+ All Categories
Home > Documents > Model Spectra of Neutron Star Surface Thermal Emission

Model Spectra of Neutron Star Surface Thermal Emission

Date post: 07-Jan-2016
Category:
Upload: iniko
View: 20 times
Download: 0 times
Share this document with a friend
Description:
Model Spectra of Neutron Star Surface Thermal Emission. Soccer 2005.10.20. Assumptions. Plane-parallel atmosphere( local model). Radiative equilibrium( energy transported solely by radiation ) . Hydrostatics. The composition of the atmosphere is fully ionized ideal hydrogen gas. - PowerPoint PPT Presentation
Popular Tags:
71
Model Spectra of Model Spectra of Neutron Star Neutron Star Surface Thermal Surface Thermal Emission Emission Soccer 2005.10.20
Transcript
Page 1: Model Spectra of Neutron Star Surface Thermal Emission

Model Spectra of Model Spectra of Neutron Star Surface Neutron Star Surface

Thermal Emission Thermal Emission

Model Spectra of Model Spectra of Neutron Star Surface Neutron Star Surface

Thermal Emission Thermal Emission

Soccer 2005.10.20

Page 2: Model Spectra of Neutron Star Surface Thermal Emission

Assumptions

• Plane-parallel atmosphere( local model).

• Radiative equilibrium( energy transported solely by radiation ) .

• Hydrostatics.

• The composition of the atmosphere is fully ionized ideal hydrogen

gas.

• B~1012 gauss, T~ 106K, g*~1014cm/s2.

• All physical quantities are independent of time

Page 3: Model Spectra of Neutron Star Surface Thermal Emission

The Structure of neutron star atmosphere

Radiation transfer equation

Temperature correction

Flux ≠const

Flux = constSpectrum

P(τ) ρ(τ) T(τ)

Feautrier or Improved Feautrier

Unsold Lucy process

Oppenheimer-VolkoffOppenheimer-Volkoff

Page 4: Model Spectra of Neutron Star Surface Thermal Emission

The structure of neutron star atmosphere

• Gray atmosphere

• Equation of state

• Oppenheimer-Volkoff

4 4 63 210

4 3e eT T T K

kT

mP p

2

21

2 2 2 2

*

*

4 2(1 )(1 )(1 )

sc

dP Gm P z Gm

dz z c mc zc

dPg

dz

dP g

d

We adopted the Thomson depth, .scd dz

Page 5: Model Spectra of Neutron Star Surface Thermal Emission

'

'

, , ,

, ' ' ' ',

( )( , ) [ ( , ) ( , )] ( , ) ( ) ( , )(1 ) ( )

2

( , ) ( , ) ( ) ( , , ) ( , ) ( )

hi i i i i kTff sc ff

h sci i jkTff

j

B ldI l k l k l k I l k l dl l k e l dl

dl k e I l k l dl i k j k I l k d l dl

d

Absorption Spontaneous emission

Induced emission Scattering

3

2

2 1

1h

kT

hB

c e

I

R

dldz

ň

Radiation transfer equation:

Page 6: Model Spectra of Neutron Star Surface Thermal Emission

Electromagnetic wave in magnetized plasma

.dv q

m qE v B m vdt c

33333333333333333333333333333333333333333333333333333333

( )1 00

( )1 00

( )10 1 0

, 0.

, 0.

,| | | | .

i k r t

i k r t

i k r t

v v v e v

E E E e E

B B B e B B

3333333333333333333333333333333333333333333333333333 3333

3333333333333333333333333333333333333333333333333333333333333333333333

3333333333333333333333333333333333333333333333333333333333333333333333

1 11 12 2 2 2 2 2 2 2

( )[ ]

( ) ( )c c c

c c

E Eq qv i E

m m

33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

We considered fully ionized hydrogen gas in homogenous magnetic field. The equation of motion of the gas is

Assuming cold plasma that is neglect the thermal motions of gas.

0

0

c

qB for electronsmc

qB for protonsmc

33333333333333

3333333333333333333333333333 1 i

Page 7: Model Spectra of Neutron Star Surface Thermal Emission

0

1/ 2

2 2

2 2

4

0

0

0 0

1 , , 1

( ) , ( )

i i ii

ij

i i i

pc

P PJ J c M

t t

D E P

J q n v

ig

ig

v vu vg

u u

u v

3333333333333333333333333333333333333333333333333333333333333333333333

333333333333333333333333333333333333333333

3333333333333333333333333333

From the above formulas we can get the dielectric tensor for cold plasma.

If w>>wci, w>>wpi, we can neglect ion component.

Assuming neutral plasma that is J0=0 and neglecting the volume magnetic moment we have M=0.

The dielectric tensor describes the properties of the plasma in the magnetic field.

Page 8: Model Spectra of Neutron Star Surface Thermal Emission

0

0

22

2

2 2 2

2

2 2 2

4 0

4 1 1

0

( ) 0

cos sin cos

0 0

sin cos 0 sin

i j i ij ij j

x

y

z

D

D DH J

c c t c t

BE

c t

B

k k k Ec

N ig N E

ig N E

N N E

33333333333333

33333333333333333333333333333333333333333333333333333333

3333333333333333333333333333

33333333333333

From Maxwell equations we can solve index of reflection( a complex number).

x

y

zB

k θ

Page 9: Model Spectra of Neutron Star Surface Thermal Emission

Solving above equation we obtain N2 for X-mode and O-mode.

22

2 2 2 2 4 2 2 2

2( )[( ) ( )]

2( )( ) sin sin 4 ( ) cos

v u v v vN

v u v uv u v uv v

Plus sign for X-mode ; minus sign for O-mode.

Page 10: Model Spectra of Neutron Star Surface Thermal Emission

x

y

zB

k θ

Then we can solve Ex, Ey, Ez in the coordinate that the magnetic field is parallel to z-axis.

Define

e+=(Ex+iEy)/21/2

e-=(Ex-iEy)/21/2

ez=Ez.

Here

|e+|2 +|e-|2 +|ez|2=1

Page 11: Model Spectra of Neutron Star Surface Thermal Emission

The Thomson scattering opacity

2 2 21 12 2 22 2

1 1[ | | | | | | ](1 ) (1 )

j j j jsc sc ze e e

u u

* * 2 2 21 12 2 22 2

1 1[ | | | | | | ](1 ) (1 )

j j j jff ff ze g e g e g

u u

The free-free opacity

' ' '2

' ' 2 * * * 21 122 2

1 1 1( , , ) ( ) | |

1 1

i j i j i jscz z

p e

d ek i k j e e e e e e

d m m c u u i

Page 12: Model Spectra of Neutron Star Surface Thermal Emission

'

'

, , ,

, ' ' ' ',

( )( , ) [ ( , ) ( , )] ( , ) ( ) ( , )(1 ) ( )

2

( , ) ( , ) ( ) ( , , ) ( , ) ( )

hi i i i i kTff sc ff

h sci i jkTff

j

B ldI l k l k l k I l k l dl l k e l dl

dl k e I l k l dl i k j k I l k d l dl

d

Absorption Spontaneous emission

Induced emission Scattering

3

2

2 1

1h

kT

hB

c e

I

R

dldz

ň

Radiation transfer equation:

Page 13: Model Spectra of Neutron Star Surface Thermal Emission

'

'

* *, , ,

, ' ' ' '

[ ( , ) ( , )] ( , )( , ) ( )( , )

2

1( , , ) ( , )

i i iiff sc ffi

Rsc sc

sc j

jsc

k k kdI k BI k

d

di k j k I k d

d

cos Rdl dz cosR R *, , (1 )

hi i kTff ff e

BI

x

y

z

Θ is the angle between B and I.θB

θR

ΦR

n

Page 14: Model Spectra of Neutron Star Surface Thermal Emission

Use diffusion approximation for inner boundary.

Boundary condition:

Ii(τ1,-μR)=0 Ii(τD, μR)=(B(τD)+ μR∂B(τD)/∂τ)/2

τ1,τ2,τ3, . . . . . . . . . . . . . . . . . . . . . . . . . . .,τD

Page 15: Model Spectra of Neutron Star Surface Thermal Emission

' '

'

'

'

* *' ' '

( , ) ( , )( , )

2

( , ) ( , )( , )

2

( )

2, , ( , , )

2

i ii

i ii

ii i

R

ii i i ij j

Rhemispherej

i i isc ff ffi i ij sc

sc sc sc

I k I kP k

I k I kR k

dPR

d

dRP S M P k

d

dBS M i k j k

d

Feautrier method

Page 16: Model Spectra of Neutron Star Surface Thermal Emission

2 1( )R

hemisphere

d dPP S MP

d d

Combine above two equation and use matrix form for two modes.

We can solve P and then obtain R and intensity I immediately.

Boundary conditions:

PD=B/2

P1=R1

Page 17: Model Spectra of Neutron Star Surface Thermal Emission

Unsold-Lucy Process(Mihalas , 1st edition ,1970)

tau tau

log(tau) tau

tem

pera

ture

tem

pera

ture

flux

flux

Page 18: Model Spectra of Neutron Star Surface Thermal Emission

4i

i i i ij j

j

ii i

dHJ S J

d

dKH

d

∫ dΩ

∫μRdΩ

'

'

* *, , , , ' ' '1

( , , )2

i i iiff sc ff sci j

Rjsc sc sc

ddI BI i k j k I d

d d

Page 19: Model Spectra of Neutron Star Surface Thermal Emission

' ' '

' '

'

* *, , , ,

*, ,

, ' ' ' '

, ' '

4 4 4

4

1( , , ) 4

4

1( , , )

4

i i i iff sc ff sci i i i

sc sc

i iff sci

sc

sc j ij j ij j

jj jsc

scij

sc

ij ij

d d dI I J

d

d di k j k I d I d J

d

d di k j k

d

'

'

* *, , , ,

*,

4

4 4 4

2 4

i i i iff sc ff sci i i i

R Rsc sc

iffi

sc

d

d d dI I H

B dS

Page 20: Model Spectra of Neutron Star Surface Thermal Emission

J P

H

dHJ B

ddK

Hd

1 2 1 2 1 2

1 1 2 2

1 2

1 11 21 1 2 12 22 2

, ( ) , ( ) , ( )

( )

( )

[( 4 4 ) ( 4 4 ) ]

H

p

J

B B d J J J d H H H d K K K d

H H H d

B S S d

J J J d

Page 21: Model Spectra of Neutron Star Surface Thermal Emission

0

0

4 19* *e

4

3

03

1[3 ( ') ' 2 (0)]

1[3 ( ') ' 2 (0)]

T 5.69*10(H , )

4 4

,4

1[3 ( ') ' 2 (0)]

4

JH

P P

JH

P P

JH

P P

dHB H d H

d

d HB H d H

d

H H H

T Bby B B d T

T

d HH d H

dT

T

Combine above two equation, we have

Assume:

J(τ)~3K(τ) , J(0)~2H(0)

Page 22: Model Spectra of Neutron Star Surface Thermal Emission

1.The following results are in the condition of θB=0 that is surface

normal parallel to magnetic field.

2.Dellogtau=0.01, dellogfre=0.1, number of direction in hemisphere

is 25.

3.The magnetic filed=1012 Gauss, Teff=106 K, g*=1e14 cm/s2.

4.Only the radiation damping term was adopted in opacities.

Page 23: Model Spectra of Neutron Star Surface Thermal Emission
Page 24: Model Spectra of Neutron Star Surface Thermal Emission
Page 25: Model Spectra of Neutron Star Surface Thermal Emission
Page 26: Model Spectra of Neutron Star Surface Thermal Emission
Page 27: Model Spectra of Neutron Star Surface Thermal Emission
Page 28: Model Spectra of Neutron Star Surface Thermal Emission
Page 29: Model Spectra of Neutron Star Surface Thermal Emission
Page 30: Model Spectra of Neutron Star Surface Thermal Emission

*

*

( )

( )

( , , )

sc

i isc ff

i isc ff

sc

i

d dz

d dz

v k e

Page 31: Model Spectra of Neutron Star Surface Thermal Emission
Page 32: Model Spectra of Neutron Star Surface Thermal Emission
Page 33: Model Spectra of Neutron Star Surface Thermal Emission
Page 34: Model Spectra of Neutron Star Surface Thermal Emission
Page 35: Model Spectra of Neutron Star Surface Thermal Emission
Page 36: Model Spectra of Neutron Star Surface Thermal Emission
Page 37: Model Spectra of Neutron Star Surface Thermal Emission
Page 38: Model Spectra of Neutron Star Surface Thermal Emission
Page 39: Model Spectra of Neutron Star Surface Thermal Emission
Page 40: Model Spectra of Neutron Star Surface Thermal Emission
Page 41: Model Spectra of Neutron Star Surface Thermal Emission
Page 42: Model Spectra of Neutron Star Surface Thermal Emission
Page 43: Model Spectra of Neutron Star Surface Thermal Emission
Page 44: Model Spectra of Neutron Star Surface Thermal Emission
Page 45: Model Spectra of Neutron Star Surface Thermal Emission
Page 46: Model Spectra of Neutron Star Surface Thermal Emission
Page 47: Model Spectra of Neutron Star Surface Thermal Emission
Page 48: Model Spectra of Neutron Star Surface Thermal Emission
Page 49: Model Spectra of Neutron Star Surface Thermal Emission
Page 50: Model Spectra of Neutron Star Surface Thermal Emission
Page 51: Model Spectra of Neutron Star Surface Thermal Emission
Page 52: Model Spectra of Neutron Star Surface Thermal Emission
Page 53: Model Spectra of Neutron Star Surface Thermal Emission
Page 54: Model Spectra of Neutron Star Surface Thermal Emission
Page 55: Model Spectra of Neutron Star Surface Thermal Emission
Page 56: Model Spectra of Neutron Star Surface Thermal Emission
Page 57: Model Spectra of Neutron Star Surface Thermal Emission
Page 58: Model Spectra of Neutron Star Surface Thermal Emission
Page 59: Model Spectra of Neutron Star Surface Thermal Emission
Page 60: Model Spectra of Neutron Star Surface Thermal Emission

Further works…..

1. First, there are still some problem about the modes in index of refraction.

2. There are some gap where wave could not propagate. We should use

a reasonable way to deal with it.

3. Add other damping terms( radiation damping, Doppler damping, collision damping).

4. Introduce the opacities which include higher harmonic components.

Page 61: Model Spectra of Neutron Star Surface Thermal Emission

Later powerpoints are prepared for questions………………

Page 62: Model Spectra of Neutron Star Surface Thermal Emission

Why do we need two boundary conditions?

(0, ) 0...... 1 0( , )( ( , ), ( , ))...... .. :

( , ) ......0 1

IdIf I I boundary conditions

I Bd

I

τ

μ

I(0, μ)=0I(T, μ)=B

Page 63: Model Spectra of Neutron Star Surface Thermal Emission

About 1E 1207-5209 In August 2002 by XMM-Newton from De Luca, Mereghetti, Caraveo, Moroni, Mignani, Bignami, 2004, ApJ 418.

supernova remnant G296.5+10.0

1E 1207.4-5209

Red represents photons in the 0.3-0.6 keV band, green and blue correspond to the 0.6-1.5 keV and 1.5-8 keV bands respectively.

P~424ms

P derivative~1.4*10-14ss-1

Page 64: Model Spectra of Neutron Star Surface Thermal Emission

Figure 5: Fit of the phase-integrated data. The model (double blackbody plus line components) is described in the text. From top to bottom, the panels show data from the pn, the MOS1 and the MOS2 cameras. In each panel the data are compared to the model folded through the instrumental response (upper plot); the lower plot shows the residuals in units of sigma.

Page 65: Model Spectra of Neutron Star Surface Thermal Emission

Figure 6: Residuals in units of sigma obtained by comparing the data with the best fit thermal continuum model. The presence of four absorption features at ~0.7 keV,~1.4 keV, ~2.1 keV and ~2.8 keV in the pn spectrum is evident. The three main features are also independently detected by the MOS1 and MOS2 cameras.

From pn: 0.68/0.24 : 1.36/0.18

Four absorption features have central energies colse to the ratio 1:2:3:4

Page 66: Model Spectra of Neutron Star Surface Thermal Emission

The dispersion relation k-w for X-mode at θ=0 is

2 24

2c c p

c

k

ω

222

2[1 ]

( )p

c

kc

Page 67: Model Spectra of Neutron Star Surface Thermal Emission

The dispersion relation k-w for O-mode at θ=0 is

2 24

2c c p

k

ω

222

2[1 ]

( )p

c

kc

Page 68: Model Spectra of Neutron Star Surface Thermal Emission

The dispersion relation k-w for X-mode at θ=1.57 is

2 24

2c c p

2 2c p

2 2 2 2 222

2 2 2 2 2

( )[ ]( )

p c

c p

kc

k

ω

2 24

2c c p

Page 69: Model Spectra of Neutron Star Surface Thermal Emission

The dispersion relation k-w for O-mode at θ=1.57 is

p

k

ω

222

2 2[1 ]pk

c

Page 70: Model Spectra of Neutron Star Surface Thermal Emission

'

* *' ' ' '

* *

1 2 *

*

*

1( , , )

2

1

2

,

~2

(0) ( ) ~ ( )

x xsc sc

sc sc

i i iiff sc ffi jsc

Rjsc sc sc

i i iiff sc ffi i i

scisc sc sc

i isc ff

xxffsc

sc sc

xff

sc

ddI BI i k j k I d

d d

dI BI I

d

I I

dI BI

d

I I e Be I e

xsc

sc

Roughly estimate the criterion for outer boundary.

Page 71: Model Spectra of Neutron Star Surface Thermal Emission

^__^

Thank you…………….


Recommended