+ All Categories
Home > Documents > Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect...

Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect...

Date post: 09-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
Moving superconducting gravimeters to the field: first experiences with an iGrav in a field enclosure Güntner, Andreas 1 ; Mikolaj, Michal 1 ; Reich, Marvin 1 ; Schröder, Stephan 1 ; Wziontek, Hartmut 2 1 Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ 2 Bundesamt für Kartographie und Geodäsie (BKG)
Transcript
Page 1: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

Moving superconducting gravimeters to the field: first experiences with an iGrav

in a field enclosure

Güntner, Andreas1; Mikolaj, Michal1; Reich, Marvin1; Schröder, Stephan1; Wziontek, Hartmut2

1 Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ 2 Bundesamt für Kartographie und Geodäsie (BKG)

Page 2: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 2

Monitoring continental water storage variations

Deployment of superconducting gravimeters (SG) for monitoring hydrological dynamics

– State: Water storage variations

– Fluxes: Groundwater recharge, Evapotranspiration

– Products: Derivation of drought or flood indices

Page 3: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 3

Objective

• Overcoming limitations of observatory gravimeters

– Disturbed/unknown local hydrology in the near-field

– Umbrella effect of observatory building

• Requirements on gravimeter:

– Field-deployable: water-/dust-proof, high temperature range

– Small footprint: minimal umbrella effect

– High precision: resolve small gravity changes

– Long-term stability: low drift and no/minimum steps

Page 4: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 4

Instrument

• Latest generation of superconducting gravimeters of GWR (iGrav)

– Height (with coldhead): 1m

– Diameter (base with thermal levelers): 55cm

– Weight: 40kg

Page 5: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 5

Installation site

• iGrav-006 installed in Wettzell (Germany) in February 2015

Page 6: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 6

Technical setup: Field enclosure

• Temperature controlled enclosure:

– iGrav-006, PC, heater, water cooling grill, temperature sensors

Page 7: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 7

Technical setup: Peripheral hardware

• Field box with peripheral hardware

– Compressor, water chiller, power supply + UPS, PC, controller, He-Gas bottle

Page 8: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 8

Overall layout

iGrav-006 Field enclosure iBox: peripheral hardware

Page 9: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 9

Overall layout

• iGrav on concrete pillar (diameter 1m, height 80cm)

• Sensor height above terrain surface: 1.05m

Page 10: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 10

• Impact of sensor height on the signal amplitude

– Assuming a soil moisture variation of 10 Vol% in the top 1m

– Integration radius: 10 km

Sensitivity of sensor height

1.0 m

variable

iGrav

Page 11: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 11

Calibration and removal of steps

• No co-located measurement with FG-5 currently possible

– iGrav-006 calibrated against SG030

• Distance between iGrav-006 and SG030: ~ 40 m

• SG030 calibrated using absolute gravity measurements

Page 12: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 12

Calibration and removal of steps

• No co-located measurement with FG-5 currently possible

– iGrav-006 calibrated against SG030

• Distance between iGrav-006 and SG030: ~ 40 m

• SG030 calibrated using absolute gravity measurements

• Steps removed by visual inspection and comparison to local hydrological effect (09/06/2015)

Gravity residuals iGrav006 (tides, polar motion, atmosphere effects removed)

Page 13: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 13

Emerging technical issue: spurious temperature effects in gravity residuals

1) Steps in gravity time series if board temperature exceeds threshold

2) Marked diurnal variations, related to ambient temperature

Page 14: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 14

Gravity effect: Forward modelling based on hydrological observations

• Soil moisture (SM):

– 0 – 10 cm: TOMST sensors

– 10 – 225 cm: TDR soil moisture vertical profiles

• Vadose zone (VZ):

– 225 cm – Groundwater (~6m depth): extrapolation of TDR profile

• Groundwater (GW):

– Groundwater variation: GW table observation well

• Umbrella effect:

– 1 m below iGrav pillar

– 2 m below SG030 building

• Global hydrological effect (GHE):

– GLDAS/NOAH 0.25°

Page 15: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 15

Gravity effect: Forward modelling based on hydrological observations compared to gravity residuals of iGrav006 (tides, polar motion, atmosphere effects removed)

Page 16: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 16

Gravimeter drift

• Minimal apparent drift in iGrav time series (03/2015 – 08/2015)

– iGrav006: - 3.0 nm.s-2/month

• Linear drift estimations:

– Manufacturer (GWR): +5 nm.s-2/month

– Soil moisture effect: - 19.7 nm.s-2/month

– Vadose zone effect: - 8.5 nm.s-2/month

– Groundwater effect: - 0.8 nm.s-2/month

– Global hydrological effect: - 6.1 nm.s-2/month

Page 17: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 17

Gravimeter drift

• Minimal apparent drift in iGrav time series (03/2015 – 08/2015)

– iGrav006: - 3.0 nm.s-2/month

• Linear drift estimations:

– Manufacturer (GWR): +5 nm.s-2/month

– Soil moisture effect: - 19.7 nm.s-2/month

– Vadose zone effect: - 8.5 nm.s-2/month

– Groundwater effect: - 0.8 nm.s-2/month

– Global hydrological effect: - 6.1 nm.s-2/month

• Estimated drift to match forward modelled hydrological effect

– iGrav006: +32.1 nm.s-2/month

Page 18: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 18

• Footprint difference (field enclosure vs. building): 1 vs 88 m2

– Theoretical umbrella effect: 1 m deep, 10% soil moisture difference: 1 vs 22 nm.s-2

Comparison field deployment versus observatory SG (iGrav-006 vs. SG030)

1.0 m

1.2 m

1.05 m

0.25 m

1.0 m

4.1 m SG030

iGrav-006

umbrella effect

Page 19: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 19

• Footprint difference (field enclosure vs. building): 1.6 vs 88 m2

– Theoretical umbrella effect: 1 m deep, 10% soil moisture difference: 1 vs 22 nm.s-2

• Topographic effect: height difference 4.1 m

– Theoretical effect of soil layer (10%, radius 100 m,-umbrella effect): 0 – 1 m = 39 vs 6 nm.s-2

1.0 m

1.2 m

1.05 m

0.25 m

1.0 m

4.1 m SG030

iGrav-006

umbrella effect

Comparison field deployment versus observatory SG (iGrav-006 vs. SG030)

Page 20: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 20

Wettzell time series for the iGrav period 03-08/2015

Page 21: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 21

Acknowledgments

Ilona Nowak (BKG), Thomas Klügel (BKG)

BKG staff at the Geodetic Observatory in Wettzell

Eric Brinton (GWR)

Page 22: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 22

Gravity effect: Forward modelling based on hydrological observations

Gravity residuals iGrav006 (tides, polar motion, atmosphere effects removed)

Page 23: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 23

• Topographic effect as a function of integration radius

– iGrav sensor height: 1.05 m

– SG030 (lower sphere) sensor height: 0.25 m

– Altitude difference: 4.1 m

iGrav-006 vs SG030

Page 24: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 24

iGrav-006 vs SG030

• Correlation analysis:

– Residuals iGrav-006 vs SG030: 0.87

– De-trended residuals iGrav-006 vs SG030: 0.93

Page 25: Moving superconducting gravimeters to the field: first ...€¦ · • Global hydrological effect (GHE): – GLDAS/NOAH 0.25° A. Güntner | Hydrogravimetry 15 . Gravity effect: Forward

A. Güntner | Hydrogravimetry 25

Explanation

• Vadose Zone extrapolation – Average amplitude decrease 1.0 -> 1.5 -> 2 m = 3% / meter

– Extrapolate SM variation in depth 2 m up to groundwater


Recommended