+ All Categories
Home > Documents > Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

Date post: 04-Apr-2018
Category:
Upload: nirmalya-mishra
View: 219 times
Download: 0 times
Share this document with a friend

of 17

Transcript
  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    1/17

    Ron ReifenbergerBirck Nanotechnology Center

    Purdue University

    Lecture 8

    Introduction to Contact Mechanics

    1

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    2/17

    How to Model the Repulsive Interactionat Contact?

    2

    tip

    apex

    substrate

    Source: Capella & Dietler

    Maybe if the contact area involves tens or hundredsof atoms the description of net repulsive forceis best captured by continuum elasticity models

    Atom-Atom? Sphere-Plane?

    2

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    3/17

    3

    What we want to know

    Nature of the contact - reversible (elastic)?hysteretic?

    Contact radius (contact area) as function ofapplied force

    Any deformation?

    Pull-off force (adhesion force)

    What determines all these quantities?

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    4/17

    Continuum description of contact - history

    Hertz (1881) takes into account neither surface forces nor adhesion,and assumes a linearly elastic sphere indenting an elastic surface

    Sneddons analysis (1965) considers a rigid sphere (or other rigidshapes) on a linearly elastic half-space.

    Neither Hertz or Sneddon consider surface forces discussed inlast lecture.

    Bradleys analysis (1932) considers two rigid spheres interacting viatheLennard-Jones 6-12 potential

    Derjaguin-Mller-Toporov (DMT, 1975) considers an elastic sphere withrigid surface but includes van der Waals forces outside the contactregion. Applicable to stiff samples with low adhesion.

    Johnson-Kendall-Roberts (JKR, 1971) neglects long-range interactions outside contact area but includes short-range forces in the contact area.Applicable to soft samples with high adhesion.

    Maugis (1992) theory is even more accurate shows that JKR and DMTare limits of same theory

    4

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    5/17

    Tip-sample Interaction Models

    From the Derjaguin approximation for rigid tip interacting with rigidsample we have

    Real tips and samples are not rigid. Several theories are used to betteraccount for this fact (Hertz, DMT, JKR)

    * These theories also apply to elastic samples, they are just shown onrigid sample to demonstrate key quantities clearly. For example D isthe combined tip-sample deformation in (b)

    = = = + 13 23 2132 1( * ( *)) 2 2 2 ( )tip sample adhesion tip tip tipU r RWF r F R R

    Rigid tip-rigid sample Deformable tip and rigid sample*

    Rtip

    sample

    FaHertz

    aJKR

    F

    as

    Equilibrium Pull-off

    1

    2

    3

    D D

    (a) (b) (c)

    5

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    6/17

    Work of adhesion and cohesion: work done to separate unitareas of two media 1 and 2 from contact to infinity in

    vacuum. If 1 and 2 are different then W12 is the work ofadhesion; if 1 and 2 are the same then W11 is the work ofcohesion. Think vdWs whenever you see work ofadhesion/cohesion.

    Surface energy: This is the free energy change when thesurface area of a medium is increased by unit area. Thus

    While separating dissimilar materials the free energy change

    in producing an interfacial area by unit area is known astheir interfacial energy

    Work of adhesion in a third medium

    I. Surface energies - notation

    11 12=

    12 1 2 12W = +

    12

    132 13 23 12W = + 6

    1 23

    1 2

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    7/17http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/stiffness-density/NS6Chart.html

    10 MPa

    five

    ordersofmagnitude

    1 Pa = 1 N/m2

    7

    II. What is the Stiffness of the Tip/Substrate?

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    8/17

    FaHertz

    aJKR

    Equilibrium

    D

    (b)

    =

    13

    tip

    Hertz

    tot

    R Fa

    E

    + =

    13

    132( 2 )

    tip tip

    DMT

    tot

    R F R Wa

    E

    + + + =

    132

    132 132 132( 2 6 (3 ) )

    tip tip tip tip

    JKR

    tot

    R F R W R W F R Wa

    E

    Standard results

    = =

    2

    1/32 2

    Hertz

    tip tip tot

    a FD

    R R E

    ( ) + = =

    2

    1/32

    2132

    2 tipDMT

    tip tip tot

    F R WaD

    R R E

    =

    2

    13262

    3JKR

    tip tot

    W aaD

    R E

    = =

    =

    +

    2 2

    *

    *

    1 3 3 1

    4 4

    1

    4

    3

    1s t

    s ttot

    tot

    E

    sometimes E

    E E E

    E

    Contact radius a:

    Deformation D:

    Source: Butt, Cappella, Kappl 8

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    9/17

    F

    as

    Pull-off

    D

    (c)0HertzadhesionF =

    tip 1322 R WDMT

    adhesionF

    =

    tip 132

    3R W

    2

    J KR

    adhesionF

    =

    Standard results (cont.)

    Pull-off Force F:

    Source: Butt, Cappella, Kappl 9

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    10/17

    Example

    Hertz contact: Rtip = 30 nm; Fapp= 1 nN

    Etip=Esub=200 Gpa; Poisson ratio = tip=vsub=0.3=v

    = + =

    = = =

    22 2111 3 3 1

    4 2

    3 0.91 1.365146.5

    2 (200 ) 200

    tipsub

    tot sub tip

    tot

    E E E E

    E GPaGPa GPa

    = =

    13

    0.59tip

    Hertz

    tot

    R Fa nm

    E

    = = =

    2

    1/32 2

    12Hertz

    tip tip tot

    a FD pm

    R R E

    Fapp

    aHertz

    D

    60 nm

    Contact radius:

    Deformation:

    Pull-off Force=0

    Contact Pressure:

    = 2

    0.9 9000 .Hertz

    FP GPa atmos

    a 10

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    11/17

    11

    d

    R

    3* 2

    12 2

    *

    0, 0

    ( ) 4( ) , 0

    3

    1 1

    ts

    tip sample

    tip sample

    d

    F dE R d d

    EE E

    >

    =

    = +

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    12/17

    12

    2

    3* 2

    2

    12 2

    *

    ,6

    ( ) 4( ) ,

    6 3

    1 1

    o

    ts

    o o

    o

    tip sample

    tip sample

    HRd a

    dF d HR

    E R a d d aa

    E

    E E

    >

    = +

    = +

    d

    R

    ao

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    13/17

    jumpfrom

    contact

    2 click

    WJKR

    13

    * 3* 3

    2

    *

    12 2 3

    * *

    12 2

    *

    0,

    ( ) 48 ,

    3

    2

    3

    2

    2;

    8

    1 1

    ts

    J KR

    adhesionJ KR

    J KR

    J KR critical J KRcritical critical

    tip sample

    tip sample

    nocontact

    F d E aW E a contact

    R

    FW

    R

    W aad

    R E

    W a a R Wd a

    E R E

    EE E

    =

    =

    = +

    = =

    = +

    f h

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    14/17

    Contact forces: Maugis Theorya: normalized contact radius: normalized penetrationP: normalized force

    Penetration

    Penetration

    D. Maugis, J. Colloid Interface Sci.150, 243 (1992).

    Non-contact Contact

    Contact

    Rad

    ius

    Loadin

    g

    Force

    Non-contact

    Attractive

    Contact

    Repulsive

    1 click

    =

    tip

    tot

    R Wa E

    1/3

    132

    2

    0

    2.06

    = +

    = =

    2 21 11 3

    4

    * int

    s t

    tot s t

    o

    E E E

    a r eratomic distance

    0: DMT (stiff materials) : JKR (soft materials)

    14

    adhesionelasticity

    i it i t m ti m

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    15/17

    =

    tip

    FF

    W R

    1/3

    132

    =

    tip

    tot

    R W

    a E

    1/3

    132

    2

    0

    2.06

    =a equilibrium separation

    typical atomic distance)

    0

    (

    2 21 11 3

    4

    s t

    tot s tE E E

    = +

    15

    applied force

    work of adhesion

    adhesion

    elasticity

    a i ity o i erent mo e s converting measureadhesion force to work of adhesion

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    16/17

    Comments on these theories

    JKR predicts infinite stress at edge of contact circle.

    In the limit of small adhesion JKR -> DMT Most equations of JKR and Hertz and DMT have been

    tested experimentally on molecularly smooth surfacesand found to apply extremely well

    Most practical limitation for AFM is that no tip is aperfect smooth sphere, small asperities make a bigdifference.

    Hertz, DMT describe conservative interaction forces,

    but in JKR, the interaction itself is non-conservative(why?) for a force to be considered conservative ithas to be describable as a gradient of potential energy.

    16

  • 7/29/2019 Nanohub.org Resources 9820 Download 2010.09.21-ME597-L08-Reifenberger

    17/17

    Combining van der Waals force & DMT contact

    A : Hamaker constant (Si-HOPG)

    R : Tip radius

    E*: Effective elastic modulus

    a0: Intermolecular distance

    Rtip=Si

    a0 =r*

    sample = HOPG

    z

    Raman et al, Phys Rev B (2002), Ultramicroscopy (2003) 17


Recommended