *yx

    *yy SSHSS =

    xy

    yy*yx

    *yy

    GG

    SSSS

    H ==

    2

    1

    xyyy

    xxyx*yy

    *xx

    *yx

    *xy2

    xy HH

    G/GG/G

    )SS)(SS()SS)(SS( ==

    =COHERENCE

    Otherformulationsfor H exist

  • 11 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Noise

    SYSTEMINPUT OUTPUT

    Hu(t) v(t)

    n(t) m(t)

    x(t) y(t)

    ACTUAL

    NOISE

    MEASURED

    uuuv G/GH=

    +=

    uu

    nn1

    GG1

    1HH

    +=vv

    mm2 G

    G1HH

  • 12 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Auto Power Spectrum

    INPUT FORCE

    AVERAGED INPUT

    POWER SPECTRUM

    x(t)

    G (f)xx

    OUTPUT RESPONSE

    AVERAGED OUTPUT

    POWER SPECTRUM

    yy

  • 13 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Cross Power Spectrum

    AVERAGED INPUT

    POWER SPECTRUM

    AVERAGED CROSS

    POWER SPECTRUM

    AVERAGED OUTPUT

    POWER SPECTRUM

    G (f)xx G (f)yy

    G (f)yx

  • 14 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - Frequency Response Function

    AVERAGED INPUT

    POWER SPECTRUM

    AVERAGED CROSS

    POWER SPECTRUM

    AVERAGED OUTPUT

    POWER SPECTRUM

    FREQUENCY RESPONSE FUNCTION

    G (f)xx G (f)yyG (f)yx

    H(f)

  • 15 Dr. Peter AvitabileModal Analysis & Controls LaboratoryMeasurement Definitions

    Measurements - FRF & Coherence

    Freq Resp40

    -60

    dB Mag

    0Hz 200HzAVG: 5

    Coherence1

    0

    Real

    0Hz 200HzAVG: 5

    FREQUENCY RESPONSE FUNCTION

    COHERENCE

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations

    h32

    1 2 3

    1

    2

    3

    h33h31

    1 2 3

    1

    2

    3

    h23

    h33

    h13

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - Impact

    The force spectrum can be customized to some extentthrough the use of hammer tips with various hardnesses.

    CH1 Time7

    -3

    Real

    -976.5625us 123.9624msCH1 Pwr Spec

    -20

    -70

    dB Mag

    0Hz 6.4kHz

    CH1 Time1.8

    -200

    Real

    -976.5625us 123.9624msCH1 Pwr Spec

    -10

    -110

    dB Mag

    0Hz 6.4kHzCH1 Time

    3.5

    -1.5

    Real

    -976.5625us 123.9624msCH1 Pwr Spec

    -20

    -120

    dB Mag

    0Hz 6.4kHz

    CH1 Time8

    -2

    Real

    -976.5625us 123.9624msCH1 Pwr Spec

    -10

    -110

    dB Mag

    0Hz 6.4kHz

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - Impact/Exponential

    The excitation must be sufficient to excite all the modesof interest over the desired frequency range.

    40

    -60

    dB Mag

    0Hz 800Hz

    COHERENCE

    INPUT POWER SPECTRUM

    FRF

    40

    -60

    dB Mag

    0Hz 200Hz

    COHERENCE

    INPUT POWER SPECTRUM

    FRF

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - Impact/Exponential

    The response due to impact excitation may need anexponential window if leakage is a concern.

    ACTUAL TIME SIGNAL

    SAMPLED SIGNAL

    WINDOW WEIGHTING

    WINDOWED TIME SIGNAL

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - Shaker Excitation

    AUTORANGING AVERAGING WITH WINDOW

    1 2 3 4

    AUTORANGING AVERAGING

    1 2 3 4

    AUTORANGING AVERAGING

    1 2 3 4

    RandomwithHanning

    BurstRandom

    SineChirp

    Leakage is a serious concern

    Accurate FRFs are necessary

    Special excitationtechniques can beused which will resultin leakage freemeasurements withoutthe use of a window

    as well as other techniques

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - MIMO

    Multiple referenced FRFs areobtained from MIMO test

    Ref#1 Ref#2 Ref#3

    Energy is distributedbetter throughout thestructure makingbetter measurementspossible

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - MIMO

    Large orcomplicatedstructuresrequirespecialattention

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - MIMO

    Measurements aredeveloped in asimilar fashion tothe single inputsingle output casebut using a matrixformulation

    [ ] [ ][ ]FFXF GHG =

    [ ]

    =

    Ni,No2,No1,No

    Ni,22221

    Ni,11211

    HHH

    HHHHHH

    H

    LMMM

    LL

    [ ] [ ][ ] 1FFXF GGH =where

    No - number of outputsNi - number of inputs

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratoryExcitation Considerations

    Excitation Considerations - MIMO

    Measurements on the same structure can showtremendously different modal densities dependingon the location of the measurement

    Source: Michigan Technological University Dynamic Systems Laboratory

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    ( )[ ] [ ]( )[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( )*k

    *k

    upper

    terms k

    k*k

    *k

    j

    ik k

    k*k

    *k

    lower

    terms k

    k

    ssA

    ssA

    ssA

    ssA

    ssA

    ssAsH +++++= =

    INPUT FORCE

    INPUT FORCE

    INPUT FORCE

    SYSTEM EXCITATION/RESPONSE

    MULTIPLE REFERENCE FRF MATRIX DEVELOPMENT

    LOCAL CURVEFITTINGGLOBAL CURVEFITTING

    POLYREFERENCE CUVREFITTING

    I F T

    COMPLEX EXPONENTIAL

    PEAK PICK

    RESIDUAL COMPENSATION

    SDOF POLYNOMIAL

    MDOF POLYNOMIAL

    Modal Parameter Estimation Concepts

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    X

    Y

    Parameter Estimation Concepts

    X

    YWHICH DATA ???

    X

    Y

    NO COMPENSATION

    y = m x

    X

    YCOMPENSATION

    y = m x + b

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Parameter Extraction Considerations

    The test engineer identifies these itemsNOT THE SOFTWARE !!!

    HOW MANY POINTS ???

    RESIDUAL EFFECTS RESIDUAL

    EFFECTS

    HOW MANY MODES ???

    ORDER OF THE MODEL

    AMOUNT OF DATA TOBE USED

    COMPENSATION FORRESIDUALS

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Parameter Extraction Considerations

    HOW MANY POINTS ???

    RESIDUAL EFFECTS RESIDUAL

    EFFECTS

    HOW MANY MODES ???

    ( )[ ] [ ]( ) [ ]( )[ ]

    ( )[ ]( )

    [ ]( )

    [ ]( )

    H sA

    s sA

    s s

    As s

    As s

    As s

    As s

    k

    kterms

    lowerk

    k

    k

    kk i

    jk

    k

    k

    kterms

    upperk

    k

    = +

    +

    +

    =

    *

    *

    *

    *

    *

    *

    ( )[ ] [ ]( )[ ]( ) upperssAssAresidualslowersH *k

    *k

    j

    ik k

    k +++= =

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Parameter Extraction Considerations

    The basic equations can be cast in either thetime or frequency domain

    tsinem

    1)t(h dt

    d

    =

    )ps(a

    )ps(a)s(h *

    1

    *1

    1

    1

    +=

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Parameter Extraction Considerations

    MODAL PARAMETER ESTIMATION MODELS

    Time representation

    0)t(ha)t(ha)t(h )N2n(ijn2)1n(ij1)n(ij =+++ L

    Frequency representation

    [ ][ ]M21M21M2

    ijN21N2

    1N2

    b)j(b)j(

    )j(ha)j(a)j(

    +++=+++

    LL

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Parameter Extraction Considerations

    The FRF matrix containsredundant informationregarding the systemfrequency, damping andmode shapes

    Multiple referenced datacan be used to obtainbetter estimates ofmodal parameters

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Selection of Bands

    Select bands for possible SDOF or MDOFextraction for frequency domain technique.

    Residuals ??? Complex ???

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Mode Determination Tools

    0 50 100 150 200 250 300 350 400 450 50010

    -2

    10-1

    100

    101

    102

    103

    104

    Frequency (Hz)

    CMIF

    1 Point Each From Panels 1,2, and 3 (37,49,241)

    A variety of tools assist in the determinationand selection of modes in the structure

    Summation MIF

    CMIF Stability Diagram

  • 10 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Modal Extraction Methods

    A multitude of techniques exist

    Peak Picking Circle Fitting

    MDOF Polynomial MethodsComplex Exponential

    SDOF Polynomial

    I F T

  • 11 Dr. Peter AvitabileModal Analysis & Controls LaboratoryModal Parameter Estimation Concepts

    Model Validation

    Validation tools existto assure that anaccurate model hasbeen extracted frommeasured data

    S1 S2S3 S4

    S5 S60

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    MAC

    Synthesis

  • 1 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Concepts

    [ ] [ ][ ][ ]ADetAintAdjoA 1=

    [ ]

    =

    x0..0.x0....x0....x0x...x

    U

    [ ] { } { }[ ] [ ] [ ] [ ]{ } [ ] { } [ ] [ ] [ ][ ] { }{ } [ ] [ ] [ ][ ]{ }nTnngnmmmm n

    gTmmnmnnn

    gnmm

    Tmmnmnnnm

    nmnm

    BVSUX

    BUSVBAX

    USVA

    BXA

    ===

    ==

    [ ] { } { } { }[ ]{ }{ }{ }

    =

    MO

    L T3

    T2

    T1

    3

    2

    1

    321 vvv

    ss

    s

    uuuA

  • 2 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra

    The analytical treatment of structural dynamicsystems naturally results in algebraic equationsthat are best suited to be represented throughthe use of matrices

    Some common matrix representations and linearalgebra concepts are presented in this section

  • 3 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra

    Common analytical and experimental equationsneeding linear algebra techniques

    [ ] [ ] [ ]ffyf GHG =[ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM =++ &&& [ ] [ ][ ]{ } 0xMK =

    [ ] [ ][ ] 1ffyf GGH =

    ( )[ ] ( ){ } ( ){ }sFsxsB = ( )[ ] ( )[ ] ( )[ ]( )[ ]sBdetsBAdjsHsB 1 ==

    ( )[ ] [ ] [ ]TLSUsH

    =

    O

    Oor

  • 4 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Matrix Notation

    A matrix [A] can be described using row,column as

    [ ]

    =

    54535251

    44434241

    34333231

    24232221

    14131211

    aaaaaaaaaaaaaaaaaaaa

    A

    ( row , column )

    [A]T -Transpose - interchange rows & columns[A]H - Hermitian - conjugate transpose

  • 5 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Matrix Notation

    Square

    [ ]

    =

    5554535251

    4544434241

    3534333231

    2524232221

    1514131211

    aaaaaaaaaaaaaaaaaaaaaaaaa

    A

    [ ]

    =

    5545352515

    4544342414

    3534332313

    2524232212

    1514131211

    aaaaaaaaaaaaaaaaaaaaaaaaa

    A

    [ ]

    =

    55

    44

    33

    22

    11

    aa

    aa

    a

    A [ ]

    =

    55

    4544

    353433

    25242322

    1514131211

    a0000aa000aaa00aaaa0aaaaa

    A

    TriangularDiagonal

    Symmetric VandermondeToeplitz

    [ ]

    =

    54321

    65432

    76543

    87654

    98765

    aaaaaaaaaaaaaaaaaaaaaaaaa

    A [ ]

    =

    244

    233

    222

    211

    aa1aa1aa1aa1

    A

    A matrix [A] can have some special forms

  • 6 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Matrix Manipulation

    A matrix [C] can be computed from [A] & [B] as

    =

    3231

    2221

    1211

    5251

    4241

    3231

    2221

    1211

    3534333231

    2524232221

    1514131211

    cccccc

    bbbbbbbbbb

    aaaaaaaaaaaaaaa

    5125412431232122112121 bababababac ++++==

    kkjikij bac

  • 7 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Simple Set of Equations

    A common form of a set of equations is

    Underdetermined # rows < # columnsmore unknowns than equations(optimization solution)

    Determined # rows = # columnsequal number of rows and columns

    Overdetermined # rows > # columnsmore equations than unknowns(least squares or generalized inverse solution)

    [ ]{ } [ ]bxA =

  • 8 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Simple Set of Equations

    3zy2z1y2x

    1yx2

    =+=+

    =

    =

    321

    zyx

    110121

    012

    This set of equations has a unique solution

    whereas this set of equations does not

    2y2x42z1y2x

    1yx2

    ==+

    =

    =

    221

    zyx

    024121

    012

  • 9 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Static Decomposition

    A matrix [A] can be decomposed and written as

    Where [L] and [U] are the lower and upperdiagonal matrices that make up the matrix [A]

    [ ] [ ] [ ]ULA =

    [ ] [ ]

    =

    =

    x0000xx000xxx00xxxx0xxxxx

    U

    xxxxx0xxxx00xxx000xx0000x

    L

  • 10 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Static Decomposition

    Once the matrix [A] is written in this form thenthe solution for {x} can easily be obtained as

    [ ]{ } [ ] [ ]BLXU 1=[ ] [ ] [ ]ULA =

    Applications for static decomposition and inverseof a matrix are plentiful. Common methods are Gaussian elimination Crout reduction Gauss-Doolittle reduction Cholesky reduction

  • 11 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Eigenvalue Problems

    Many problems require that twomatrices [A] & [B] need to be reduced

    Applications for solution of eigenproblems areplentiful. Common methods are Jacobi Givens Householder Subspace Iteration Lanczos

    [ ]{ } [ ]{ } { })t(QxBxA =+&& [ ] [ ][ ]{ } 0xAB =

  • 12 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    [ ] [ ][ ][ ]TVSUA =Any matrix can be decomposed using SVD

    [U] - matrix containing left hand eigenvectors[S] - diagonal matrix of singular values[V] - matrix containing right hand eigenvectors

  • 13 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    SVD allows this equation to be written as

    which implies that the matrix [A] can be written interms of linearly independent pieces which formthe matrix [A]

    [ ] { } { } { }[ ]{ }{ }{ }

    =

    MO

    L T3

    T2

    T1

    3

    2

    1

    321 vvv

    ss

    s

    uuuA

    [ ] { } { } { } { } { } { } L+++= T333T222T111 vsuvsuvsuA

  • 14 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    Assume a vector and singular value to be

    1sand321

    u 11 =

    =

    Then the matrix [A1] can be formed to be

    [ ] { } { } [ ]{ }

    =

    ==963642321

    3211321

    usuA T1111

    The size of matrix [A1] is (3x3) but its rank is 1There is only one linearly independent

    piece of information in the matrix

  • 15 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    Consider another vector and singular value to be

    1sand1

    11

    u 22 =

    =

    Then the matrix [A2] can be formed to be

    [ ] { } { } [ ]{ }

    =

    ==

    111111111

    11111

    11

    usuA T2222

    The size and rank are the same as previous caseClearly the rows and columns

    are linearly related

  • 16 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    Now consider a general matrix [A3] to be

    The characteristics of this matrix are notobvious at first glance.

    Singular valued decomposition can be used todetermine the characteristics of this matrix

    [ ] [ ] [ ]213 AA1052553232

    A +=

    =

  • 17 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Singular Valued Decomposition

    The SVD of matrix [A3] is

    or

    [ ]{ }{ }{ }

    =000111321

    01

    1

    000

    111

    321

    A

    These are the independent quantities thatmake up the matrix which has a rank of 2

    [ ] { } { } { }TTT 0000000

    11111

    11

    3211321

    A

    +

    +

    =

  • 18 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    The basic solid mechanics formulations as well asthe individual elements used to generate a finiteelement model are described by matrices

    L

    E, I

    F F

    i

    i j

    j

    i j

    { } [ ]{ }

    =

    =

    yz

    xz

    xy

    z

    y

    x

    666564636261

    565554535251

    464544434241

    363534333231

    262524232221

    161514131211

    yz

    xz

    xy

    z

    y

    x

    CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

    C

    [ ]

    =L4L6L2L6L612L612

    L2L6L4L6L612L612

    LEIk

    2

    22

    3

    [ ]

    =22

    22

    L4L22L3L13L22156L1354L3L13L4L22L1354L22156

    420ALm

  • 19 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Finite element model development uses individualelements that are assembled into system matrices

  • 20 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Structural system equations - coupled

    Eigensolution - eigenvalues & eigenvectors

    [ ]{ } [ ]{ } [ ]{ } { })t(FxKxCxM =++ &&&

    [ ] [ ][ ]{ } 0xMK =

    { } { } { } [ ] { }FUp\

    K\

    p\

    C\

    p\

    M\

    T=

    +

    +

    &&&

    Modal space representationof equations - uncoupled

  • 21 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Multiple Input Multiple Output Data Reduction

    FREQUENCY RESPONSE FUNCTIONS FORCE

    [H] [Gxx][Gyx]

    RESPONSE

    =

    =

    (MEASURED) (UNKNOWN) (MEASURED)

    [ ] [ ] [ ]xxyx GHG = [ ] [ ][ ] 1xxyx GGH =

    Matrix inversion can only be performed if thematrix [Gxx] has linearly independent inputs

  • 22 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Principal Component Analysis using SVD

    [Gxx]

    SVD of the input excitation matrix identifies therank of the matrix - that is an indication of howmany linearly independent inputs exist

    [ ] { } { } { }[ ]{ }{ }{ }

    =

    MO

    L TT

    2

    T1

    2

    1

    21xx 0vv

    0s

    s

    0uuG

  • 23 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    SVD of Multiple Reference FRF Data

    SVD of the [H] matrix gives an indicationof how many modes exist in the data

    [ ] { } { } { }[ ]{ }{ }{ }

    =

    MO

    L T3

    T2

    T1

    3

    2

    1

    321 vvv

    ss

    s

    uuuH

    FREQUENCY RESPONSE FUNCTIONS

    [H]

    0 50 100 150 200 250 300 350 400 450 500Frequency (Hz)

  • 24 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Least Squares or Generalized Inverse for Modal Parameter Estimation Techniques

    Least squares error minimization ofmeasured data to an analytical function

    ( )[ ] [ ]( )[ ]( )*k

    *k

    j

    ik k

    k

    ssA

    ssAsH += =

  • 25 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Extended analysis and evaluation of systems

    [ ][ ] [ ][ ][ ]2I `UMUK =[ ][ ][ ] [ ] [ ][ ][ ]2ITIT `UMUUKU =[ ] [ ] [ ] [ ][ ]

    [ ][ ][ ] [ ][ ] [ ][ ][ ] [ ][ ]TITSITSS

    2TSI

    MUUKMUUK

    VK`VKK

    ++=

    [ ] [ ] [ ] [ ][ ] [ ][ ][ ][ ] [ ][ ][ ][ ]TSSS2TSI VUKVUKVK`VKK ++=generally require matrix manipulation of some type

  • 26 Dr. Peter AvitabileModal Analysis & Controls LaboratoryLinear Algebra Concepts

    Linear Algebra Applications

    Many other applications existCorrelation Model UpdatingAdvanced Data ManipulationOperating Data Rotating EquipmentNonlinearitiesModal Parameter Estmation

    and the list goes on and on

    Young Engineer IMAC21IntentModal OverviewSDOF OverviewMDOF OverviewMeasurement OverviewExcitation Techniques OverviewModal Parameter Estimation OverviewLinear Algebra Overview


Recommended