+ All Categories
Home > Documents > n. - Biblioteca Digital do IPB · Universi/y of Sa/amanca. Campus Vin'alo • Avda. Cardenal...

n. - Biblioteca Digital do IPB · Universi/y of Sa/amanca. Campus Vin'alo • Avda. Cardenal...

Date post: 26-Jul-2019
Category:
Upload: dinhque
View: 214 times
Download: 0 times
Share this document with a friend
19
Transcript

This Inlernational Congress was organized by: GIDA1- Fire Salety - Research and Technology UNIVERSIDAD DE CANTABRIA Dpto. de Transportes y Tecnologia de Proyectos y Procesos Aveia. Los Castros, s/n 39005 Sanlander. Spain n. + 34 942 201826. Fax. +34 942 202276; [email protected]; hllp:/Aw/W.gidai.unican.es

With the collaboration of: Society of Fire Proteclion

Engineers SFPE

National Fire Proleclion Association

NFPA

Inlemalional Associalion for Fire Safely Science

IAFSS

Scientific Committee - Editorial Board:

Dr. Orlando Abreu .... . Dr. Daniel Alvear .... . Dr. Vylenis Babrau:.kas Dr. Jorge A Capote Dr. Wan·Ki Chow Dr. Pedro J. M. Coelho Dr. ~1jchael Delichatsios Dr. Nlck Oembsey ....................... _ ... Dr. Bogdan Dlugogorski Dr. Sergey Dorofeev Dr. Dougal Drysdale Dr. Carlos Femândez·Pello Dr. Charles M. Flefschrnarm .. _ Dr. Pedro L. Garcia Ybarra ..... . Dr. S!eve Gwynne ... . Dr. George HadjisophocIeous Dr. Yup Hasemi.. .. _ ..................... _._ ... Mr. Morgan Hurley .. Dr. Marc L. Janssens .... .................... _ .. Dr. Frar.dsco J. Jimênez·Peris Dr. Grunde Jomaas .. _._ Dr. Timo Korhonen .. ........ ... ........... . Dr. Chrlstopher W. Lautenberger .. Dr. Mariaoo lázaro Dr. Gregory T. linleris ...... . Dr. Amab!e l ilián... . ... ........... _ ... . Dr. Rlchard E.lyon ... Dr. Andre MarshaU Dr. Julio M. Marti Or. \"Iill~m E. Mel! Dr. Barl Merci.... Or. Frederick W. WoO\'JTer ... Dr. Eugeflio Dnale ... Dr. Richard O. Peacock ... Dr. Paulo Piloto. Dr. David Purser .... Dr. James G. Ouintiere Dr. Guillenno Rein . ....................... . Dr. StaflÍsIav l. S lol ~rov

Dr. TakeyoshiTanaka Dr. Josê L Terero ..... . Or. Amaud Trouve . Dr. Patrick Var. Hees Dr. Vittorlo Verda .......... ................. ......... . Dr. Domingos X. Viegas .. . Oro Sergey Vyazovkin ... Dr. Jennifer Wen

Ufliversity ol Cantabria (SPA) University 01 Cantabria (SPA) Fire Sdence aod Technology Inc. (USA) Universily of Cantabria (SPA) Hong Kong PoIylechnic Ufliversi!y (CHN) IflStitulo Superior Técnico Lisboa (PRD Ufliversity 01 Ulster (UK) Worcesler PoIylechnic IflSUtule (USA) Universi\y of Newcaslle (AUS) FM Global (USA) University 01 Edinburgh (UK) Universi\y cf Cahfomia (USA) Universi\y 01 Canlerbury (NZL) National Dfslance Educatior. Universi\y (SPA) Hughes Associates (UK) Universi\y 01 Carletor. (CAN) Waseda Ufliversi\y (JPN) SFPE lUSA) Soulhwesl Research lr.s titule (USA) Universily of Cordoba (SPA) iechnical Universi\y 01 Oer.mark (DK) VTT (FI) Reax Er.gineering (USA) University 01 Car.tabria (SPA) NIST(USA) Technical Uni~ersi\y 01 Madrtd (ESP) Federal Aviation Administratior. (USA) University of /"o.iarylafld (USA) Technical Uruversity 01 Catalonia{SPA) U.S. Forest SeNice (USA) Gher.t University (BE) CaHlomia PoIytechnic State Uni~ersity (USA) Technical University 01 Catalon~ (SPA) NIST(USAI Instituto Politécnico de Bragança (PRT) Hartford Environmental Research (UK) Unlversity of Maryland (USA) Imperial CoIlege (UK) Universi\y 01 Marylafld (USA) Kyoto Universi\y (JPN) Uni~ersity 01 Edinburgh (UK) Uni~ersity of r.iaryland (USA) Lund Universi\y (SWE) PoI itecnico di iorino (liA) Universtty cf Coimbra (PRT) Universily 01 Alabama aI Birmingham (USA) Kingston'Universi\y (UK)

Spanish SecUon 01 Combustion Inslilule

International Congress

FIRE COMPUTER MODELlNG

UNIVERSIDAD DE CANTABRIA

Opto. de Transportes y Tecnologia de Proyectos y Procesos

GIDAI - Seguridad contra Incendios - Investigación y Tecnologia

Avda. Los Castras, s/n

39005 Santander. Espana

Inlernalional Congress

FIRE COMPUTER MODELlNG

Editedby:

Jorge A. Capote Daniel Alvear

Compiled by:

Mariano l ázaro David Lázaro

Virgínia Alonso

Acknowledgements:

Servicio de Publicaciones (Universidad de Canlabria)

FIRE COMPUTER MODEUNG : inlemalional congress, (Sanlander. 19 de Octubre de 2012) 1 edited by JOlge A. Capote, Daniel A1vear ; comp~ed by Mariano Lázaro, David lázaro, Virginia Alonso- Sanlander: Universidad de Cantabria, GIDAI, 12012].

0.L. SA-608-20t2

ISBN 978-84-86116-69-9

l.1ncendi05 - Simulacióo por Ordenador - Congresos \. Capole Abreu, Jorge A, ed. lil. 11. Alvear Portilla, Daniel, ed.liI. 111. Lázaro Urrutia, Mariano 111. Universidad de Canlabria. Grupo de Invesligación y Oesarrollo de Acluaciones Industriales.

614.84(063)

Prinled: Grcificas Iguna, S.A.

OCOPYRIGHT. AO rights reservado No pal1 cr Ihis book mar be reprinled I)( replOduced or uti!ized in any fonn or by any eleclronic, mechanical, or olher means, now know or hereafter invenled, including pholoc:opying ar recarding, ar il1 any ilfOfTT1ation starage ar relneva! syslem, wilhoul pennission in wnting frem lhe editor.

J

Contents

Indcx

Prefacc ................................. ....................................... .... .................. ..... ............ ............... .... . iii

Nurncrical Sool Modclling in Turbulent Jct Flmnes and Poal Pires .................................................... .

CFD Modeling of Flame Sprc<ld over Comlgalcd Cardboard Pancls .................................................. 15

Modcling WildJand Fire Spread Using an Eu lcrian Levei SeI Mcthod and High Resolution

Numcrical Weather Prediction ............................. . 35

Sodium Safely Issues - Poal and Spray rire Modeling .. 63

Sensitivity analysis af two [ire modcls using Monte~Carlo mcthods and Factorial de~ign~ ................. ::;3

Numcrical Modeling of Thermal-Input-Induccd Mclting, Dcforming and Dropping oI' Phase

Change Material ................................................................................................................................. . 97

Sen~itivity analysis of solid degradation mcchani~m with the Arrheniu~ law under inert

atnlosphcrc ...... .......... ..................... .. .... ......................................................... ..... .... .............. ............... . 111

Multi-scale modeling of the thennal decomposition of a fire rcturdant plywood ............... . 131

Thennoplustic mass los~ rate prediction at Cone Calorimetcr through a set of parameters obtained

by optimization against experimental STA tests ...................................... .. 151

Numcrical Simulation of\Vater Disehargc from Large-Capacity Foam Monitor 161

Numerieal and Experimentallnvestigation oI' Fire Smoke Toxicity ................................................. .. 171

Multi-Scale TccJmique Applicd to the Ventilation Dcsign for Subway Syslems................................. 189

CFD modeling ofa tunnel tire by thennul eoupling ornuid fiow and struclure.................................. 201

Full Seale Tests and CFD Modeling or a Compartmcnt Fire in an Atrium with Smoke Exhausl........ 215

Tempcraturc Anulysis and Vulidution oI' Purtially Eneased Beurns Subrnitted to Elevated

T cmperature ........................................................................................................... . 235

Experimental and Numericallnvestigution ofFire Dynamics in a Facadc Tcst Rig .......................... . 247

Physical Scale and Comput<ltion<ll Modeling of Smokc Mavement in High Spccd Passenger

Tr<lins ........................... .. ...................... ............. ....... ...................................... . 259

Fire Beh<lviour in Canyons due to SymmetTic and Asymmetric Ignilians .............. ..... . 275

Invcstigatiotl afthe Ch<lracteristics ofa Large Planar Space Fire using 3-D CFD Analysis. 287

Estimating Grid EfTects af Slow and Medium Growing Fires in FDS ... 299

Comparisons on Complltationa l Schcmes Used in CFO Models ........... . 315

Parallcl simlllation of automobile interior tire and its sprcad onlo olher vebicles ................. . 329

Linearization and grouping of tcmperatures in integrated tire dcsign using adv<lnced struclural

<lnalysis .. ..... .... ............. ..... .. .... .. ..... .. ........................... ........ .. .............................. ........ ......................... . 339

Non-Stoichiometric Fire Modcling Predietions witb Applications la Train Fires in Tunnels ............. . 347

Oesign of Venlilation Syslem of the Triple Tunnel bencath Barajas Airport using CFO and its

Validation ............. . ..... ............................... ................................................ ... ........ ........ . 363

BRE large bllilding fire tests - tire model validation for 400kW fire ................................................. . 373

Fire Behaviour of Gypsum Plastcrboards Enhaneed with Phase Change Materiais: A CFO Stlldy .. 389

Hybrid wood/steel elements under fire ................................................................ . 407

Full-Seale CFO Simul<ltion ofGypslIm Plaslcrboard \ValI Assemblies Exposed to Fire: Effects of

Gypsum Dehydration ............................................................................... . 421

Children Bchaviour during Evacuation Proeess in Sehool Bllildings

The Capability of FDS to Model Flames and Plumes Emcrging from Compartment Openings ..........

441

'I 457

Development and testing of BlenderFOS, the open, community-based. useI' interface for NIST

FDS.......................... . ...................................................................................................... . 471

SE1LAF: Simulaeión de Ineendios Forestales para el Entrenamiento Virtu<ll... ................................ . 485

Simulaeión Iluméric<l de incendios en interc<lmbiadores de transporte. Simplificacióll de

condiciones de contorno y comparación de modelos LES y RANS.................................. 507

Aplicación deI modelndo informático ai estudio de las condiciones de trabajo de los equipos de

cmergcncia durante los incendios en túncles de carretem eon diferentes tipos de p<lvimenlo ......... 533

Residcntial Buildings Fire Safety Application for iPhone / iPad Deviees ..................................... . 563

POSTER SESSION

Simlllation analysis of firc-fighting strategies for subwuy tunnc! fircs: a comparison bet\\:een

natural and forced vcntilation for evncuntion stnirs protcction............................................................. 573

ii

Preface Thc Inlcmational Congrcss "FIRE COMPUTER MODELlNG", 00 which this book is bascd, took pince a1 Univcrsity Df Cantnbria, Santandcr, Canlubria, Spain on Octobcr 19, 2012. The gaul 01' lhe Intcmational Congrcss is lo bring togcther experimental and numcrical practitioners. and fostcr discussion and cxchangc ofknowlcdgc.

Thcrc \vere 35 Papcrs sclcctcd for lhe Intcmutional Congrcss and rcprcscnting diffcrcllt counlrics (USA, UK, Canada, Jupao, Swcdcn, France, Finlund, Gcmmny, Russia, Slovukia, Italy, Greece. Portugal, Spuin, etc.). The Invitcd Lccturc abou\ "NUMERICAL SOOT MODELLING IN TURBULENT JET FLAMES ANO rOOl FIRES" was givcn by Prol: Dr. Michae1 Dclichatsios, Univcrsity ofUIsler (UK).

Wc cxprcss u specinl rccognilion for lhe work developcd in the selection of the papcrs to the Scientifie Committee of the Intemational Congress, integratcd by the out-stnnding Professors and Rcsearches, Dr. Orlando Abreu (OIDAI, Univ. ofCantabria. ESP). Dr. Daniel Alvcar(OIDAI, Univ. ofCantabria, ESP). Dr. Vytcnis 8abrauskas (Fire Sciencc and Tcchn .• USA). DL Jorge A. Capote (GIDAI. Univ. of Canlabria. ESP), Dr. Wan-Ki Chow (Hong Kong Polytechnic Uni v., China). Dr. Pedro J. M. Coelho (Instit. Sup. Técnico de Lisboa, PRT), Dr. Michael Delichatsios (Uni\". af UlsLer, UK), Dr. Nick Dembsey (Worcester Polytcchnic Institute. USA). Dr. Bogdan Dlugogorski (Univ. 01' Nc\Vcastle, AUS), DL Scrgey Dorofec\" (FM Global. USA). Dr. Dougal .Drysdale (Univ. 01' Edimburgh. UK). Dr. Carlos Femandez-Pello (Univ. ofCalifomia. Berkeley. USA), Dr. Charlcs M. Fleischmann (Univ. 01' Canterbury. NZL). Dr. Pedro L. Garcia (UNED. ESP), Dr. Stcvc Gwynne (Hughes Associates. UK), Dr. Gcorge V. Hadjisophocleous (Univ. of Carleton, CAN). Dr. Yllji Hascmi (Wascda Univ., JPN), Mr. Morgnn J. Hllrley (SFPE. USA), Dr. Mare L. Jansscns (Sollth\Vest Researeh Institute. USA), Df. Francisco J. Jimenez (Univ. af Córdoba, ESP), Dr. Orunde Jom<l<lS (Tcchnical Univ. of Denmark, DK). Dr. Timo Korhonen (VTT. FI), Dr. Chris Lautenbergcr (Reax Engineering, USA). Dr. Mariano Lazaro (GIDAI, Univ. of Cantabria, ESP), Dr. Oregory T. Linteris (NIST, USA). Dr. Amablc Liiian (Polyteehnie Univ. 01' Madrid, ESP), Df. Richard E. Lyon (FAA, USA). Dr. Andre M<lrshall (Univ. 01' Maryland, USA), Dr. Julio M. Marli (Teehnieal Univ. of Catalonia, ESP), Dr. William E: MeU (U.S. Forest Serviee, USA), Dr. Bart Merei (Ghcnt Univ., BE), Dr. Frederiek W. Mo\Vrer (Uni\'. ofMaryland. USA), Df. Eugenio Onate (Tedm. Uni\'. ofCalalonia. ESP). Dr. Richard D. Pcacoek (NIST. USA). Df. Paulo Piloto (Instituto Politécnico de Bragnnça. PRT), Dr. David Purscr (Hartford Enviromnental Researeh, UK), Dr. James G. Quintiere (Univ. of Maryland, USA), Dr. GuiUenno Rein (Imperial Collcge, UK), Dr. Slanislav I. Slaliarov (Uni\'. of Maryland, USA), Dr. Takeyoshi Tanaka (Kyoto Univ., JPN), Dr. José L. Torero (Univ. af Edinburgh, UK). Dr. Amaud Trouve (Univ. of Maryland, USA). Dr. Patrick Van Hces (Lund Univ .. SWE), Dr. Vittorio Verda (Politecnico di Torino, ITA), Dr. Domingos X. Viegas (Univ. of Coimbra. PRT), Df. Sergey Vyazovkin (Univ. af Alabama. USA) and Dr. Jennifer Wcn (Kingslon Univ., UK), \\'hosc seicntisl. eontributian hus allowcd to reach a Intemational Congress with lhe highcsI quality.

Wc \Vant to cxprcss our gratitudc to lhe authors and speakers \Vho have dcdicutcd their time and effarl lo bring us in their prescntations, expcriences, methodologies and seientist - Icchnical advanccs in lhe Fire Compute r Modeling.

Prol: Jorge A. Capote Congrcss Clmirman GIDAI - Firc Safety - Research and Tcehnology Universidad de Cantabria

iii

Santandcr, Spain Octobcr. 2012

Temperature Analysis and Validation of Partially Encased Beams Submitted to Elevated Temperature

Pif%, P. A G. '; Ramos Gavilân, A. B. 2; Mesquita, L M. R. '; Gonçalves, C.'

I Department af Applied Mechanics. Po/ytechnic Institule af Bragança. Campus Santa Apolónia, 5301-857. Bragança. Portugal.

2 Departmenl af Mechanics. Universi/y of Sa/amanca. Campus Vin'alo • Avda. Cardenal Cisneros, 34, 49022.

Zamora. Spain.

ABSTRACT

Tcmpcrature 3SSCSSmcnt af Purtially Encased Beams (PEB) was performed based on the

frame work af the experimental bcnding tcslS ai e levated tcmpcraturcs. The heating rale af

these compositc elements was 800 uC/h in lhe first si age, rollowed by a stcady slage. This

sccond stage was dcfincd to susta in temperature levei whilc increasing mechanical land. The

main objective was to calculale lhe bending rcsislal1ce of PEB aI differcllt temperature leveis

(200. 400 and 600 "C).

This paper present lhe experimental resuh af 12 lcsls of a more genera l study af 27 ICSIS,

considering lhe abjeet ivc addrcsscd to analyse and validatc lhe numerical model to predicI

lemperature rise of bOlh materiais (concrete and stee l) , in particular the time required lo heal

lhe heams with a lmost constant temperature. This validation is fundamental for lhe general

proposal of sim'ple calculation methods.

Good agreement was achieved between experimental and numericul results, obtained by

nonlinear thermal transient analysis.

1 INTRODUCTION

Partially Encased Beal11s (PEB) achieve higher fire resislanee when comparcd to bare sleel

bcaiTIs. The inerease in fire resistance is due 10 lhe encased material , rcducing lhe exposed

sleel surface arca, introducing cancrete which has a low thermal conductivity. I-ligher fire

resistance can a lso be achieved by incrcasing lhe amounl of reinforccmcnt lO compensale for

lhe reduction of steel strength in case oI' fire , as reported by several researchers.

According to EN 1994-1-2 [1], memher analysis undcr fire conditions may be verificd using

eilhcr tabu lated data, simplified or advanced calculation models.

Tabulaled data rcfcrs only to composite beams ralher than PES, dcpending on load levei, and

is only valid for slandard fire exposurc and simple supporting conditions. A simple

calculation model may be used to determine fire resistance of PEB without shear connection

lo lhe conerele slab. The mies for composite bcams may be applied to PEB. assuming no

mec1mnical rcsistnnce ofthc reinforced concrele slab, and cst<lhlishing reduced effectivc areas

of the cross seclion, [I}. This rnodel depends on Ihc lcmpernture field ovcr lhe cross seclion_

235

236 INTERNA TlONAL CONGRESS

FIRE CO/l./PUTER MODELlNG

Ao advaoced ca1culation modeJ is also suitablc to ana lyse any lype af cross-scction in general

and partially encased sections in particular. This rncthodology \Vas used to predict lhe

tcmperature fi eld in both materiais, \Vhen submitted to e1evated temperature.

PEB have bccn widely tested at room temperature, but only a small !lumber 01' tests are

reported under fire ar elevated temperature. The most relevant tcsts \Vere deve loped by

Kindmann et ai [2] , proving the importance of lhe reinforced concrete between flanges for

bending resistance. Lindncr and Budassis in 2000 [3] developed a new design proposal fo r

laleraltorsional buckling a1 room temperature. Maquoi et ai [4] , improved the knawledge 0 0

the claslic critica i mament and a l1 the lateral torsional buckling resislant mamen!. Makamura

ct aI. [5], lested some partially cncased girders wirh longitudinal and transversal rebars (W

and NW) to flanges, concluding ' lhat bcnding slrenglh 01' lhe PEB was a lmosl !wo times

higher llmn convcntional bare stec l girders and specimens with rebar not welded to flanges

presented a decrcase of 15 % for maximum load bearing when comparcd to the we lded rebar

(W) specimens. Piloto e1 a i [6] corroborale lhe conclusion about the bendi ng res istance aI

roo m temperaturc a f PEB und bare stcel beam, but \Vere ullable to deteel differences betwccn

the PEB load bearing, using slirnlps weldcd (W) and not welded (NW) to lhe web of the

profile aI elevated temperaturc.

This papcr intends lo analyse and validate lhe thennal bchaviour of PEB submittcd to elevalcd

temperature under four poinl bending test, charactcrizing the tempera ture Fi cld before loadillg.

This analysis was importan! lo validatc lhe bending tests.

2 PARTIALL Y ENCASED BEAMS

PEB were construc led by filling lhe space betwcen lhe fl anges 01' an IPE I 00 steel profile with

reinforced concrete (RC). Figure I represenls lhe nominal dimcnsions of lhe composite cross

scclion.

:;; 1

®

i---""--J Fig. I. emss seCliol/ gmllll!lry (A-.çled proflh', B-Iongillldilml r C'i/ !/iJrce/llclIl. C- COIlf:rell'. D- Stirmps).

TEMPER.-ITURE ANALI'SIS ANO '~·/L1DATION OF PARTlALLI' ENCASED BE..JMS SUBMITTED TO ELEVATED TEMPER..·/TURE

Pil%~~. P. A. G.: Ramos Gal'ilâl1, A. n.: Ales/l/li/a, L. AI. R.; GOl/l"ull'!!s. C. 237

PEB were made of (PEIOO wilh slecl S275 JR, using C10 encased concrcle wilh siliceous aggregmes. Four longitudinal slcel 8 500 rebar were used wilh diameler of 8 mm. Slirrups \Vere dcsigned with B500 rebar wilh a di :lmeter 01' 6 mm, spaced every 167 mm. Stirrups were also partinlly welded 10 lhe longitudinal steel reinforccmcnt, as represenlcd in figure 1.

PEB were casled in lhe laboratory. wilhoul lhe need of fonnwork. Specimens were tested after more than 60 days, with respecI lo lhe first cast ing phase, to ensure noonal bond adhesion. The second casling phase was perfonned ane week after lhe firsl. This lime delay did nol influence lhe behaviour of PEB, becausc lhe second casting used lhe sume concrele composilion and lhe same envi ronrnental conditians. 80th casling phases had suffic icnt cure time and concrele presented the same res istance in bOLh slages.

Thc surfaces of materiais had no special treatmcnl and were uscd as del ive rcd by manulbclurcrs. Sleel elemcnts were cu!" from long slee! bars, using Irnditional maehinery. Sl irrups \Vere welded to lhe web ofsteel proti le (W).

2 EXPERIMENTAL TESTS

Twclve specimcns \Vere se!ccted to va lidalc lemperaturc 011 PEB. Tcsts \Vere grouped in four se ri es lo compare tcmperature evolulion. Series I and 3 \Vere prepared ror lhe samc tcmperalure leve i (400 "C) using diffcrcn t PEB lengths (Lt=2.5 m and Lt=4.0 m). Thc olher series \Vere prepared to be teslcd at 200 and 600°C. see lable I. Each specimen was idemified with :l reference numbcr, Icmperature levei, total length (Lt), length bctwccn supporls (Ls), length belween load (LI) and length exposcd lo elevatcd tcmperature (Lt).

Series Specimen U[mj Ls [mj LI [mj U [mj Temperature levei {0C]

8/2.4-01 8/2.4-02 2.5 2.4 1.5 1.3 400 8/2.4-03 8/2.4-04

2 8/2.4-05 2.5 2.4 1.5 1.3 200 8/2.4-06 8/3.9-01

3 8/3.9-02 4.0 3.9 3.0 2.8 400 8/3.9-03 8/3.9-04

4 8/3.9-05 4.0 3.9 3.0 2.8 600 8/3.9-06

Tuh/e J. Li.fl (~r/I!.f/ed partia/(r cllm.H·d hcam.\· (Ipl!dl/WIIS wilh lI"I' lded stirl1lps).

Specimcns \Vere tested using a rcaclion porta l frame, see figure 2. Two hcaling stages \Vere defined for PEB. The first transient st:lge was used lo incrcase Lempewture levei , under constam heaLing rale. A sccond slage \Vas define to kept temperalure as unifonn as possible over lhe cross sec tion.

238 INTERNATIONAL CONGRESS

FIRE COMPUTER MODELlNG

Five different cross sections were defined to cvaluate temperature over cach PEB beam length

(SI, SIA, S2, S3A and S3).

) rn ~ , ~, E;J I n,,]

X .I. .1 ·3 -.-. . .

@)é é éé '"

~ L , ,. ,

JJ , , ..

~

,.,

" ) rn ~ :;

Fig. 2. 7i!Slillg colldilio/lS alld moill cross secliol/S.

Tests dcveloped at elcvatcd tcmperature used HTC device to increase and susta in temperature

during loading, see figure 3. This device used electro-ceramic resistanccs applied 011 the top

alld on the bottom of each specimen. according to figure 4.

Fig. 3. fIca/il/g Thermal Cellln' (fITe) dCI'icc. Fig. 4. Eleclm-ceramü· rC.l'Ísfal/ce.\·.

A heating rate of800 °C/hour was applied, which lead to the first stage pcriod af 15, 30 and 45 minutes, for 200, 400 and 600°C tcsts , respectively. An insulation ceramic mat was

applied to increase healing efficicncy and to promote uniform temperature distribution. Free

thermal elongation was allowed befbrc adjusting both supports. Supports \\lere adjusted and

load \\Ias applied after temperature stabilization (60, 90 and 120 minutes, after the start of heating).

2.1 Instrumentation Thermocouples type K were distributed inside cross section and along the length of each

specirnen, according to figure 5 and 6. Thermocouples were spot welded to steel for

rneasuring tcrnperature in steel. Small steel washers were uscd to measure the ternperature af concrete, wrapping them in positions (Si -IC and Si-OC) during the casting phasc.

1

TEAlPERATURE ANALrSIS AND VALlDATlON OF PARTlALL)' ENC/SED BEAMS

SUBMln"ED TO ELEVATED TEMPERATURE Pil%, p, A, G,; Rumo,l' GlII'i1dll, A, B.; Ak.l"q /liw, L. M. R.; GOllçah'l'.\·, C.

/- .... .. SMi ~:~ :: ~.l (:: '~ ' :' I-- SIAJS::!lS3/S3A.QSI

S2IS3·RS --' i:::' \ , ,~-, -_):- ' ::-1· 1 '~J j -; 1,. : S2ISl.,C

" . ' . j:_'. ; 1'- S:!IS]·OC S!I$3.WS ..A 'J ('"):' \ ; 1

- -,- - ->: ':1" : " tr- 5Mi S l A/S!lS3A.QSh~:":":':' t ..: ..... __ .,

--' 'Io? IIY" Fig. 5. Thi'r/llflcouplL' prHilirm.l"/iJr allllltlill .\·L'ClirJll.\·. Fig. 6. TIIl'/"JlloL"ouple/iw positioll Si· l C.

239

Thennocouples were also used lo control lhe elcclrical heating process (SMi). Thcsc thermocouples \Vere di rect ly conncc ted to lhe contra i uni t of the Heating Thcrmal Centre

dcvice (70 kVA maximum power). The Hcuting Thermul Centre was able lO deliver heal by

Joule cffecl, using special clectro-ceTilmic resistances. Tcmperalure was contro lled in rea l

ti me by lhe control uni t, measuring tcmperalure in t\Vo and four points. for mediuTll (serics J

and 2) and Inrgc tesl se ries (series 3 nnd 4) respecti vely.

Figures 7 and 8 represent lhe result of in frmed thermogra plly analysis for lhe ultimate bcnding

limit state ai the elld of tests 8 /2.4-04 il nd 8 /3.9-05, rcspec tively. Both figures demonstrn tc thc heal flux at the bea111 ex tremi ty and lhe efficicncy o r lhe insularion.

The heat ing process wns controllcd la detenninc thcnllal steady conditions (second stagc),

before loading. TempCrJlure distribulion along each PEB was also monilorcd. using discrele

tcmpcralure rcadings by thermocouples and also field rcad ings by in rTUred thcrmography.

2.2 Temperature measurements TempCrJlUre was regislcrcd in both stages (trunsicnt - firs l slagc and steady - sccond slage).

Figures 9, J I, 13 and 15 were chosen to represent lhe lemperutur~ evolulion of cnch series.

240 INTERNA TlONAL CONGRESS

riRE COIIIPUTER MODELING

Thesc results were plotted for section S2. Temperalure evolution in steel follows the trend of

the heating rate, while temperature ofconcrete prcsents the traditional effect ofhumidity (near

100°C), followed by lhe same heating rate. Temperature is almost unifonn in the cross

section during the steady state (constant temperature levei).

Figures 10, 12, 14 and 16 collect the temperalure data fram output stecl (Si-OS) in each

specimen of each series, over the PEB length, for thrcc specific time instants (beginning.

intennediate and steady stage). Temperature di slribulion along each PEB is not canstant

beca use the heat flaws by conduction to the beam extremities, the length of the beam exposed

to elevated temperature (LO is 52'% and 70% with respect to the total length of lhe beam (Lt),

for the mediuITI and large series respectively and finaIly lhe insulatian near the beam

extremities was nol efficient.

lrnlJ"f>'llr< I"C] '"r--c~----------------------~---C--1

~. ...... .... _.-.:::-:..~.-:.-. ;- . ;, _ ... ~ ._ . ... ' -: ... .

,... !-: ~ .. ' 'ir."V,,,,,~,,,,,~,,,7,,,,;;:;-,q : ... "" . ' I w.!_~.Q: (\~.fI5I 1 :

./ ,/{': : '. "-..... ll t: _I·a: ,5:·0Cl :

~, ~.:.' - ··~I U'.!.t-lJ.! l!;';'.\\'511 i . ' : . !I>;!H: 1;'·1l1 : :

r U t;1HI! {l;'~1 :

- -I _ I.I

:<1 -Fig. 9. Healillgfiw le.\·1 B/2.4-02, seclio}/ 52.

Tr",""'_I 'e]

,~

,. ,~

• ,"

Fig. 11. Healingfor lesl B/2.4-05 .. \-eclicm 52. 1""1"'""""'" ]"CI

; -IOO'C

--'-~~--:-':-:':;; '-:'.=:i .~ .:

/;' : . ~·~{ II'U.Q1~~:"'.{)5lo1.l i .

. ' ,~

, " n 'l '.(I 'I ~-::OÇJ ~. ' I! ) 'I-Q ' I<;: ~~ "

.... ,'" "'. ! !I'l~-II.: ' 1:WI) I : . · ~. !l?'"!1: (<;:·~ .: 1

-f n IJ.9-Q:IS::.1!S1 '1. • •• '

) ............ : ·01 • __ -I- l-I

Fig, 13. HeotillgjiJr lest B13. 9-02, SL'cliOIl 52.

.'I:"t.

Fig. lO. Temp. dislri. 01/(1 ~\'ol/llio}/fiJ/' te.I't sedes I. IfWI"" '''''' rcJ

,.

,. , . •

• • x.,~ .. .. Fig. 12. Temp. (1i.~/ri. {//ul t!mlutiollfiJl' tesl.l't'ries 2,

~'~"~" ~';;;;;;;;~;;;;;;~~;-------~ ~

,~

• ' x.,1 .• 16 .. Fig. N. Temp. diso'i. alld l'l'OllIIion fiw lesl series 3.

TEMPERA TURE ANAL}'SIS AND VALlDAT/ON DF PARTlALLY ENCASED 8EAMS SUBMIITED TO ELEVATED TEMPERATURE

Piloto. P. A. G.; Ra/llos Gm'iltÍlI. A. 8.; Mesquita. L. M R.; Gemça/n!s, C.

- - .-: .-= . ": .-. :-'-=- . ' ....... -:: .-.' ..- -. '

(iIJ,..,{!>;"-OQ.1 1 , n J Mj(~ :·n\ .. ,

241

:\11,

Fig. 15. Hl!lIfillgjiJr te.~f o /3.9-t)5, sectio" S2. Fig. /6. ft!llIp. disfri. uml l!1'O!l/fiel/ljór ti!st .~el'ks -I.

3 NUMERICAL MODEL

Thc numerical model used Iwo dimensional linear linite clcments (Plane 55) from Ansys,

wi th transienl and nonlinear maleria l bchaviour, [7]. The e lement used four nodes wilh one

degree offreedom (temperature at each nade) and linear inlerpolnting funclions.

The modcl was refined lo allow for lhe best cOllvergencc soJulion bctween experimental and

numerical results. Figure 17 represents lhe finilc e1emcnt mesh, used to simulate

reinforcemclll, concrete and stccl. The mesh presents 3430 finitc clcmenls and 35 14 nades.

The boundary canditions were defincd in lhe IOp and in the bailam of lhe profile, following

lhe experimental healing curves (prescribed lemperahlre). Thc initial condition was 3iso

sc lected from experimcnls, taking into to considcration the start ing tempcmture in lhe cross

scction.

Three Célses were selected to represent lhe behaviour of PE8 at diffcrent lempcrahlre Icveis.

The specirncll lests 8/2.4-06, 8/3,9-03 tlnd 8/3.9-05 \Vere seleclcd to compare the lemperaturc

rcsults for 200, 400 and 600 uC, respcctively,

'. '.

:

'p ,',:: '1<

Fig. 17. Finite t!lCII/CI/I IJIt,.\·!J (mel p"ysic.:a/ lJIodcl.

242 INTERNATIONAL.. CONGRESS

F1RE COMPUTER MODELlNG

Perfect cantuct \Vus assumed between both materiais.

Thrcc dimensional thermo-mechanical madel is under development to validate fuH

cxpcriments,

3.1 Material properties The material properties \Vere defined according to Eurocodes, for both ,materiais [8.9]. The

tcmperature dependence of thennal conductivity. specific heat and specific mass is

represented in the next figures (17-22).

10. 1111""1 .~

•• •• •• ; 110.'

10 0 '

oro •

• ~ o. O~

Fig. /7, CO//(I/lclil'i~I'fi!l' sleel. ('rOl: "1 -----0- J\

~ ~ O~ ~ 0- O ~

1(" ' 1

Fig. /9, Specijic hClIt/iJr,\'tee!.

·"' 1---------------------------------1

-

-lrq

Fig. 2/, Spec(jic massjár stec!.

o •

Fig. 18, COlldllctil'ity/úr cOllcrelc, Cp 1J.l~"1

~-

-,.~ A ,- ._J ~

~, ~ ,. •• , ~, ,~

I (' r[

Fig. :!O, Specijic 1II!I11for collcrele (3% hllmidi~I'). ,>110.::"'1 : ' JO r--------------------------------, ~ I

~o I ---------------~ . ~ o. ~

T I' !')

Fig. :!2, Spccijic mas,l'jiJr Cal/crere,

,~

I

TEMPERATURE ANAL)'SIS AND VA LlDATION OF P..IRTlALLJ' ENCASED /JEAMS SUBMIITED TO ELEVATED TEMPERA TURE Piloto, P. A. C.; Ramo.\" Cc",i/ulI, A. B.: Mes/[Ilita, L M. R.; COllçal\"l!s. C. 243

3,2 Temperature results and comparison The lemperature results \Vere dctcrmined ror every nodc af lhe cross section, buI lhe time

history ror each node lacation was defincd according to the position af each thennocouplc

used ror comparison. Figures 23-28 prcsent lhe comparison between lhe tempcrature evolution in bOlh malcrials (slee l and cancrelc) for tcsls aI 200, 400 and 600°C. The results

show good agrcement between lhe experimental resuhs and lhe Ilumerical results. Maximum lemperature differcncc bctwcen experimental mcusurements and nurncricul results is also

ident ified for cach materia l.

1,_ ",.,,['q ~.

'" t----/;~..:::;~<~, 1:tI 13II"C t . _.< .. U\:-oo.·

/ :-_01,\:·,,)) J :--....I!\: Ul

, 1\ : 14,,>:·0\11

II ~ ' ·"'I~ :.fN>,

I .I~ ....... ": I· .. ' \..:·1l'o1

>l ' " ,.-11. .. ~ .'

"1 '/ Ú:"I"""\:'''M

.~-==~'"O'C'="=·C""OC _ _ := __ ~:--' ,o. :I11III xo.o .\001 :OolO

11- 1'1

Fig. n . TClIIl'emllll'e el'ollltiollji,w stcel. /J/J..I-()(j. l".,. ...... r q

l \l ....

.' .. \

,-Fig. 25. Tell/fl eralllj"e em/lll;o/lfor .\"fed. B/3.9-03.

1_ ''''''''''l"n

11" '1_1

Fig. 27. Tempera/li!"!! 1!1'0/1I1hm/m .I·/ed. B/3.9-05.

Fig. 14. T!!/IIpe/'Owre L'm//lliol1.1iw cO/lcl"I!Il'. 8 /2.-I-()6.

'"

~ ~.;r-.~ - -- --~

-fio" ,j;

I/~ - ~

:00 ~r?í '--'1\:.QC1 >lU ..... 11-

1'11 ;// ~"""""" ,~ ,K'1

111'1 ~...- 11 , .... J(\:·OC. -11-

: ~==-=~I=::--,,',,~'~=l~,~_:_i~- _'=;;==~:-_~ 11111O::tuII)tM ___ 1IIOot

1"' 1_[

Fig. 26. T!!/JIpe/'flt/w" (!m /ll/ifm/ór ("1111("/'<'/1', B/3.9-03. I .. · ~<t"·"rq

~

.. I- I /./d_; ' ''''''''- ?Cr--1 -7 ••

(-,,,f' :-_,..,W':.II(')

, .I --.... .. ,\: ... ,

/ / ' IlJ .. ,I\:.oo

.. .. /.'

~- M ... n.rrM ............ -

~~~/~~~~==~~.~ l llllO=-:w.;o JIIOII'UIlO_lIIOl.MO

,.

11"'1.1

Fig. 28. TI!/IIpera/w'l' el'/I //IIiem/or ('onere/e. 8/3.9· ()5.

244 INTERNATIQNAL CONGRESS

FlRE COMPUTER MODELlNG

The numerical simulations validated the time rCCJllired to achieve lbe steady state condilion

and were able to predict temperature evolution in both materiais (stecl and concrete). Small

differences between numcrical results and experimental measuremenls were dctccted and may

be explained by the boundary condilions. The numcrical model a lso used perfcct insulation

while experiments presented some residual hem loss across lhe ceramic fibre insulation

material. Perfcct contact was also considered betwecn steel and concrete, which can modify

the hei:H flow and adhesion betwcen both materiais and finally, lhe muteriô31 properlies \Vere

nol measured and \Vere assllmed from references.

4 CONCLUSIONS

Thennal mmlysis of twelve experimental tests was presented, rcgarding two heating slages of

PEB submitted lo elevô3ted temperatures (200,400 and 600°C). Temperaturc was measured in

five different sections which allowed analysing the heating themml effeel along the lenglh of

eaeh specimen.

Nonlinear transient finite elemen! analysis was used to validate the temperature dislribution

over lhe cross seclion S2 and also used to predicl lhe required time to estublish lhe thermal

steady condition, previously slagc to apply the mechanical 10ô3d. Good agrcement was

detennined between experimental and numerical resulls.

ACKNOWLEDGMENTS

The authors gratefully acknowledge lhe material suppOrl of the following companics: Arcelor

- Mittal (Spô3in), J. Soares Correia (Portugal), Fepronor (Portugal) nnd Hierros Furquel

(Spain).

REFERENCES

J. CEN - EN 1994-1 -2; "Eurocodc 4: Design ofcomposite steel and concrete structures - Pari

1-2: General rules - Structuml tire design"; Brussels, August 2005.

2. R. Kindmann, R. Bergmann, L-G. Cô3jot, J. B. Scleich; "Effect of reinforced concrete

betwccn the flanges of lhe stecl profile of partially cncased compositc beam"; Joumal of

COIlSlruclional S/ccl Rcscarch, 27. pp 107- 122, 1993.

3. Joachim Lindncr, Nikos Budassis; " Lateral torsional buckling of partially encased

compositc beams without concrete slab"; Composilc C0I1Str/lCli0I1 il1 steel al1d COllcrele IV, cOl1ferel1ce proceedil1gs, Mô3y 28th to June 2nd, Banfr, A lberta, Canada. 2000.

4. R. Maquoi, C. Heck, V. Vi lle de Goyet, et aI, (European cOOlmission), "Lateral torsional

buckling in steel ô3nd composite beams"; ISBN 92-894-6414-3; Book 1,2 and 3; Tecllllical

s/ccl research/iual repor/ EUR 20888 EN; August 2001.

TEMPERATURE ..INAL J'SfS AND I :·ILlDATION OF PARTIALL I' ENCASED BEAMS

SUBMJ1TED TO ELErATED TEMPERATURE

Piloto, P. A. G.: Ra/JIoJ Gal'i/â/J, A. B.: Mesquita. L. M. R.: GOIIÇlllw!.\·, C. 245

5. S. Nakamura, N. Narita, "Bending and shear strengths of partially encascd composite 1-

girders", JOII/'l1al (?f"Col1strucliol1al S/cel Re,\'earch, 59, pp.1435-1453, 2003.

6. Paulo A. G. Piloto , Ana B. R. Gavilán, Luis M. R. Mesquita and Carlos Gonçalves; "High

tempernture tests on partially cllcased beams"; proceediugs 0/ lhe 7th JlIlematioual

COI!ferel1ce 011 Struclllres in Fire, pp: 285-293, Zurich, Switzerland, 6-8 June 201 2 eds.:

M. Fontana, A. Frangi, M. Knobloch. Eidgenõssischc Technische I-Iochschule Zürich and

EMPA Malerials Seienee & Teehnology (2012).

7. ANSYS, Inc, Rclcusc 14.0, "Help Syslem, Mec/ulI1ical APDL Theory Re/crel1ce ",2012.

8. CEN; EN 1993-1-2; Eurocode 3, Design af stccl structures - Part 1-2: General rulcs -

StrucLural fire dcsign. April 2005.

9. CEN; EN 1992-1-2, " Eurocode 2: Dcsign ofconcrete structures - Pari 1-2: General rules ­

Structural fire design"; December 2004.


Recommended