+ All Categories
Home > Documents > Nano- and Micromechanics of...

Nano- and Micromechanics of...

Date post: 02-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
7
Table of Contents Goerg H. Michler, Francisco J. Baltá-Calleja Nano- and Micromechanics of Polymers Structure Modification and Improvement of Properties ISBN: 978-3-446-42767-9 For further information and order see http://www.hanser.de/978-3-446-42767-9 or contact your bookseller. © Carl Hanser Verlag, München
Transcript
Page 1: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of Contents

Goerg H. Michler, Francisco J. Baltá-Calleja

Nano- and Micromechanics of Polymers

Structure Modification and Improvement of Properties

ISBN: 978-3-446-42767-9

For further information and order see

http://www.hanser.de/978-3-446-42767-9

or contact your bookseller.

© Carl Hanser Verlag, München

Page 2: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

List of Abbreviations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV

I Aim and methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 General Importance of Polymers and Trends.. . . . . . . . . . . . . . . . . 31.1  Relevance of Polymeric Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .   31.2  Materials Science Aspects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   51.3   Molecular and Supramolecular Structures  . . . . . . . . . . . . . . . . . . .   7

1.3.1  Molecular Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   71.3.2  Supramolecular Structures, Morphology . . . . . . . . . . . . . . .   13

1.4  Polymer Modification   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   211.4.1  Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   221.4.2  Polymer Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   241.4.3  Particulate Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   281.4.4  Short Fiber Reinforced Polymers . . . . . . . . . . . . . . . . . . . . . .   301.4.5  Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   31

2 Methods and Investigation Techniques.. . . . . . . . . . . . . . . . . . . . . . 352.1   Methods of Structure and Morphology Analysis . . . . . . . . . . . . . .   35

2.1.1  Macroscale Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   352.1.1.1  X-Ray Diffraction Techniques (WAXS, SAXS) .   352.1.1.2  Other Scattering Techniques  . . . . . . . . . . . . . . . .   392.1.1.3  Spectroscopic Techniques and  

Thermal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . .   402.1.2  Local, Microscopic Methods . . . . . . . . . . . . . . . . . . . . . . . . . .   49

2.1.2.1  Optical Microscopy (OM) . . . . . . . . . . . . . . . . . . . .   502.1.2.2  Confocal Scanning Optical Microscopy . . . . . . .   522.1.2.3  Scanning Electron Microscopy (SEM)  . . . . . . . .   522.1.2.4  Transmission Electron Microscopy (TEM) . . . .   562.1.2.5  Atomic Force Microscopy (AFM) . . . . . . . . . . . . .   592.1.2.6  Comparison of Microscopic Techniques . . . . . .   61

2.2   Methods of Nano- and Micromechanical Analysis  . . . . . . . . . . . .   632.2.1  Macroscale Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   63

InhaltTable of Contents VPreface XIList of Abbreviations XVAim and methods 11 General Importance of Polymers and Trends 31.1 Relevance of Polymeric Materials 31.2 Materials Science Aspects 51.3 Molecular and Supramolecular Structures 71.3.1 Molecular Structures 71.3.2 Supramolecular Structures, Morphology 131.4 Polymer Modification 211.4.1 Copolymers 221.4.2 Polymer Blends 241.4.3 Particulate Composites 281.4.4 Short Fiber Reinforced Polymers 301.4.5 Conclusions 312 Methods and Investigation Techniques 352.1 Methods of Structure and Morphology Analysis 352.1.1 Macroscale Methods 352.1.1.1 X-Ray Diffraction Techniques (WAXS, SAXS) 352.1.1.2 Other Scattering Techniques 392.1.1.3 Spectroscopic Techniques and Thermal Methods 402.1.2 Local, Microscopic Methods 492.1.2.1 Optical Microscopy (OM) 502.1.2.2 Confocal Scanning Optical Microscopy 522.1.2.3 Scanning Electron Microscopy (SEM) 522.1.2.4 Transmission Electron Microscopy (TEM) 562.1.2.5 Atomic Force Microscopy (AFM) 592.1.2.6 Comparison of Microscopic Techniques 612.2 Methods of Nano- and Micromechanical Analysis 632.2.1 Macroscale Methods 632.2.1.1 Scattering (Diffraction) Methods 632.2.1.2 Interference Optics 642.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 642.2.1.4 Other Techniques 662.2.2 Local (Microscopic) Methods 662.2.2.1 Overview 662.2.2.2 In-Situ Microscopy 702.3 Mechanical “Micro-Testing” 802.3.1 Mechanical Testing of Micro-Sized Specimens 822.3.2 Microindentation Tests 842.3.2.1 Imaging Method 842.3.2.2 Basic Aspects of Microindentation: Contact Geometry 852.3.2.3 Depth Sensing Measurements 86General mechanisms of deformation and fracture 953 Deformation Phenomena and Mechanisms 973.1 Basic Types of Mechanical Behavior 973.2 Influence of Specimen Size 1033.3 Deformation Mechanisms 1083.4 Molecular Parameters and Mechanisms 1103.4.1 Molecular Mobility and Entanglements 1103.4.2 Molecular Micro-Mechanisms 1154 Crazing 1194.1 The Phenomenon of „Craze“ 1194.2 Characteristics of Crazes 1214.3 Variety of Craze Structures 1254.4 Craze Initiation 1344.4.1 Formation of Pre-Crazes 1354.4.2 Transformation of Pre-Crazes into Fibrillated Crazes 1404.5 Craze Growth and Fracture 1424.5.1 Length Growth 1424.5.2 Thickness Growth 1434.5.3 Craze Fracture 1454.6 Factors Influencing Craze Initiation and Growth 1474.7 Structure Initiated Crazes 1535 Fracture Phenomena and Mechanisms 1595.1 Overview 1595.2 Principles of Brittle Fracture

of Polymers 1605.3 Stress Concentrations at Particles and Voids 1655.3.1 Soft Particles 1665.3.2 Hard Particles 1705.3.3 Thermal Stresses 1705.3.4 Energetic Effects 1725.3.5 Stress Concentration Effects in Different Particle/

Void Arrangements 1735.3.5.1 Particle/Void Size 1735.3.5.2 Particle/Void Distance 1745.4 Toughness Enhancing

Mechanisms 1755.5 Fracture Surface Analysis and Damage Analysis 178Main groups of polymer materials 1836 Amorphous Polymers 1856.1 Overview 1856.2 Amorphous Homopolymers 1886.2.1 Polystyrol (PS) 1886.2.1.1 Deformation Characteristics 1886.2.1.2 Modification of Crazes 1936.2.2 Polymethylmethacrylate (PMMA) 1966.2.3 Polyvinylchloride (PVC) 1986.2.4 Polycarbonate (PC) 1996.2.5 Other Amorphous Homopolymers 2046.3 Copolymers 2046.3.1 Styrene-Acrylonitrile-Copolymers (SAN) 2046.3.2 Cyclic Olefin Copolymers (COC) 2056.4 Comparison of Crazes 2096.5 Resins, Thermosets 2117 Semicrystalline Polymers 2157.1 Overview 2157.2 General Deformation Mechanisms 2187.2.1 Brittle Behavior 2197.2.1.1 Initiation of Brittle Fracture by Morphological Defects 2197.2.1.2 Brittle Fracture of Low Molecular Weight Materials 2217.2.1.3 Brittle Fracture at Low Temperatures 2247.2.1.4 Environmental Stress Crazing/Cracking 2247.2.1.5 Physical Ageing 2257.2.2 Craze-Like Mechanisms 2257.2.2.1 Crazing at Low Temperatures 2257.2.2.2 Crazing at Brittle Fracture Above Tg,am 2267.2.2.3 Environmental Crazing 2287.2.2.4 Crazing under Plastic Deformation 2307.2.2.5 Formation of Chevron Pattern 2327.2.3 Ductile Behavior 2357.2.3.1 Plastic Deformation of Spherulites 2357.2.3.2 Deformation on the Amorphous/Lamellar Level 2377.2.3.3 Strain Hardening and Self-Reinforcement 2427.2.4 Deformation of Crystals and Lamellae 2427.2.5 Self-Reinforcement and High Strength Materials 2447.2.5.1 Oriented Structures by Melt Processing 2447.2.5.2 Oriented Structures by Solution(Gel)-Spinning 2467.3 Examples 2477.3.1 Polyethylenes 2477.3.1.1 Influence of Molecular Weight 2477.3.1.2 Influence of Chain Architecture: Branching 2507.3.1.3 Influence of Processing 2547.3.2 Polypropylenes 2557.3.2.1 Influence of Molecular Weight 2557.3.2.2 Crystalline Modification 2587.3.2.3 Influence of the Deformation Temperature 2657.3.2.4 Additional Effects 2677.3.3 Polyamides 2687.3.4 Polyurethanes 2707.3.5 Polyethylene Terephthalate (PET) 2707.3.6 Syndiotactic Polystyrene 2717.3.7 Fluoropolymers: PTFE, PVDF 2737.3.8 Comparison of different polymers 2748 Polymer Blends 2818.1 Overview 2818.2 Thermoplastic/Thermoplastic Blends 2848.2.1 Blend Formation 2848.2.2 Morphology 2848.2.3 Micromechanical Properties 2858.2.3.1 Blends of Amorphous Polymers 2858.2.3.2 Blends of Amorphous and Semicrystalline Polymers 2898.2.3.3 Blends of Semicrystalline Polymers 2948.3 Rubbers and Elastomers 2998.3.1 Overview 2998.3.2 Typical Morphology 3028.3.3 Micromechanical Behavior 3058.4 Inclusion Yielding 3099 Rubber Toughened Polymers 3159.1 Overview 3159.2 Morphology 3179.3 Basic Micromechanical Mechanisms 3209.3.1 Survey of Micromechanical Behavior 3209.3.2 Rubber Particle Volume Content 3289.3.3 Rubber Particle Modulus 3319.3.4 Grafting Influence (Interfacial Bonding) 3329.3.5 Particle Size 3339.3.6 Additional Factors 3409.4 Disperse Systems 3429.4.1 Disperse Systems with Amorphous Matrix 3429.4.2 Disperse Systems with Semicrystalline Matrix 3519.5 Rubber Network Systems 36010 Composites 36910.1 Overview 36910.2 Particle-Reinforced Polymer Composites 37010.2.1 Morphology of Particle-Filled Polymers 37010.2.2 Micromechanical Effects 37210.2.2.1 Composites with a Tough Matrix (PE, PP) 37210.2.2.2 Composites with a Stiff Matrix 38310.2.2.3 Conclusion 38410.3 Nanoparticle Polymer Composites 38510.3.1 Overview and General Dependences 38510.3.2 Micromechanical Effects in Different Classes of Nanocomposites 38910.3.2.1 Zero-Dimensional Filler Nanoparticles (POSS) 38910.3.2.2 One-Dimensional Carbon Nanotubes (CNT) 39010.3.2.3 Two-Dimensional Layered Particles 39510.3.2.4 Three-Dimensional Filler Particles 39910.4 Fiber-Reinforced Polymer Composites 40510.4.1 Overview 40510.4.2 General Micromechanical Effects 40611 Nanostructured Polymers 41511.1 Overview 41511.2 Block Copolymers 41611.2.1 Introduction 41611.2.2 Diversity in Morphologies and Properties 41711.2.3 Micromechanical Behavior of Block Copolymers 42411.2.4 Functional BCPs and Nanocomposites 43611.2.5 Microdeformation Behavior in Block Copolymer/Polystyrene Blends 44011.2.5.1 Blends Containing Macrophase-Separated PS Particles 44011.2.5.2 Blends with Oriented Layers 44111.2.5.3 Blends with Droplet Morphologies 44311.2.6 Microhardness vs. Micromechanical Mechanisms 44611.2.7 Mechanism of Chevron Formation 44911.3 Coextruded Multilayered Polymers 45111.3.1 Overview of Microlayered Composites

and Coextrusion Technology 45111.3.2 Structure-Property Correlations in Multilayered Composites Comprising Amorphous Polymers 45711.3.3 Multilayered Crystalline/Amorphous Polymer Combinations 46811.3.4 Multilayered Crystalline/Crystalline Polymer Combinations 47511.4 Nanofibers 47711.4.1 Overview 47711.4.2 Electrostatic Spinning (Electrospinning) 47811.4.3 Typical Fiber Structures 47911.4.3.1 Fibers with Porous Structures 47911.4.3.2 Fibers with Beads and Ribbon-Like Structures 48011.4.3.3 Fibers with Helical and Twisted Structures 48111.4.3.4 Fibers with Rough Surfaces 48211.4.3.5 Fibers with Core Sheath Structures 48311.4.4 Mechanical Properties of Polystyrene (PS) Nanofibers 48411.4.5 Nanofibers – Nanocomposites 48811.5 Conclusions 48912 Special Forms and Applications 50112.1 Overview, Special Forms 50112.2 Hot Compacted Oriented Films/Fibers 50312.2.1 Overview 50312.2.2 Hot Compacted Oriented Fibers 50512.2.3 Hot Compacted Oriented Films 50912.2.4 Conclusions 51212.3 Biomedical Polymers 51212.3.1 UHMWPE 51412.3.1.1 Morphology and Properties of UHMWPE 51412.3.1.2 Application of UHMWPE in Hips and Knee Joints 51912.3.2 Polymethylmethacrylate (PMMA) 52612.3.3 Bioresorbable Polymers 52912.3.4 Bone Substitutes 53212.3.5 Electrospun Nanofibers 53512.3.5.1 Nanofibrous Scaffolds for Tissue Engineering of Skin 53512.3.5.2 Dentistry Applications 53612.3.5.3 Scaffolds for Bone Tissue Engineering 53812.4 Biopolymers 539Index 557Index 557

Page 3: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of ContentsVI

2.2.1.1  Scattering (Diffraction) Methods . . . . . . . . . . . . .   632.2.1.2  Interference Optics  . . . . . . . . . . . . . . . . . . . . . . . . .   642.2.1.3  Spectroscopic Techniques (Rheo-Optical  

Methods) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   642.2.1.4  Other Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . .   66

2.2.2  Local (Microscopic) Methods . . . . . . . . . . . . . . . . . . . . . . . . .   662.2.2.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   662.2.2.2  In-Situ Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . .   70

2.3  Mechanical “Micro-Testing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   802.3.1  Mechanical Testing of Micro-Sized Specimens  . . . . . . . .   822.3.2  Microindentation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   84

2.3.2.1  Imaging Method . . . . . . . . . . . . . . . . . . . . . . . . . . . .   842.3.2.2  Basic Aspects of Microindentation: Contact 

Geometry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   852.3.2.3  Depth Sensing Measurements . . . . . . . . . . . . . . .   86

II General mechanisms of deformation and fracture.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Deformation Phenomena and Mechanisms .. . . . . . . . . . . . . . . . . . 973.1  Basic Types of Mechanical Behavior . . . . . . . . . . . . . . . . . . . . . . . . .   973.2  Influence of Specimen Size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1033.3  Deformation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1083.4   Molecular Parameters and Mechanisms  . . . . . . . . . . . . . . . . . . . . .  110

3.4.1  Molecular Mobility and Entanglements . . . . . . . . . . . . . . .  1103.4.2  Molecular Micro-Mechanisms . . . . . . . . . . . . . . . . . . . . . . . .  115

4 Crazing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1194.1  The Phenomenon of “Craze” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1194.2  Characteristics of Crazes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1214.3  Variety of Craze Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1254.4  Craze Initiation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134

4.4.1  Formation of Pre-Crazes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1354.4.2  Transformation of Pre-Crazes into Fibrillated  

Crazes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1404.5  Craze Growth and Fracture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

4.5.1  Length Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1424.5.2  Thickness Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1434.5.3  Craze Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

4.6   Factors Influencing Craze Initiation and Growth . . . . . . . . . . . . . .  1474.7  Structure Initiated Crazes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

5 Fracture Phenomena and Mechanisms. . . . . . . . . . . . . . . . . . . . . . .1595.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1595.2   Principles of Brittle Fracture of Polymers  . . . . . . . . . . . . . . . . . . . .  1605.3   Stress Concentrations at Particles and Voids . . . . . . . . . . . . . . . . .  165

5.3.1  Soft Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166

Page 4: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of Contents VII

5.3.2  Hard Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1705.3.3  Thermal Stresses   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1705.3.4  Energetic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1725.3.5   Stress Concentration Effects in Different Particle/ 

Void Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1735.3.5.1  Particle/Void Size. . . . . . . . . . . . . . . . . . . . . . . . . . .  1735.3.5.2  Particle/Void Distance . . . . . . . . . . . . . . . . . . . . . .  174

5.4   Toughness Enhancing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . .  1755.5   Fracture Surface Analysis and Damage Analysis  . . . . . . . . . . . . .  178

III Main groups of polymer materials.. . . . . . . . . . . . . . . . . . . . . . . . . . .183

6 Amorphous Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1856.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1856.2  Amorphous Homopolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188

6.2.1  Polystyrol (PS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1886.2.1.1  Deformation Characteristics . . . . . . . . . . . . . . . . .  1886.2.1.2  Modification of Crazes  . . . . . . . . . . . . . . . . . . . . . .  193

6.2.2  Polymethylmethacrylate (PMMA)  . . . . . . . . . . . . . . . . . . . .  1966.2.3  Polyvinylchloride (PVC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1986.2.4  Polycarbonate (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1996.2.5  Other Amorphous Homopolymers . . . . . . . . . . . . . . . . . . . .  204

6.3  Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2046.3.1  Styrene-Acrylonitrile-Copolymers (SAN) . . . . . . . . . . . . . .  2046.3.2  Cyclic Olefin Copolymers (COC) . . . . . . . . . . . . . . . . . . . . . .  205

6.4  Comparison of Crazes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2096.5  Resins, Thermosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

7 Semicrystalline Polymers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2157.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2157.2  General Deformation Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

7.2.1  Brittle Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2197.2.1.1  Initiation of Brittle Fracture by  

Morphological Defects  . . . . . . . . . . . . . . . . . . . . . .  2197.2.1.2  Brittle Fracture of Low Molecular Weight 

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2217.2.1.3  Brittle Fracture at Low Temperatures . . . . . . . .  2247.2.1.4  Environmental Stress Crazing/Cracking  . . . . .  2247.2.1.5  Physical Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

7.2.2  Craze-Like Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2257.2.2.1  Crazing at Low Temperatures  . . . . . . . . . . . . . . .  2257.2.2.2  Crazing at Brittle Fracture Above Tg,am . . . . . . .   2267.2.2.3  Environmental Crazing  . . . . . . . . . . . . . . . . . . . . .  2287.2.2.4  Crazing under Plastic Deformation . . . . . . . . . . .  2307.2.2.5  Formation of Chevron Patterns . . . . . . . . . . . . . .  232

7.2.3  Ductile Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2357.2.3.1  Plastic Deformation of Spherulites . . . . . . . . . . .  235

Page 5: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of ContentsVIII

7.2.3.2  Deformation on the Amorphous/ Lamellar Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  237

7.2.3.3  Strain Hardening and Self-Reinforcement . . . .  2427.2.4  Deformation of Crystals and Lamellae  . . . . . . . . . . . . . . . .  2427.2.5  Self-Reinforcement and High Strength Materials  . . . . . .  244

7.2.5.1  Oriented Structures by Melt Processing . . . . . .  2447.2.5.2  Oriented Structures by Solution(Gel) 

Spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2467.3  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247

7.3.1  Polyethylenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2477.3.1.1  Influence of Molecular Weight . . . . . . . . . . . . . . .  2477.3.1.2  Influence of Chain Architecture: Branching  . .  2507.3.1.3  Influence of Processing  . . . . . . . . . . . . . . . . . . . . .  254

7.3.2  Polypropylenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2557.3.2.1  Influence of Molecular Weight  . . . . . . . . . . . . . .  2557.3.2.2  Crystalline Modification . . . . . . . . . . . . . . . . . . . . .  2587.3.2.3  Influence of the Deformation Temperature  . . .  2657.3.2.4  Additional Effects . . . . . . . . . . . . . . . . . . . . . . . . . . .  267

7.3.3  Polyamides  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2687.3.4  Polyurethanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2707.3.5  Polyethylene Terephthalate (PET)  . . . . . . . . . . . . . . . . . . . .  2707.3.6  Syndiotactic Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2717.3.7  Fluoropolymers: PTFE, PVDF . . . . . . . . . . . . . . . . . . . . . . . . .  2737.3.8  Comparison of different polymers . . . . . . . . . . . . . . . . . . . .  274

8 Polymer Blends.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2818.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2818.2  Thermoplastic/Thermoplastic Blends . . . . . . . . . . . . . . . . . . . . . . . .  284

8.2.1  Blend Formation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2848.2.2  Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2848.2.3  Micromechanical Properties. . . . . . . . . . . . . . . . . . . . . . . . . .  285

8.2.3.1  Blends of Amorphous Polymers . . . . . . . . . . . . . .  2858.2.3.2  Blends of Amorphous and Semicrystalline 

Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2898.2.3.3  Blends of Semicrystalline Polymers . . . . . . . . . .  294

8.3  Rubbers and Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2998.3.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2998.3.2  Typical Morphology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3028.3.3  Micromechanical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . .  305

8.4  Inclusion Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309

9 Rubber Toughened Polymers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3159.1  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3159.2  Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3179.3  Basic Micromechanical Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . .  320

9.3.1  Survey of Micromechanical Behavior . . . . . . . . . . . . . . . . .  3209.3.2  Rubber Particle Volume Content  . . . . . . . . . . . . . . . . . . . . .  3289.3.3  Rubber Particle Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331

Page 6: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of Contents IX

9.3.4  Grafting Influence (Interfacial Bonding) . . . . . . . . . . . . . . .  3329.3.5  Particle Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3339.3.6  Additional Factors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340

9.4  Disperse Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3429.4.1  Disperse Systems with Amorphous Matrix . . . . . . . . . . . .  3429.4.2  Disperse Systems with Semicrystalline Matrix . . . . . . . .  351

9.5  Rubber Network Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360

10 Composites.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36910.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36910.2   Particle-Reinforced Polymer Composites . . . . . . . . . . . . . . . . . . . .  370

10.2.1  Morphology of Particle-Filled Polymers . . . . . . . . . . . . .  37010.2.2  Micromechanical Effects  . . . . . . . . . . . . . . . . . . . . . . . . . .  372

10.2.2.1  Composites with a Tough Matrix (PE, PP) .  37210.2.2.2  Composites with a Stiff Matrix  . . . . . . . . . . .  38310.2.2.3  Conclusion   . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  384

10.3  Nanoparticle Polymer Composites . . . . . . . . . . . . . . . . . . . . . . . . . .  38510.3.1  Overview and General Dependences . . . . . . . . . . . . . . . .  38510.3.2  Micromechanical Effects in Different Classes of 

Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38910.3.2.1  Zero-Dimensional Filler Nanoparticles  

(POSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38910.3.2.2  One-Dimensional Carbon Nanotubes  

(CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39010.3.2.3  Two-Dimensional Layered Particles . . . . . . .  39510.3.2.4  Three-Dimensional Filler Particles . . . . . . . .  399

10.4  Fiber-Reinforced Polymer Composites . . . . . . . . . . . . . . . . . . . . . .  40510.4.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40510.4.2  General Micromechanical Effects . . . . . . . . . . . . . . . . . . .  406

11 Nanostructured Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41511.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41511.2  Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  416

11.2.1  Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41611.2.2  Diversity in Morphologies and Properties . . . . . . . . . . .  41711.2.3  Micromechanical Behavior of Block Copolymers  . . . .  42411.2.4  Functional BCPs and Nanocomposites . . . . . . . . . . . . . .  43611.2.5  Microdeformation Behavior in Block Copolymer/

Polystyrene Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44011.2.5.1  Blends Containing Macrophase-Separated  

PS Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44011.2.5.2  Blends with Oriented Layers  . . . . . . . . . . . . .  44111.2.5.3  Blends with Droplet Morphologies . . . . . . . .  443

11.2.6  Microhardness vs. Micromechanical Mechanisms . . .   44611.2.7  Mechanism of Chevron Formation . . . . . . . . . . . . . . . . . .  449

11.3  Coextruded Multilayered Polymers . . . . . . . . . . . . . . . . . . . . . . . . .  45111.3.1  Overview of Microlayered Composites  

and Coextrusion Technology . . . . . . . . . . . . . . . . . . . . . . .  451

Page 7: Nano- and Micromechanics of Polymersfiles.hanser.de/Files/Article/ARTK_IVZ_9783446427679_0001.pdf · 2.2.1.3 Spectroscopic Techniques (Rheo-Optical Methods) 64 2.2.1.4 Other Techniques

Table of ContentsX

11.3.2  Structure-Property Correlations in Multilayered Composites Comprising Amorphous Polymers  . . . . . .  457

11.3.3  Multilayered Crystalline/Amorphous Polymer Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468

11.3.4  Multilayered Crystalline/Crystalline Polymer Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  475

11.4  Nanofibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47711.4.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47711.4.2  Electrostatic Spinning (Electrospinning) . . . . . . . . . . . .  47811.4.3  Typical Fiber Structures . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

11.4.3.1  Fibers with Porous Structures . . . . . . . . . . . .  47911.4.3.2  Fibers with Beads and Ribbon-Like  

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48011.4.3.3  Fibers with Helical and Twisted  

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48111.4.3.4  Fibers with Rough Surfaces  . . . . . . . . . . . . . .  48211.4.3.5  Fibers with Core Sheath Structures . . . . . . .  483

11.4.4  Mechanical Properties of Polystyrene (PS)  Nanofibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  484

11.4.5  Nanofibers – Nanocomposites . . . . . . . . . . . . . . . . . . . . . .  48811.5  Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  489

12 Special Forms and Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50112.1  Overview, Special Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50112.2  Hot Compacted Oriented Films/Fibers   . . . . . . . . . . . . . . . . . . . . .  503

12.2.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50312.2.2  Hot Compacted Oriented Fibers . . . . . . . . . . . . . . . . . . . .  50512.2.3  Hot Compacted Oriented Films . . . . . . . . . . . . . . . . . . . . .  50912.2.4  Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  512

12.3  Biomedical Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51212.3.1  UHMWPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  514

12.3.1.1  Morphology and Properties of UHMWPE .... 51412.3.1.2  Application of UHMWPE in Hips and  

Knee Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51912.3.2  Polymethylmethacrylate (PMMA)  . . . . . . . . . . . . . . . . . .  52612.3.3  Bioresorbable Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52912.3.4  Bone Substitutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53212.3.5  Electrospun Nanofibers . . . . . . . . . . . . . . . . . . . . . . . . . . . .  535

12.3.5.1  Nanofibrous Scaffolds for Tissue  Engineering of Skin . . . . . . . . . . . . . . . . . . . . . .  535

12.3.5.2  Dentistry Applications . . . . . . . . . . . . . . . . . . .  53612.3.5.3  Scaffolds for Bone Tissue Engineering  . . . .  538

12.4  Biopolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  539


Recommended