+ All Categories
Home > Documents > N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof....

N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas B UYCK PhD Student in Prof....

Date post: 31-Dec-2015
Category:
Upload: madlyn-nash
View: 218 times
Download: 1 times
Share this document with a friend
Popular Tags:
37
N-Heterocyclic carbenes : A powerful tool in organic synthesis Thomas BUYCK PhD Student in Prof. Zhu Group, LSPN, EPFL Frontiers in Chemical Synthesis June 6 th , 2011
Transcript

N-Heterocyclic carbenes :A powerful tool in organic synthesis

Thomas BUYCKPhD Student in Prof. Zhu Group,

LSPN, EPFL

Frontiers in Chemical Synthesis

June 6th, 2011

2

Questions

I. Why is this type of catalysis important ?

II. What is the name of the reactive specie in all the presented reactions ?

3

Plan

Introduction

I. Benzoin condensation and Stetter reaction

II. Homoenolate reactivity

III. Miscellanous reactions

4

Introduction

N-Heterocyclic carbenes

Alternative to metal catalysed reactions

Cheaper and more environment friendly

New field in organic chemistry

NNR R' NNR R' NN

NR R'NS R'

Imidazolylidene Imidazolinylidene Triazolylidene Thiazolylidene

5

Introduction

1960 1970 1980 1990 2000 2010 20200

100

200

300

400

500

600

700

800

Publications containing "NHC"

Explosion in this field during the last decade

6

Introduction

NN

NPh

Ph

PhNN

NPh

Ph

PhNN

NPh

Ph

Ph

OMeClO4

NaOMe

MeOH, RT70%

80°C0.01 mbar

Quant.

Multigram scale synthesis of carben by Enders

Commercially available from Acros® 195 CHF/g

D. Enders, Synthesis, 2003, 1292-1295

7

Benzoin Condensation

R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719-3726

Autocondensation of benzaldehyde

F. Wöhler, J. Liebig, Ann. Pharm., 1832, 3, 249-282 ; T. Ukai, J. Pham Soc. Jpn, 1943, 63, 296-300

O

Ph H

SN

N

N

H2N

OH

Cl

Thiamin 1

B H

Thiamin

Thiamin

Ph

H

HO

Thiamin

HO Ph

Thiamin

HO

O

Ph

Ph

Thiamin

O

OH

Ph

Ph

Ph

O

Ph

OH

O

Ph H

B Breslow Intermediate

Ph

O

Ph

OH

O

Ph H2

8

Benzoin Condensation

Ph

O

Ph

OH3

O

Ph H2

2

Creation of a stereogenic center

D. Enders, T. Balensiefer, Acc. Chem. Res., 2004, 37, 534-541

How to control the selectivity of this reaction to obtain a single enantiomer ?

9

Benzoin CondensationEnantiomeric version

Ph

OON S

Cl

Cat =H

O

O

OH

Cat (10 mol %)Et3N (10 mol %)

MeOH RT

50%, 2% ee

First example in 1966 by Sheehan

Ar H

O

Ar

O

OH

ArCat (10 mol %)

t-BuOK (10 mol %)

THF

8-100%, 80-95% ee

NN

N

Ph

Cat = O

BF4

Enders published in 2002 a more efficient method

D. Enders, Angew. Chem. Int. Ed., 2002, 41, 11743-1745

J. Sheehan, J. Am. Chem. Soc., 1966, 88, 3666-3667

10

Benzoin Condensation

D. Enders, Angew. Chem. Int. Ed., 2006, 45, 1463-1467 ; K. Suzuki, Angew. Chem. Int. Ed., 2006, 45, 3492-3494

Enantiomeric version OH

O RO

ROH

4 - 7 (10-20 mol %)

THF or TolueneBase, RT

NN N

NN N

NN N

RO

4a, R = TBS 4b, R = TIPS

5

BF4 BF4

ON

N N

O

ClCl

6 7a, R = OMe7b, R = H

Enders et al. Suzuki et al.

O

OOHO

OH

OH

O

OH93%, 94% ee90%, 63% ee 4b43%, 93% ee 5

68%, 67% ee 95%, 74% ee

OOH

OOH

O

OH

O

OOH

70%, 96% ee 44%, 96% ee

74%, 85% ee 56%, 88% ee

11

Stetter reaction

R1 H

O

R2 X

O

R2CN

X

O

CN

R2

R1

O

R1

O

R2

X = R, OR

Catalyst,Base

H. Stetter, Angew. Chem. Int. Ed., 1973, 12, 81 ; H. Stetter, Angew. Chem. Int. Ed., 1976, 15, 639-712

In the early 70’s Stetter described a new reaction usefull to create 1,4 dicarbonyl

Catalyst : CN- (1973) Thiazolium salt (1976)

12

Stetter reaction

First example in 1996 by Enders

OO

N

NPhNHO

O

CO2R2

Re-face shielded by Phenyl group

Model explaining the facial selectivity

D. Enders, Helv. Chim. Acta., 1996, 79, 1899-1902

Enantiomeric version

CHO

O CO2R2

R1

Cat. (20 mol %)K2CO3, THF

44 - 73% O

CO2R2

O

R1

41 - 74% ee

Cat. =

NN

N

Ph

O O

Ph

ClO4

13

Stetter reaction

Enantiomeric version

The second example is published only in 2002 by Rovis

CHO

O CO2Et

NN N

OBF4

OMe

Cat. (20 mol %)KHMDS (20 mol %)

Xylenes, 25°C, 24h94%, 94% ee

O

CO2Et

O

Cat. =

T. Rovis, J. Am. Chem. Soc., 2002, 124, 10298-10299 ; T. Rovis, J. Am. Chem. Soc., 2005, 127, 6284-6289

14

Stetter reactionExtension of the scope

Merck published in 2001 an Aldehyde-Imine Cross-Coupling

Enantiomeric version is described by the group of Miller in 2005

J. A. Murry, D. E. Franz, J. Am. Chem. Soc., 2001, 123, 9696-9697

S. J. Miller, J. Am. Chem. Soc., 2005, 127, 1654-1655

Cat. =R1 H

O

R2 NH

SO2

R3

OTol

SNR4

OH

Cl

Et3N, CH2Cl2, 35°C58 to 98%

HNR2 R3

OOR1

Cat. (10 mol %)

NH

Me

OHN

O

NHBoc

Me OBn

SN Me I

75-87% ee

15

Stetter reactionExtension of the scope

Sila-Stetter reaction

Ph SiMe3

O

R1 R2

O 1) Cat. (30 mol %), DBU i-PrOH, THF

2) H2O R1 R2

OPh O

Cat. =

NS

HO

H Br

Addition of acylsilanes to Imines

K. A. Scheidt, J. Am. Chem. Soc., 2004, 126, 2314-2315

K. A. Scheidt, Org. Lett., 2004, 6, 4363-4366

Ph SiMe3

O 1) Cat. (30 mol %), DBU i-PrOH, CHCl3

2) H2O

NP

Ph

O

Ph

Ph

HN

O

R1

PPh

O

Ph

Cat. =NS

H I

1) HCl, THF

2) Boc2O, NaHCO3

Ph

NHBoc

O

R1

BH3.SMe2, THF

R1 = Ph, 70%, 15:1 dr Ph

HN

OH

R1

PPh

O

Ph

16

Stetter reactionExtension of the scope

NS R2

R1

O

SiMe3R1

O

O

O

HOR1

N

S

R2

R3Si

O

R1N

S

R2

O O

R1

OSiR3

N

S

R2R1

OH

N

S

R2

CO2

R'OH

R'OSiR3

Generation of acyl anion equivalent

Keto carboxylate as acyl anion precursor

K. A. Scheidt, J. Am. Chem. Soc., 2005, 127, 14675-14676

R

O

N

NO

O

ONa

Cat. (20 mol %)pH 7.2 buffer

70°C, MeOH R

O

N

N

O

N

S

OH

PhCl

Cat. =

71 to 95%

17

O

O

RR1

R1

O

HR H

O NHC

O

O

R

R1

O

R1

OHR

O

OH

R

R

O

OH

R1

R1

O

OH

R

R1

O

R

CHO

O

R CHO

R

R

Homobenzoin products

Crossbenzoin products

Stetter products

Homoenolates

F. Glorius, Angew. Chem. Int. Ed., 2004, 43, 6205-6208 ; J. Bode, J. Am. Chem. Soc., 2004, 126, 14370-14371

In 2004, Glorius and Bode reported independently a new reaction

18

Homoenolates

R H

ONNAr Ar

R

O

N

NAr

Ar

R

OH

N

NAr

Ar

R

OH

N

NAr

Ar

F. Glorius, Angew. Chem. Int. Ed., 2004, 43, 6205-6208 ; J. Bode, J. Am. Chem. Soc., 2004, 126, 14370-14371

Homoenolate formation

O

O

RR1

R1

O

HR H

O NHC

19

OO

R

R1

R1

O

H

R H

ONNAr Ar

R

OH

N

NAr

Ar

R

O

N

NAr

Ar

R1 O

Homoenolates

Enantiomeric version but with only 25% ee

Mechanism for the lactone formation

F. Glorius, Angew. Chem. Int. Ed., 2004, 43, 6205-6208 ; J. Bode, J. Am. Chem. Soc., 2004, 126, 14370-14371

NN NN

NN NN

O O

TfO

IMes IPr unselective

ICy unreactive Enantiomeric version

20

HomoenolatesElectrophile diversification

• N-Sulfonylimines

• Proton trapping followed by addition of a Nucleophile

J. Bode, Org. Lett, 2005, 7, 3131-3134

K. A. Scheidt, Org. Lett, 2005, 7, 905-908

Ar

O

H

H R

NS

O O

MeO

N

RAr

O

SO2Ar

Cat. (15 mol %)DBU (10 mol %)

0.1M t-BuOH, 60°C, 15h61-75%

Cat. =N

N

Mes

Mes

Cl

R H

O

R2

R1 Cat. (5 mol %)DBU

PhOH, HNuToluene56-90%

R1

H

RNu

O

R2Cat. =

N

N H

I

21

HomoenolatesElectrophile diversification

• Azadiene Diels-Alder reaction

J. Bode, J. Am. Chem. Soc., 2006, 128, 8418-8420

R2 H

NSO2Ar

R1

O

H

O Cat. (10 mol %)DIPEA (10 mol %)

10:1 Toluene/THF, RT51-90%

Cat. =NNN

O

Cl

N

R2

O

ArO2S R1

O

>50:1 dr97-99% ee

22

HomoenolatesElectrophile diversification

• Azadiene Diels-Alder reaction

J. Bode, J. Am. Chem. Soc., 2006, 128, 8418-8420

NNN

O

Mes

NN

N

O

MesHO

EtO2C

NN

N

O

MesHO

EtO2C

NN

N

O

MesO

EtO2C

H

N

R2

OArO2S R1

O

N

NNMes

N

R2

O

ArO2S R1

O

R2 H

NSO2Ar

R1

O

H

O

Proton transfert

Diels-Alder

Nucleophilic addition

23

Homoenolates

• Azadiene Diels-Alder reaction

J. Bode, J. Am. Chem. Soc., 2006, 128, 8418-8420

NR2

ArO2S

O

H

NNN

ArO

R'

Model explaining the selectivity

R2 H

NSO2Ar

R1

O

H

O Cat. (10 mol %)DIPEA (10 mol %)

10:1 Toluene/THF, RT51-90%

Cat. =NNN

O

Cl

N

R2

O

ArO2S R1

O

>50:1 dr97-99% ee

Electrophile diversification

24

Homoenolates

• 1,2-Dicarbonyl Compounds

V. Nair, Org. Lett, 2006, 8, 507-509

O

O

RCHO N

N

Mes

Mes

Cl

Cat. (6 mol %)DBU (12 mol %)

THF, 12h

O

OO

NR2

O

O

or

NR2

O

O

O

Ph

NR2

O

O

O

Ph

or

60-78%

1:185-98%

Cat. =

Electrophile diversification

25

Homoenolates

N

N

Mes

Mes

ClCat. =R2 R3

OR3

R1R2

R1 H

O

R1R2

OO

R3

Cat. (6 mol %)

DBU (12 mol %)THF, RT, 8h

• ,a b unsaturated ketone

V. Nair, J. Am. Chem. Soc., 2006, 128, 8736-8737

Electrophile diversification

26

Homoenolates

V. Nair, J. Am. Chem. Soc., 2006, 128, 8736-8737

Mechanism to form the cyclopentene

N

N

Mes

Mes

N

N

Mes

Mes

OH

R1

R1 H

O

N

N

R

R

OR1

R2R3

O

N

N

R

R

O

O

R3

R1

R2

N

N

R

R

O

O

R3

R1

R2

R3

R1

R2

O

OR3

R1R2

R2 R3

O

CO2

N

N

R

R

OR1

R2R3

O

O O

R3

R1 R2

27

Homoenolates

Br

EWG

NN

N

MeO OMeClO4

(10 mol %)

K2PO4 (2.5 equiv.)Glyme, 80°C

EWG

n n

CO2Et CNO

NOMe

n

n = 1, 48%n = 2, 94%n = 3, 81%

68% 71%

Intramolecular alkylation of a b unsaturated ester

G. C. Fu, J. Am. Chem. Soc., 2006, 128, 1472-1473

28

HomoenolatesHomoenolates obtention via a b unsaturated ester

G. C. Fu, J. Am. Chem. Soc., 2006, 128, 1472-1473

O

ORX

nNHC

O

ORX

n

O

OR

NHCNHC

H

n

O

OR

Base

Base-H

n

O

ORX

nNHC

29

Homoenolates

R

OH

N

NAr

Ar

H R3

NPG

R1

O

H R2

N

H

SO2Ar

R

O

H

Nu HO

O

R4 R5

O

NO

ON

OO

O

R2

R

SO2Ar

O

R

R

R Nu

O

O

H

R5

RR4

R3

R

O

O

R

R1

PG

R

Protonation / Diels-Alder

Cross-condensationenal-aldehyde

Cross-condensationenal-imine

Cross-condensationenal-1,2 dione

Cross-condensation enal-enone/decarboxylation

Protonation / Nu- trapping

Homo-condensation

Homoenolate

30

Trans-esterification

M. Movassaghi, Org. Lett., 2005, 7, 2453-2456

Amide formation

Proposed mechanism

R1 OMe

OR2 N

H

OH IMes (5 mol %)

THF, RTR1 N

O

R2

OH MeOH

N

NMes

Mes

HNHR2

OR1 OMe

O

O

NHR2

H

OR1

OMeN

NMes

Mes

O

Me

H

OR1

ON

NMes

MesNHR2

HN

NMes

Mes

OMe

NHR2HO

R1 N

O

R2

OH

R1 O

O

NHR2

O N acyl transfert

MeOH

31

Trans-esterification

H

O

R

OH

OR

R

orOMe

O

N N I

(20 mol %)

KOtBu, 4A MSTHF, RT

OR

RO

O

H. Zhai, Org. Lett., 2005, 7, 3769-3771

g-butyrolactone formation

OH

OR

R

O

OR

R

OR

R

O

OH

O OMe OR

RO

O

Michael addition

Transeterification

Lactonisation

Michael addition

2 possibles pathways

32

Acylation reaction

Kinetic resolution with chiral NHCs

Need to have a hindered acylating agent

K. Maruoka, Org. Lett., 2005, 7, 1347-1349

R

OHO

OPh

Ph

N NAr ArCat. (5 mol %)

THF, -20 to -78°CCat. =

Ar = Ph, -naphthyl

R

OH

R

O

O

Ph

Ph

27-39%87-96% ee

33

1,2-Addition reactions

Reaction with E-NuO

HRE-Nu

NHC

Nu

O

H

E

Possible activation by NHC

O

HR R NHC

O

TMS CF3

H

TMS CN

(EtO)2P CNO

H

R CF3H

R

OTMS

CNH

R

OH

CNH

R

OP(OEt)2

CNH

OH

O

NHCO

HR Nu SiR3

NHC

34

1,2-Addition reactions

Asymetric version was tried by Suzuki and Sato with a poor ee 22%

D. H. Song, Synth. Commun., 2004, 34, 2973-2980 ; Y. Suzuki, M. Sato, Tetrahedron, 2006, 62, 4227-4231 ; K. Maruoka, Tetrahedron Lett., 2006, 47, 4615-4618

Ketone Enal Imine a-ester

O

R R' TMS CN

NHC

R

OTMS

CNR'

R

OH

CNR'

or

Song et al. Suzuki, Sato et al. Maruoka et al.

OTMS

CN

OOEt

OTMSCN

OTMS

CNBr

OTMS

CNH

CN

OH

H

CN

OH

H

OTMS

CN

OEtOCN

OTMS

OTBSCN

NHTs

CNH

79% 79%

86% 86%

77%

75%

89% 93%

98% 92%

35

1,2-Addition reactions

K. Kondo, T. Aoyama, Chem. Pharm. Bull., 2006, 54, 397-398

PhCHO

CHO CHO

CHO CHO

Cl

CHO

91% 94% 98%

94% 92% 90%

Cyanophosphorylation of aldehyde

Reaction time less than 5 min

NN

Cl

Cat =R

O

HR

OP(OEt)2

CN

O

H

Cat (5 mol %)t-BuOK (4 mol %)

THF 0°CNCP(OEt)2

O

Conclusion

NHC as an organocatalyst allows access to a wide diversity of molecules

EWG

OR

OH

R5

RR4

R

O

O

Ph

Ph

R1 N

O

R2

OH

O

CO2R2

O

R1

N

R3

R

O

PG

OO

R

R1

R

OP(OEt)2

CNH

O

NO

R2

R

SO2Ar

R

OH

CNH

OR

RO

O

OO

R

R

R Nu

OH

R

OTMS

CNH

R

OH

CF3H

OO

O

R

R

O

N

N

O

Still a lot of reactions to develop Enantiomeric version of homoenolate reaction to upgrade

36

NHTs

CNH

Conclusion

37

Questions

Reviews :

N-Heterocyclic carbenes as organocatalysts N. Marion, S. Díez-González*, and S. P. Nolan*, Angew. Chem. Int. Ed., 2007, 46, 2988-3000

Nucleophilic cabenes in asymetric organocatalysisD. Enders*, T. Balensiefer, Acc. Chem. Res., 2004, 37, 534-541


Recommended