+ All Categories
Home > Documents > Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger...

Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger...

Date post: 02-Apr-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
83
Model reduction for multiscale problems Mario Ohlberger Dec. 12-16, 2011 RICAM, Linz wissen leben WWU Münster WESTFÄLISCHE WILHELMS -UNIVERSITÄT MÜNSTER
Transcript
Page 1: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

Model reduction for multiscale problems

Mario Ohlberger

Dec. 12-16, 2011 RICAM, Linzwissen lebenWWU Münster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Page 2: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Outline

Motivation: Multi-Scale and Multi-Physics Problems

Model Reduction: The Reduced Basis Approach

A new Reduced Basis DG Multiscale Method

,,

M. Ohlberger Model reduction for multiscale problems

Page 3: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Outline

Motivation: Multi-Scale and Multi-Physics Problems

Model Reduction: The Reduced Basis Approach

A new Reduced Basis DG Multiscale Method

,,

M. Ohlberger Model reduction for multiscale problems

Page 4: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Example: PEM fuel cells

Pore Cell Stack System

[BMBF-Project PEMDesign: Fraunhofer ITWM and Fraunhofer ISE]

,,

M. Ohlberger Model reduction for multiscale problems

Page 5: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Security behavior of nuclear waste disposals

,,

M. Ohlberger Model reduction for multiscale problems

Page 6: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Example: Hydrological Modeling

[BMBF-Project AdaptHydroMod: Wald & Corbe, Hügelsheim ]

,,

M. Ohlberger Model reduction for multiscale problems

Page 7: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Real World Problem

Continuous Mathematical ModelI Here: system of partial differential equationsI Problem: infinite dimensional solution spaceI no solutions in closed form

,,

M. Ohlberger Model reduction for multiscale problems

Page 8: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Continuous Mathematical Model

Discretization!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 9: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Continuous Mathematical Model

Discrete model on uniform grid (FEM, FV, DG, ...)

I Typical error estimates:

||u− uh|| ≤ c infvh∈Xh

||u− vh||

I Error related to approximation property of XhI =⇒ Very general approach, but in particular

cases not very efficient!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 10: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Continuous Mathematical Model

,,

M. Ohlberger Model reduction for multiscale problems

Page 11: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Continuous Mathematical Model

Problem specific: Adaptive Mesh Refinement

I Typical error estimates:

||u− uh|| ≤ c η(uh)

I Error related to approximate solution!I =⇒ Construct optimal mesh!I Problem: Grid construction for every solve!

Resulting system is still high-dimensional!

,,

M. Ohlberger Model reduction for multiscale problems

Page 12: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Error Control and Adaptivity for HMM

HMM for linear elliptic homogenization problems

[Ohlberger: Multiscale Model. Simul., 2005][Henning, Ohlberger: Numer. Math., 2009]

HMM for multi-scale transport with large expected drift

[Henning, Ohlberger: Netw. Heterog. Media. 2010][Henning, Ohlberger: J. Anal. Appl. 2011]

HMM for nonlinear monotone elliptic problems

[Henning, Ohlberger 2011]

=⇒ see poster (8) at this workshop,,

M. Ohlberger Model reduction for multiscale problems

Page 13: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Mathematical Modelling and Model Reduction

Continuous Mathematical Model

Problem class specific: Reduced Basis Method

I Typical error estimates:

||(u− uN)(µ)|| ≤ c η(uN(µ))

I Error related to reduced solution!I =⇒ Construct optimal reduced space

for problem class!!Resulting system is low dimensional!

,,

M. Ohlberger Model reduction for multiscale problems

Page 14: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Outline

Motivation: Multi-Scale and Multi-Physics Problems

Model Reduction: The Reduced Basis Approach

A new Reduced Basis DG Multiscale Method

,,

M. Ohlberger Model reduction for multiscale problems

Page 15: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Reduced Basis Method for Evolution Equations

Goal: Fast “Online”-Simulation of Complex Evolution Systems for• Parameter/Design Optimization• Optimal Control• Integration into System Simulation• Uncertainty Quantification

Ansatz:• Reduced Basis Method (RB)

dim(WN) << dim(WH) !

Classical references:notation RB [Noor, Peters ’80], initial value problems [Porsching, Lee ’87],

method [Nguyen et al. ’05], book [Patera, Rozza ’07],

http://augustine.mit.edu, http://morepas.org

,,

M. Ohlberger Model reduction for multiscale problems

Page 16: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Reduced Basis Method for Evolution Equations

Goal: Fast “Online”-Simulation of Complex Evolution Systems for• Parameter/Design Optimization• Optimal Control• Integration into System Simulation• Uncertainty Quantification

Ansatz:• Reduced Basis Method (RB)

dim(WN) << dim(WH) !

Classical references:notation RB [Noor, Peters ’80], initial value problems [Porsching, Lee ’87],

method [Nguyen et al. ’05], book [Patera, Rozza ’07],

http://augustine.mit.edu, http://morepas.org

,,

M. Ohlberger Model reduction for multiscale problems

Page 17: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Model Reduction: Reduced Basis MethodGoal: Find c(·, t;µ) ∈ L2(Ω) for t ∈ [0, T ], µ ∈ P ⊂ Rp with

∂tc(µ) + Lµ(c(µ)) = 0 in Ω× [0, T ],

plus suitable Initial and Boundary Conditions.

Assumption: FV/DG Approximation cH(µ) ∈ WH for given Parameter µ

Ansatz (RB): Define low dimensional Subspace WN ⊂ WH

and project FV/DG Scheme onto the Subspace=⇒ RB Approximation cN(µ) ∈ WN.

Requirement: • Efficient Choice of WN (Exponential Convergence in N)• Offline–Online Decomposition for all Calculations• Error Control for ||cH(µ)− cN(µ)||

,,

M. Ohlberger Model reduction for multiscale problems

Page 18: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Model Reduction: Reduced Basis MethodGoal: Find c(·, t;µ) ∈ L2(Ω) for t ∈ [0, T ], µ ∈ P ⊂ Rp with

∂tc(µ) + Lµ(c(µ)) = 0 in Ω× [0, T ],

plus suitable Initial and Boundary Conditions.

Assumption: FV/DG Approximation cH(µ) ∈ WH for given Parameter µ

Ansatz (RB): Define low dimensional Subspace WN ⊂ WH

and project FV/DG Scheme onto the Subspace=⇒ RB Approximation cN(µ) ∈ WN.

Requirement: • Efficient Choice of WN (Exponential Convergence in N)• Offline–Online Decomposition for all Calculations• Error Control for ||cH(µ)− cN(µ)||

,,

M. Ohlberger Model reduction for multiscale problems

Page 19: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Model Reduction: Reduced Basis MethodGoal: Find c(·, t;µ) ∈ L2(Ω) for t ∈ [0, T ], µ ∈ P ⊂ Rp with

∂tc(µ) + Lµ(c(µ)) = 0 in Ω× [0, T ],

plus suitable Initial and Boundary Conditions.

Assumption: FV/DG Approximation cH(µ) ∈ WH for given Parameter µ

Ansatz (RB): Define low dimensional Subspace WN ⊂ WH

and project FV/DG Scheme onto the Subspace=⇒ RB Approximation cN(µ) ∈ WN.

Requirement: • Efficient Choice of WN (Exponential Convergence in N)• Offline–Online Decomposition for all Calculations• Error Control for ||cH(µ)− cN(µ)||

,,

M. Ohlberger Model reduction for multiscale problems

Page 20: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Model Reduction: Reduced Basis Method

Assumption: FV/DG Scheme for Evolution Equations

c0H = P[c0(µ)], LkI (µ)[ck+1

H (µ)] = LkE(µ)[ckH(µ)] + bk(µ).

with time step counter k and ckH(µ) ∈ WH.

RB Method: Let WN ⊂ WH be given, ϕ1, ..., ϕN a ONB of WN.

Sought: ckN(µ) =N∑

n=1

akn(µ)ϕn with LkI (µ)ak+1 = LkE(µ)ak + bk(µ)

where

(LkI (µ))nm :=

∫Ω

ϕnLkI (µ)[ϕm], (LkE(µ))nm :=

∫Ω

ϕnLkE(µ)[ϕm],

(a0(µ))n =

∫Ω

P[c0(µ)]ϕn, (bk(µ))n :=

∫Ω

ϕnbk(µ).

,,

M. Ohlberger Model reduction for multiscale problems

Page 21: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Model Reduction: Reduced Basis Method

Assumption: FV/DG Scheme for Evolution Equations

c0H = P[c0(µ)], LkI (µ)[ck+1

H (µ)] = LkE(µ)[ckH(µ)] + bk(µ).

with time step counter k and ckH(µ) ∈ WH.

RB Method: Let WN ⊂ WH be given, ϕ1, ..., ϕN a ONB of WN.

Sought: ckN(µ) =N∑

n=1

akn(µ)ϕn with LkI (µ)ak+1 = LkE(µ)ak + bk(µ)

where

(LkI (µ))nm :=

∫Ω

ϕnLkI (µ)[ϕm], (LkE(µ))nm :=

∫Ω

ϕnLkE(µ)[ϕm],

(a0(µ))n =

∫Ω

P[c0(µ)]ϕn, (bk(µ))n :=

∫Ω

ϕnbk(µ).,,

M. Ohlberger Model reduction for multiscale problems

Page 22: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Offline–Online DecompositionGoal: All Steps for the Calculation of cN(µ) and

for the Calculation of the Error Estimator aresplit into Two Parts:• Offline–Step: Complexity depending on dim(WH)

• Online–Step: Complexity independent of dim(WH)

Constrained: Affine Parameter Dependency of the Evolution Scheme

LkI (µ)[·] =∑Q

q=1 Lk,qI [·] σqLI(µ)

depending on x depending on µ

=⇒ Precompute offline: (Lk,qI )nm :=∫Ω

ϕnLk,qI [ϕm]

=⇒ Assemble online: (LkI (µ))nm :=Q∑

q=1(Lk,qI )nmσ

qLI

(µ)

,,

M. Ohlberger Model reduction for multiscale problems

Page 23: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Offline–Online DecompositionGoal: All Steps for the Calculation of cN(µ) and

for the Calculation of the Error Estimator aresplit into Two Parts:• Offline–Step: Complexity depending on dim(WH)

• Online–Step: Complexity independent of dim(WH)

Constrained: Affine Parameter Dependency of the Evolution Scheme

LkI (µ)[·] =∑Q

q=1 Lk,qI [·] σqLI(µ)

depending on x depending on µ

=⇒ Precompute offline: (Lk,qI )nm :=∫Ω

ϕnLk,qI [ϕm]

=⇒ Assemble online: (LkI (µ))nm :=Q∑

q=1(Lk,qI )nmσ

qLI

(µ)

,,

M. Ohlberger Model reduction for multiscale problems

Page 24: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Offline–Online DecompositionGoal: All Steps for the Calculation of cN(µ) and

for the Calculation of the Error Estimator aresplit into Two Parts:• Offline–Step: Complexity depending on dim(WH)

• Online–Step: Complexity independent of dim(WH)

Constrained: Affine Parameter Dependency of the Evolution Scheme

LkI (µ)[·] =∑Q

q=1 Lk,qI [·] σqLI(µ)

depending on x depending on µ

=⇒ Precompute offline: (Lk,qI )nm :=∫Ω

ϕnLk,qI [ϕm]

=⇒ Assemble online: (LkI (µ))nm :=Q∑

q=1(Lk,qI )nmσ

qLI

(µ)

,,

M. Ohlberger Model reduction for multiscale problems

Page 25: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Example: Convection-Diffusion Problem

Parameter:• Initial Data• Boundary Values• Diffusion Parameter

Possible Variations of the Solution:

,,

M. Ohlberger Model reduction for multiscale problems

Page 26: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiment

CPU-Time Comparison for a Convection-Diffusion Problem:Discretization: 40× 200 Elements, K = 200 time steps

time dependent data constant dataReference RB online RB offline Reference RB online RB offline

implicit 155.94s 16.67s 447.16s 45.67s 1.02s 2.41sFactor 9.44 44.77explicit 105.97s 16.53s 437.20s 1.51s 0.79s 2.31sFactor 6.41 1.91

Discretization: 80× 400 Elements, K = 1000 time stepstime dependent data constant data

Reference RB online RB offline Reference RB online RB offline

implicit 4043.18s 143.57s 8693.90s 924.91s 6.18s 9.22sFactor 28.27 149.66explicit 2758.20s 134.00s 8506.60s 17.41s 3.64s 8.83sFactor 20.58 4.78

,,

M. Ohlberger Model reduction for multiscale problems

Page 27: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A Posteriori Error Estimates [Haasdonk, Ohlberger ’08]

Definition: Residual of the FV/DG Method at Time tk

Rk+1(µ)[cN] :=1

∆t

(LkI (µ)[ck+1

N (µ)]− LkE(µ)[ckN(µ)]− bk(µ))

Theorem: A Posteriori Error Estimate in L∞L2∥∥∥ckN(µ)− ckH(µ)∥∥∥L2(Ω)

≤k−1∑l=0

∆t (CE)k−1−l∥∥∥Rl+1(µ)[cN(µ)]

∥∥∥L2(Ω)

,,

M. Ohlberger Model reduction for multiscale problems

Page 28: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A Posteriori Error Estimates [Haasdonk, Ohlberger ’08]

Definition: Residual of the FV/DG Method at Time tk

Rk+1(µ)[cN] :=1

∆t

(LkI (µ)[ck+1

N (µ)]− LkE(µ)[ckN(µ)]− bk(µ))

Theorem: A Posteriori Error Estimate in L∞L2∥∥∥ckN(µ)− ckH(µ)∥∥∥L2(Ω)

≤k−1∑l=0

∆t (CE)k−1−l∥∥∥Rl+1(µ)[cN(µ)]

∥∥∥L2(Ω)

,,

M. Ohlberger Model reduction for multiscale problems

Page 29: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Efficient Choice of WN: POD-Greedy [Haasdonk, O. ’08]

General Idea: • Construct WN from snapshots clH(µ).

POD-Greedy: • Use a Greedy algorithm based on the error estimatoron a training set for an efficient parameter choice.

• Reduce time trajectory for the selected parameterwith a Principal Orthogonal Decomposition (POD).

Goal: Exponential Convergence in N !?

,,

M. Ohlberger Model reduction for multiscale problems

Page 30: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Efficient Choice of WN: POD-Greedy [Haasdonk, O. ’08]

General Idea: • Construct WN from snapshots clH(µ).

POD-Greedy: • Use a Greedy algorithm based on the error estimatoron a training set for an efficient parameter choice.

• Reduce time trajectory for the selected parameterwith a Principal Orthogonal Decomposition (POD).

Goal: Exponential Convergence in N !?

,,

M. Ohlberger Model reduction for multiscale problems

Page 31: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Efficient Choice of WN: POD-Greedy [Haasdonk, O. ’08]

General Idea: • Construct WN from snapshots clH(µ).

POD-Greedy: • Use a Greedy algorithm based on the error estimatoron a training set for an efficient parameter choice.

• Reduce time trajectory for the selected parameterwith a Principal Orthogonal Decomposition (POD).

Goal: Exponential Convergence in N !?

,,

M. Ohlberger Model reduction for multiscale problems

Page 32: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Efficient Choice of WN: POD-Greedy [Haasdonk, O. ’08]

Preliminary result: convergence in N for fixed training and test sets

,,

M. Ohlberger Model reduction for multiscale problems

Page 33: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive Basis Enrichment [Haasdonk, Ohlberger ’08]

Error Distribution for Uniform / Adaptive Training Sets

Exponential Convergence and CPU-Efficiency

0 50 100 15010

−7

10−6

10−5

10−4

10−3

10−2

10−1

test estimator values decrease

num basis functions N

max

imum

test

est

imat

or v

alue

s D

elta

N

uniform−fixed 43

uniform−fixed 53

uniform−refined 23

uniform−refined 33

adaptive−refined 23

adaptive−refined 33

0 500 1000 1500 2000 2500 3000 350010

−7

10−6

10−5

10−4

max test estimator over training time

training time

max

test

est

imat

or v

alue

uniform−fixed 43

uniform−fixed 53

uniform−refined 23

uniform−refined 33

adaptive−refined 23

adaptive−refined 33

,,

M. Ohlberger Model reduction for multiscale problems

Page 34: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Efficient Choice of WN: POD-Greedy

Theorem (Haasdonk 2011)

If the Kolmogorov n-width of the compact set of time trajectoriesdecays algebraically (exponentially), then also the POD-Greedyapproximation error decays algebraically (exponentially).

The proof extends the arguments from the pure Greedy casepresented in [Binev et al. 2010].

,,

M. Ohlberger Model reduction for multiscale problems

Page 35: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> How to treat nonlinear problems?

Current approaches

I Polynomial nonlinearity: Use multi-linear approach–> higher order reduced tensors[Rozza 05, Jung et al. 09, Nguyen et al. ’09]

I Non-affine parameter dependence: Use classical empiricalinterpolation of functions[Barrault et al. ’04, Grepl et al. ’07, Canuto et al. ’09]

I Question: How to deal with general nonlinear problems?-> Discrete Empirical Interpolation [Chaturantabut, Sorensen ’10]-> Empirical Operator Interpolation

[Haasdonk et al. ’08, Drohmann et al. ’10]

,,

M. Ohlberger Model reduction for multiscale problems

Page 36: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> How to treat nonlinear problems?

Current approaches

I Polynomial nonlinearity: Use multi-linear approach–> higher order reduced tensors[Rozza 05, Jung et al. 09, Nguyen et al. ’09]

I Non-affine parameter dependence: Use classical empiricalinterpolation of functions[Barrault et al. ’04, Grepl et al. ’07, Canuto et al. ’09]

I Question: How to deal with general nonlinear problems?-> Discrete Empirical Interpolation [Chaturantabut, Sorensen ’10]-> Empirical Operator Interpolation

[Haasdonk et al. ’08, Drohmann et al. ’10]

,,

M. Ohlberger Model reduction for multiscale problems

Page 37: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> How to treat nonlinear problems?

Current approaches

I Polynomial nonlinearity: Use multi-linear approach–> higher order reduced tensors[Rozza 05, Jung et al. 09, Nguyen et al. ’09]

I Non-affine parameter dependence: Use classical empiricalinterpolation of functions[Barrault et al. ’04, Grepl et al. ’07, Canuto et al. ’09]

I Question: How to deal with general nonlinear problems?-> Discrete Empirical Interpolation [Chaturantabut, Sorensen ’10]-> Empirical Operator Interpolation

[Haasdonk et al. ’08, Drohmann et al. ’10]

,,

M. Ohlberger Model reduction for multiscale problems

Page 38: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> How to treat nonlinear problems?

Current approaches

I Polynomial nonlinearity: Use multi-linear approach–> higher order reduced tensors[Rozza 05, Jung et al. 09, Nguyen et al. ’09]

I Non-affine parameter dependence: Use classical empiricalinterpolation of functions[Barrault et al. ’04, Grepl et al. ’07, Canuto et al. ’09]

I Question: How to deal with general nonlinear problems?-> Discrete Empirical Interpolation [Chaturantabut, Sorensen ’10]-> Empirical Operator Interpolation

[Haasdonk et al. ’08, Drohmann et al. ’10]

,,

M. Ohlberger Model reduction for multiscale problems

Page 39: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Explicit Operators

Reduced Basis Method for Explicit Finite Volume Approximationsof Nonlinear Conservation Laws[Haasdonk, Ohlberger, Rozza ’08], [Haasdonk, Ohlberger ’09]

A Simple Model Problem

∂tc(µ) +∇ · (vc(µ)µ) = 0 in Ω× [0, T ], µ ∈ [1, 2]

plus suitable Initial and Boundary Conditions.

µ = 1 =⇒ Linear Transport

µ = 2 =⇒ Burgers Equation

,,

M. Ohlberger Model reduction for multiscale problems

Page 40: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical ResultsInitial values: c0(x) = 1/2(1 + sin(2πx1) sin(2πx2))

Solution at t = 0.3Linear Transport Burgers Equation

,,

M. Ohlberger Model reduction for multiscale problems

Page 41: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> General Framework

Nonlinear Equation

∂tc(µ) + Lµ[c(µ)] = 0 in Ω× [0, T ],

Explicit Discretization

ck+1H (µ) = ckH(µ)−∆tLkH(µ)[ckH(µ)].

Problem: Non-Affine Parameter DependencyNon-Linear Evolution Operator

Idea: Linear Affine Approximation through Empirical Interpolation

LkH(µ)[ckH(µ)](x) ≈M∑

m=1ym(c,µ, tk)ξm(x)

ym(c,µ, tk) := LkH(µ)[ckH(µ)](xm)

,,

M. Ohlberger Model reduction for multiscale problems

Page 42: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> General Framework

Nonlinear Equation

∂tc(µ) + Lµ[c(µ)] = 0 in Ω× [0, T ],

Explicit Discretization

ck+1H (µ) = ckH(µ)−∆tLkH(µ)[ckH(µ)].

Problem: Non-Affine Parameter DependencyNon-Linear Evolution Operator

Idea: Linear Affine Approximation through Empirical Interpolation

LkH(µ)[ckH(µ)](x) ≈M∑

m=1ym(c,µ, tk)ξm(x)

ym(c,µ, tk) := LkH(µ)[ckH(µ)](xm),,

M. Ohlberger Model reduction for multiscale problems

Page 43: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]

Ingredients: Collateral Reduced Basis Space:WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,M

Nodal Collateral Reduced Basis:ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,M

Interpolation Points:xkMk=1 with ξm(xk) = δmk

Empirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations

,,

M. Ohlberger Model reduction for multiscale problems

Page 44: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]Ingredients: Collateral Reduced Basis Space:

WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,M

Nodal Collateral Reduced Basis:ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,M

Interpolation Points:xkMk=1 with ξm(xk) = δmk

Empirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations

,,

M. Ohlberger Model reduction for multiscale problems

Page 45: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]Ingredients: Collateral Reduced Basis Space:

WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,MNodal Collateral Reduced Basis:

ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,MInterpolation Points:

xkMk=1 with ξm(xk) = δmk

Empirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations

,,

M. Ohlberger Model reduction for multiscale problems

Page 46: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]Ingredients: Collateral Reduced Basis Space:

WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,MNodal Collateral Reduced Basis:

ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,MInterpolation Points:

xkMk=1 with ξm(xk) = δmkEmpirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations

,,

M. Ohlberger Model reduction for multiscale problems

Page 47: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]Ingredients: Collateral Reduced Basis Space:

WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,MNodal Collateral Reduced Basis:

ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,MInterpolation Points:

xkMk=1 with ξm(xk) = δmkEmpirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations

,,

M. Ohlberger Model reduction for multiscale problems

Page 48: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation of Localized OperatorsIdea: Construct a Collateral Reduced Basis Space WM that

approximates the space spanned by LkH(µ)[ckH(µ)]Ingredients: Collateral Reduced Basis Space:

WM := spanLkmH (µm)[ckmH (µm)]|m = 1, . . . ,MNodal Collateral Reduced Basis:

ξmMm=1 =⇒ WM = spanξm|m = 1, . . . ,MInterpolation Points:

xkMk=1 with ξm(xk) = δmkEmpirical Interpolation:

IM[LkH(µ)[ckH(µ)]] :=M∑

m=1ym(c,µ, tk)ξm(x)

Offline: Collateral Basis ξmMm=1 and Interpolation Points xmMm=1Online: Calculate Coefficients ym = LkH(µ)[ckH(µ)](xm)

=⇒ Localized operators for H-independent point evaluations ,,

M. Ohlberger Model reduction for multiscale problems

Page 49: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Local Operator Evaluations and RB SchemeLocal Operator Evaluations in the Online-Phase require:

1.) Local reconstruction of ckN from coefficients ak

2.) Local operator evaluation: ym = LkH(µ)[ckH(µ)](xm)

Requires Offline: Numerical subgrids, local basis representation

RB Method: Galerkin projection of interpolated scheme∫Ω

(ck+1N (µ) = ckN(µ)−∆tIM[LkH(µ)[ckN(µ)]]

)ϕ, ∀ϕ ∈ WN.

Offline-Online decomposition analog to the linear and affine case!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 50: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Local Operator Evaluations and RB SchemeLocal Operator Evaluations in the Online-Phase require:

1.) Local reconstruction of ckN from coefficients ak

2.) Local operator evaluation: ym = LkH(µ)[ckH(µ)](xm)

Requires Offline: Numerical subgrids, local basis representation

RB Method: Galerkin projection of interpolated scheme∫Ω

(ck+1N (µ) = ckN(µ)−∆tIM[LkH(µ)[ckN(µ)]]

)ϕ, ∀ϕ ∈ WN.

Offline-Online decomposition analog to the linear and affine case!!,,

M. Ohlberger Model reduction for multiscale problems

Page 51: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiment

Empirical Interpolation:

Mmax = 150 interpolation points

Translation symmetry detected

Test error convergence:

Exponential convergence forsimultaneous increase of N and M

,,

M. Ohlberger Model reduction for multiscale problems

Page 52: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiment

Empirical Interpolation:

Mmax = 150 interpolation points

Translation symmetry detected

Test error convergence:

Exponential convergence forsimultaneous increase of N and M

,,

M. Ohlberger Model reduction for multiscale problems

Page 53: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiment

Comparison of Online-Runtimes

Simulation Dimension Runtime [s] Gain Factor

detailed H = 7200 20.22reduced N=20, M=30 0.91 22.2reduced N=40, M=60 1.22 16.6reduced N=60, M=90 1.55 13.0reduced N=80, M=120 1.77 11.4reduced N=100, M=150 2.06 9.8

,,

M. Ohlberger Model reduction for multiscale problems

Page 54: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Extension to Nonlinear Implicit Operators[Drohmann, Haasdonk, Ohlberger 2010]

Evolution Equation

∂tc(µ) + Lµ[c(µ)] = 0 in Ω× [0, T ],

Mixed Implicit - Explicit Discretization

(Id + ∆t LkI (µ))[ck+1H (µ)] = (Id −∆t LkE(µ))[ckH(µ)].

Problem: Non-Affine Parameter DependencyNon-Linear Evolution OperatorsLkI involves the solution of a non-linear System

Ansatz: Newton’s Method andEmpirical interpolation for the linearized defect equation

,,

M. Ohlberger Model reduction for multiscale problems

Page 55: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Extension to Nonlinear Implicit Operators[Drohmann, Haasdonk, Ohlberger 2010]

Evolution Equation

∂tc(µ) + Lµ[c(µ)] = 0 in Ω× [0, T ],

Mixed Implicit - Explicit Discretization

(Id + ∆t LkI (µ))[ck+1H (µ)] = (Id −∆t LkE(µ))[ckH(µ)].

Problem: Non-Affine Parameter DependencyNon-Linear Evolution OperatorsLkI involves the solution of a non-linear System

Ansatz: Newton’s Method andEmpirical interpolation for the linearized defect equation

,,

M. Ohlberger Model reduction for multiscale problems

Page 56: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

Newton’s Method and Empirical Interpolation

Define the defect dk+1,ν+1H := ck+1,ν+1

H − ck+1,νH .

Solve in each Newton step ν for the defect

(Id + ∆t F kI (µ))[ck+1,νH ]dk+1,ν+1

H = (Id −∆t LkI (µ))[ck+1,νH ] + (Id −∆t LkE(µ))[ckH],

and updateck+1,ν+1H = ck+1,ν

H + dk+1,ν+1H .

Here F kI is the Frechet derivative of LkI .

Problem: F kI has Non-Affine Parameter DependencyLkI and LkE can be treated as before!

,,

M. Ohlberger Model reduction for multiscale problems

Page 57: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Empirical Interpolation for the Frechet Derivative

Empirical interpolation for LkI

IM[LkI (µ)[cH]] =M∑

m=1

yIm(ckH,µ) ξm.

Empirical Interpolation for F kI

IM[F kI (µ)[cH]vH]:=H∑i=1

M∑m=1

∂iyIm(ckH,µ)vi ξm

!=∑i∈τ

M∑m=1

∂iyIm(ckH,µ)vi ξm.

Properties:• τ ⊂ 1, . . . ,H is the smallest subset, such that equality holds

=⇒ card(τ) = O(M), since LkI is supposed to be localized!• (vi)i∈τ can be evaluated efficiently in case of a nodal basis of WH.

,,

M. Ohlberger Model reduction for multiscale problems

Page 58: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Resulting RB Formulation of one Newton StepAnsatz: ck,νN (x) =

∑Nn=1 a

k,νn φn(x), ( ak,ν : coefficient vector)

(Id + ∆t G A[ck+1,νN ]) (ak+1,ν+1 − ak+1,ν)︸ ︷︷ ︸

=:dk+1,ν+1

= RHS(ak+1,ν , ak).

Thereby the matrices A[cN],G are given as

(A[cN])m,n :=M∑i=1

∂iyIm(cN,µ)ϕn(xi), Gn,m :=

∫Ωξmϕn

with a corresponding offline-online splitting.,,

M. Ohlberger Model reduction for multiscale problems

Page 59: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A Posteriori Error Estimate

Definition: Residual of the approximated FV/DG Method

∆tRk+1(µ) [cN] = (Id + ∆tIM [LI(µ))][cN

k+1]− (Id −∆tIM [LE(µ))]

[cN

k]

Theorem: A Posteriori Error Estimate in L∞L2

∥∥∥ckN(µ)− ckH(µ)∥∥∥L2(Ω)≤

k−1∑i=0

Ck−i+1I Ck−1

E

∥∥∥∥∥∥M+M′∑m=M

∆t(yIm(cN

i+1,µ)− yEm

(cN

i,µ))

ξm

∥∥∥∥∥∥L2(Ω)

+εNew +∥∥∥Rl+1(µ) [cN]

∥∥∥L2(Ω)

)

,,

M. Ohlberger Model reduction for multiscale problems

Page 60: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiments

Model Problem: Porous Medium Equation

∂tc(µ) + µ2∆(cµ1 (µ)) = 0 in Ω× [0, T ], µ ∈ [1, 5]× [0, 0.001]× [0, 0.2]

plus suitable initial and boundary conditions.

Nonlinearity:

µ1 > 2 =⇒ adiabatic flow

µ1 = 2 =⇒ isothermal case

µ1 = 1 =⇒ linear diffusion µ3

µ3+0.1

µ3+0.2

µ3+0.3

µ3+0.4

µ3+0.5

µ3 dependent initial data

,,

M. Ohlberger Model reduction for multiscale problems

Page 61: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Reduced solutions for various parameters

0.0

0.2

0.3

0.5

0.7

t=0.1 t=1.0

t=0.1 t=1.0

t=0.1 t=1.0

0.0

0.1

0.2

0.3

0.4

0.5

t=0.1 t=1.0

t=0.1 t=1.0

t=0.1 t=1.0

,,

M. Ohlberger Model reduction for multiscale problems

Page 62: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Averaged Runtime Comparison

Simulation Dimensionality Runtime[s] Error

Detailed H=22500 605.66 −Reduced N=15, M=75 5.01 4.93 · 10−3

Reduced N=30, M=150 7.14 1.73 · 10−3

Reduced N=40, M=200 8.27 8.53 · 10−4

Reduced N=50, M=250 9.78 7.59 · 10−4

Gain Factor about 60 - 120

,,

M. Ohlberger Model reduction for multiscale problems

Page 63: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Outline

Motivation: Multi-Scale and Multi-Physics Problems

Model Reduction: The Reduced Basis Approach

A new Reduced Basis DG Multiscale Method

,,

M. Ohlberger Model reduction for multiscale problems

Page 64: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A new localized RB-DG multiscale method

[Kaulmann, Ohlberger, Haasdonk 2011]

Goal: Multiscale problem for two phase flow in porous media:

−∇ · (λ(sε)kε∇pε) = q,

∂tsε −∇ · Aε(uε, sε,∇sε) = f .

First step: Consider the pressure equation as a problemdepending on a parameter function λ = λ(x, t):

−∇ · (λkε∇pε(λ) = q,

=⇒ Apply ideas from the RB-framework!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 65: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A new localized RB-DG multiscale method

[Kaulmann, Ohlberger, Haasdonk 2011]

Goal: Multiscale problem for two phase flow in porous media:

−∇ · (λ(sε)kε∇pε) = q,

∂tsε −∇ · Aε(uε, sε,∇sε) = f .

First step: Consider the pressure equation as a problemdepending on a parameter function λ = λ(x, t):

−∇ · (λkε∇pε(λ) = q,

=⇒ Apply ideas from the RB-framework!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 66: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> A new localized RB-DG multiscale method

[Kaulmann, Ohlberger, Haasdonk 2011]

Goal: Multiscale problem for two phase flow in porous media:

−∇ · (λ(sε)kε∇pε) = q,

∂tsε −∇ · Aε(uε, sε,∇sε) = f .

First step: Consider the pressure equation as a problemdepending on a parameter function λ = λ(x, t):

−∇ · (λkε∇pε(λ) = q,

=⇒ Apply ideas from the RB-framework!!

,,

M. Ohlberger Model reduction for multiscale problems

Page 67: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> General Idea (see also [Aarnes, Efendiev, Jiang 2008])

Idea: Find a small number of representative fieldspi, i = 1, . . . ,N, such that for all admissible parameter functionsλ there exists a smooth, non-linear mapping S with

||p(λ(x); x)− S(p1, . . . ,pN)(x)|| ≤ TOL,

Ansatz: Define mapping S through

S(p1, . . . , pN)(x) =N∑i=1

ai(x)pi(x)

If the coefficient functions ai(x) are assumed to be piecewiseconstant on a coarse mesh, this leads to our new method.

,,

M. Ohlberger Model reduction for multiscale problems

Page 68: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> General Idea (see also [Aarnes, Efendiev, Jiang 2008])

Idea: Find a small number of representative fieldspi, i = 1, . . . ,N, such that for all admissible parameter functionsλ there exists a smooth, non-linear mapping S with

||p(λ(x); x)− S(p1, . . . ,pN)(x)|| ≤ TOL,

Ansatz: Define mapping S through

S(p1, . . . , pN)(x) =N∑i=1

ai(x)pi(x)

If the coefficient functions ai(x) are assumed to be piecewiseconstant on a coarse mesh, this leads to our new method.

,,

M. Ohlberger Model reduction for multiscale problems

Page 69: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> RB-DG multiscale method

ΦF := ϕ1F , . . . , ϕ

NFF , ϕ

iF ∈ Sh,k(F),

WN = vN ∈ L2(Ω)| vN|F ∈ span(ΦF ),

∀F ∈ ZH.

Given λ, we define pλN ∈WN as solution of the RB-DG multiscale method

BDG(λ; pλN , vN) = L(λ; vN) ∀vN ∈ WN.

with

BDG(λ; v, w) =∑

F∈ZH

∫Fλk∇v · ∇w −

∑e∈Ξ

∫eλk∇v · ne[w]−

∑e∈¨

∫eλk∇w · ne[v] +

∑e∈¨

σ

|e|β

∫e[v][w],

L(λ; v) =∑

F∈ZH

∫Ffv +

∑e∈ΞB

∫e

|e|βv − λk∇v · n

)gD.

,,

M. Ohlberger Model reduction for multiscale problems

Page 70: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> RB-DG multiscale method

ΦF := ϕ1F , . . . , ϕ

NFF , ϕ

iF ∈ Sh,k(F),

WN = vN ∈ L2(Ω)| vN|F ∈ span(ΦF ),

∀F ∈ ZH.

Given λ, we define pλN ∈WN as solution of the RB-DG multiscale method

BDG(λ; pλN , vN) = L(λ; vN) ∀vN ∈ WN.

with

BDG(λ; v, w) =∑

F∈ZH

∫Fλk∇v · ∇w −

∑e∈Ξ

∫eλk∇v · ne[w]−

∑e∈¨

∫eλk∇w · ne[v] +

∑e∈¨

σ

|e|β

∫e[v][w],

L(λ; v) =∑

F∈ZH

∫Ffv +

∑e∈ΞB

∫e

|e|βv − λk∇v · n

)gD.

,,

M. Ohlberger Model reduction for multiscale problems

Page 71: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Theorem: A posteriori error estimate

‖pλ − pλN‖0,Ω ≤ ‖R(pλN)− pλN‖0,Ω +∑F∈ZH

ηF1 (R(pλN))

+∑e∈ΓI

ηe2(R(pλN)) +∑e∈ΞB

ηe3(R(pλN))

whereR(pλN ) denotes a higher order reconstruction of pλN and the indicators aregiven as

ηF1 (ξ) =C2o

k1‖f +∇ · (λk∇ξ)‖0,F + Cr

(Cok2

k1+ he

) ∑e⊂∂F

‖re(ξ)‖0,Ω,

ηe2(ξ) = (Co + he)CrCok1‖re(λk∇ξ · n)‖0,Ω,

ηe3(ξ) = Cr

(Cok2

k1+ he

)‖re(ξ − gD)‖0,Ω.

,,

M. Ohlberger Model reduction for multiscale problems

Page 72: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 73: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 74: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 75: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 76: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 77: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .

,,

M. Ohlberger Model reduction for multiscale problems

Page 78: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Adaptive basis construction for WNGiven:Mtrain := λi, i ∈ Itrain, a tolerance ∆, a maximum basis size Nmax and a

POD-tolerance ∆POD.Generate basis Φ of WN:

0. Set Φ−1, Φ−1,F := ∅ for all F ∈ ZH and choose λ0 ∈Mtrain for the construction ofan initial basis.

1. Let a basis Φk−1 =⋃

F∈ZHΦk−1,F and a parameter function λk be given. Perform

detailed simulation to obtain pλkh and define preliminary basis extension ϕF , F ∈ ZHby ϕF := pλkh |F , ∀F ∈ ZH. Add ϕF , F ∈ ZH to the basis Φk−1,F and obtain Φk,F ,

Φk =⋃

F∈ZHΦk,F .

2. Compute offline-parts of the DG scheme and of the error estimator for the currentbasis Φk .

3. Compute reduced solutions pλN for all λ ∈Mtrain using the current basis. Thenevaluate error estimator for all these solutions and find the parameter functionλk+1 ∈Mtrain with largest error.

4. If N < Nmax and if the error bound for the reduced solution pλk+1N is larger than ∆,

continue with Step (1) with λk+1 from Step (3).

Else Apply POD with accuracy ∆POD to Φk,F on each coarse cell F ∈ ZH and obtain thereduced orthogonalized local bases ΦF and the global basis Φ =

⋃F∈ZH

ΦF .,,

M. Ohlberger Model reduction for multiscale problems

Page 79: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Numerical Experiment

−∇ · (λkε∇pε(λ) = 0 on Ω = [0, 10]2

with

kε(x) :=23

(1 + x1)(1 + cos2(2πx1

ε),

λ(x) :=1ηo− 2ηoS(x) +

ηo + η2w

ηwηo

NS∑m,n=1

µnµmSn(x)Sm(x),

S(x) :=

NS∑n=1

µnSn(x) with NS = 3 and Sn(x) given.

+ suitable Dirichlet boundary conditions.,,

M. Ohlberger Model reduction for multiscale problems

Page 80: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> Simulation results

Contour plots of fine scale solution(solid lines) and reconstructed re-duced solution (dotted lines) for µ1 =0.85, µ2 = 0.5, µ3 = 0.1 (|Th| =32768).

Difference between fine scale and re-duced solution. Coarse triangulation(black) with number of reduced basisfunctions |ΦF | (|Th| = 2048/32768,respectively).

,,

M. Ohlberger Model reduction for multiscale problems

Page 81: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

> CPU times for the new method

Averaged runtimes over 125 simulations: high and low dimensional algorithms(thighdim and tlowdim); the reconstruction (trecons) and mean relative errors

(‖pλh − pλN‖L2/‖pλh ‖L2 ) for different grid sizes.

,,

M. Ohlberger Model reduction for multiscale problems

Page 82: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

Thank you for your attention!Software: DUNE, DUNE-FEM, RBmatlab, DUNE-RB

www.wwu.de/math/num/ohlberger

PDESoft2012: Workshop on PDE Software Frameworks10th Anniversary of DUNE

June 18 - 20, 2012, Muenster, Germany.http://pdesoft2012.uni-muenster.de/

MoRePaS II: Second International Workshop on Model Reductionfor Parametrized Systems

Oct 2-5, 2012, Schloss Reisensburg, Guenzburg, Germany.http://www.morepas.org/workshop2012/

,,

M. Ohlberger Model reduction for multiscale problems

Page 83: Model reduction for multiscale problems...Model reduction for multiscale problems Mario Ohlberger wissen leben Dec. 12-16, 2011 RICAM, Linz WWU Münster WWMESTFÄLISCHEILHELMSÜNSTER-UNIVERSITÄT

wis

sen

lebe

nW

WU

Mün

ster

WESTFÄLISCHEW ILHELMS-UNIVERSITÄTMÜNSTER

Institute forComputational andApplied Mathematics

Thank you for your attention!Software: DUNE, DUNE-FEM, RBmatlab, DUNE-RB

www.wwu.de/math/num/ohlberger

PDESoft2012: Workshop on PDE Software Frameworks10th Anniversary of DUNE

June 18 - 20, 2012, Muenster, Germany.http://pdesoft2012.uni-muenster.de/

MoRePaS II: Second International Workshop on Model Reductionfor Parametrized Systems

Oct 2-5, 2012, Schloss Reisensburg, Guenzburg, Germany.http://www.morepas.org/workshop2012/

,,

M. Ohlberger Model reduction for multiscale problems


Recommended