+ All Categories
Home > Documents > Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Date post: 23-Dec-2015
Category:
Upload: douglas-haynes
View: 219 times
Download: 2 times
Share this document with a friend
Popular Tags:
47
Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen
Transcript
Page 1: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon:Properties and Applications

Trial lecture

17/1-2004

Kai de Lange Kristiansen

Page 2: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nano

• Size – 10-9 m (1 nanometer)• Border to quantum mechanics• Form

→ Emergent behavior

Introduction

10010-9 10-6 10-3 103 106 109 m

Page 4: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon

• Fullerene• Tubes • Cones• Carbon black• Horns• Rods• Foams• Nanodiamonds

Introduction

Page 5: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon

• Fullerene• Tubes • Cones• Carbon black• Horns• Rods• Foams• Nanodiamonds

Introduction

Page 6: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon

• Fullerene• Tubes • Cones• Carbon black

Introduction

Properties & Application• Electrical

• Mechanical

• Thermal

• Storage

Page 7: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Bonding

Properties

Graphite – sp2 Diamond – sp3

Page 8: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon

Shenderova et al. Nanotechnology 12 (2001) 191.

Properties

Page 9: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanocarbon

Properties

12 pentagons

6 + 6 pentagons

1 – 5 pentagons

Page 10: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene

”The most symmetrical large molecule”• Discovered in 1985 - Nobel prize Chemistry 1996, Curl, Kroto, and Smalley

Properties

Epcot center, Paris

~1 nm

Architect: R. Buckminster Fuller

• C60, also 70, 76 and 84. - 32 facets (12 pentagons and 20 hexagons) - prototype

Page 11: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene• Symmetric shape → lubricant

• Large surface area → catalyst

Properties

Page 12: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene• Symmetric shape → lubricant

• Large surface area → catalyst

• High temperature (~500oC)• High pressure

Properties

Page 13: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene• Symmetric shape → lubricant

• Large surface area → catalyst

• High temperature (~500oC)• High pressure• Hollow → caging particles

Properties

Page 14: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene• Symmetric shape → lubricant

• Large surface area → catalyst

• High temperature (~500oC)• High pressure• Hollow → caging particles

• Ferromagnet? - polymerized C60

- up to 220oC

Properties

Page 15: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene

• Chemically stable as graphite - most reactive at pentagons

• Crystal by weak van der Waals force

Kittel, Introduction to Solid State Physics, 7the ed. 1996.

Properties

Page 16: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Fullerene

• Chemically stable as graphite - most reactive at pentagons

• Crystal by weak van der Waals force • Superconductivity - K3C60: 19.2 K

- RbCs2C60: 33 K

Kittel, Introduction to Solid State Physics, 7the ed. 1996.

Properties

Page 17: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Properties

Roll-up vector:

21 amanCh

• Discovered 1991, Iijima

Page 18: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Properties

Roll-up vector:

21 amanCh

• Discovered 1991, Iijima

Page 19: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Electrical conductanse depending on helicity

21 amanCh

Properties

If , then metallicelse semiconductor

imn

3

2

Page 20: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Electrical conductanse depending on helicity

21 amanCh

Properties

• Current capacity

Carbon nanotube 1 GAmps / cm2

Copper wire 1 MAmps / cm2

• Heat transmission

Comparable to pure diamond (3320 W / m.K)

• Temperature stability

Carbon nanotube 750 oC (in air)

Metal wires in microchips 600 – 1000 oC

• Caging

May change electrical properties

→ sensor

imn

3

2If , then metallicelse semiconductor

Page 21: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Properties

Diameter:

as low as 1 nm

Length:

typical few μm

High aspect ratio:

1000diameter

length

→ quasi 1D solid

Page 22: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotube

Zheng et al. Nature Materials 3 (2004) 673.

Properties

SWCNT – 1.9 nm

Diameter:

as low as 1 nm

Length:

typical few μm

High aspect ratio:

1000diameter

length

→ quasi 1D solid

Page 23: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Nanotubes

Carbon nanotubes are the strongest ever known material.

• Young Modulus (stiffness): Carbon nanotubes 1250 GPa Carbon fibers 425 GPa (max.) High strength steel 200 GPa

• Tensile strength (breaking strength)

Carbon nanotubes 11- 63 GPa

Carbon fibers 3.5 - 6 GPa

High strength steel ~ 2 GPa• Elongation to failure : ~ 20-30 %• Density: Carbon nanotube (SW) 1.33 – 1.40 gram / cm3

Aluminium 2.7 gram / cm3

Properties

Page 24: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Carbon nanotubes are very flexible

Nanoscience Research Group University of North Carolina (USA)

http://www.physics.unc.edu/~rsuper/research/

http://www.ipt.arc.nasa.gov/gallery.html

Properties

Mechanical

Page 25: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Cones

Scale bar: 200 nm

19.2 o38.9 o 60.0 o 84.6 o 112.9 o

Krishnan, Ebbesen et al. Nature 388 (2001) 241.

Properties

• Discovered 1994 (closed form) Ge & Sattler

1997 (open form) Ebbesen et al.

• Closed: same shape as HIV capsid

• Possible scale-up production (open form)

• Storage?

→ Hydrogen

Li e

t al

. N

atur

e 407

(200

0) 4

09.

Page 26: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Carbon black

Properties

Large industry - mill. tons each year

• Tires, black pigments, plastics, dry-cell batteries, UV-protection etc.

• Size: 10 – 400 nm

Page 28: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

CNT / polymer composite

• Current technology - carbon black

- 10 – 15 wt% loading

- loss of mechanical properties

• CNT composites - 0.1 – 1 wt% loading

- low perculation treshold

Application

Page 29: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

CNT / polymer composite

Application

Wu et al. Science 305 (2004) 1273.

• Transparent electrical conductor

- Thickness: 50 – 150 nm

- High flexibility

Page 30: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Electric devices

Application

Page 31: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Transistor

• Vacuum tubes - Nobel prize 1906, Thomson.

IBM, 1952.

• Semiconductor, Si-based - Nobel prize 1956, Shockley, Bardeen, and Brattain.

- 2000, Kilby.

                      

Application

Page 32: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Transistor

• SWCNT - 2.6 GHz, T = 4 K

- Logical gates

Application

Li et al. Nano Lett. 4 (2004) 753.Bachtold, Dekker et al. Science 294 (2001) 1317.

Base

CollectorEmitter

Page 33: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Antenna

Application

Page 34: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Antenna

• Dipole~ 3/4 m

Application

MHzm

sm

cf 100~

3

103 8

Radio wave:

Page 35: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Antenna

• Dipole~ 3/4 m

Dekker, Phys. Today May (1999) 22

• Nanotube

Application

MHzm

sm

cf 100~

3

103 8

Radio wave:

Optical wave: L

nmL 500~2/~

Page 36: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Flat screen displays

Application

Plasma TV

Page 37: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Flat screen displays

Saito et al., Jpn. J. Appl. Phys. 37 (1998) L346.

Application

• Field emission

Page 38: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Atomic Force Microscopy

Application

Page 39: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Atomic Force Microscopy

Application

Eld

rid S

våsa

nd,

IFE

, K

jelle

r

Page 40: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Atomic force microscopy

Wong, Lieber et al. Nature 394 (1998) 52.

Application

• Tube or cone

• Chemical probe

Page 41: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Yarn

Zhang, Atkinson and Baughman, Science 306 (2004) 1358.

Application

Page 42: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Yarn

Zhang, Atkinson and Baughman, Science 306 (2004) 1358.

Application

MWCNT

• Operational -196oC < T < 450oC

• Electrical conducting

• Toughness comparable to Kevlar

• No rapture in knot

Page 43: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Hydrogen storage

2 H2(g) + O2(g) → 2 H2O (l) + energy

H2 (200 bar)

Schlapbach & Züttel, Nature 414 (2001) 353

Application

H2 (liquid)LaNi5H6Mg2NiH

3.16 wt% 1.37 wt%

Page 44: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Hydrogen storage

• Aim: 5 - 7 wt% H2

• SWCNT - Dillon et al. (1997) : 8 wt%

(questionable) - Tarasov et al. (2003): 2.4 wt

% reversible, 25 bar H2, -150oC.

• Cones - Mealand & Skjeltorp,

(2001) US Patent 6,290,753

Application

Eldrid Svåsand, IFE Kjeller

Page 45: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Warnings

• Environment and health• No scale-up production of fullerenes and tubes • No scale-up design, yet.

Conclusion

Page 46: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Conclusion

• Nanocarbon - fullerene - ”most symmetrical”

- tubes - ”strongest”

- cones - ”one of the sharpest”

- carbon black - ”large production”

• Properties - electrical, mechanical, thermal, storage, caging

• Applications - antenna, composite, writing, field emission,

transistor, yarn, microscopy, storage

Conclusion

Page 47: Nanocarbon: Properties and Applications Trial lecture 17/1-2004 Kai de Lange Kristiansen.

Commercial

• Companies: ~ 20 worldwide - Carbon Nanotechnologies Inc. (CNI)

- SES Research

- n-Tec

• Prices: - Tubes: pure SWCNT $500 / gram (CNI)

MWCNT € 20-50 / gram (n-Tec)

- C60 : pure $100-200 / gram (SES Research)

- Cones: Multi € 1 / gram (n-Tec)

- Gold : $10 / gram


Recommended