+ All Categories
Home > Documents > Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. ·...

Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. ·...

Date post: 30-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
18
Nautilus Project Final Environmental Impact Statement Appendix D Black Hills Experimental Forest Study Plan
Transcript
Page 1: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project  

Final Environmental Impact Statement  

Appendix D  Black Hills Experimental Forest Study Plan 

Page 2: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐2 

This page intentionally left blank. 

Page 3: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐3 

Evaluating fuel, vegetation and disturbance dynamics using the irregular uneven‐aged silvicultural system within different forest structure stages on the Black Hills Experimental Forest 

 Principal Investigators: Theresa B. Jain and Russell T. Graham, Forest and Woodlands Research Program, Rocky Mountain Research Station, Moscow, Idaho  Study Objectives   Experimental forests and ranges are places that are designated for long‐term and manipulative research of forest and range vegetation (Adams and others 2004), thus they are well suited to evaluate a variety of silviculture techniques. By using an experimental forest, both the short‐ and long‐term silvicultural, managerial, and ecological effects of treatments can be studied, displayed, and preserved. Black Hills Experimental Forest (BHEF) is located 20 miles northwest of Rapid City, South Dakota and is 3,500 acres in size representing the ponderosa pine cover type near the center of the Black Hills National Forest. Research studies established on BHEF are designed to provide abundant current and future research opportunities. All activities conducted on BHEF are for research purposes, including vegetation manipulation, road maintenance and construction, and fire suppression.  The uneven‐aged study has two objectives. The first is to evaluate the application of the irregular or free selection silvicultural system in a very productive ponderosa pine forest within different forest structural stages currently in place on BHEF (Graham and Jain 2005). The second is to evaluate a variety of ecological effects of the forest conditions created by these silvicultural systems. For example, this study will document the impact the treatments associated with each silvicultural system have on creating and maintaining forest conditions that are resilient to insect, disease, and wildfire within a changing climate. In addition, because this silvicultural system is fully replicated using a scientific design, future research opportunities exists for wildlife, hydrology, or other research purposes.  Evaluating the irregular selection silviculture systems is not only being conducted on BHEF but is one of a series of replicated studies which have been installed on the Priest River Experimental Forest, Deception Creek Experimental Forest and Boise Basin Experimental Forest. This multi‐location study is to insure that the applicability of results is appropriate for a variety of forest conditions and types.  Under the proposed vegetation treatments, harvesting of trees will provide a variety of overstory tree canopy cover. Slash created through these treatments would be managed by various means such as under burning, jackpot burning, mechanized piling, or through mastication. After the stands have been treated, the establishment and development of understory vegetation would be studied and quantified using research protocols (outlined within individual study plans). Other ecosystem components including nutrient cycling, vegetation dynamics, species composition, gap size, shape and orientation of openings and insect and disease activity would be evaluated as a function of the different vegetation treatments.   Background  There are several issues concerning forest management in the Black Hills. A large portion of the forests are rated as having medium to high risk of mountain beetle infestation and are currently experiencing a large scale pine beetle infestation.  Due to the nature of the growth and development of Black Hills ponderosa pine forests, these areas tend to develop continuous canopy and abundant regeneration that were historically diversified through fire. Much of the Black Hills, because of its high recreation value, has substantial amounts of wildland urban interface, requiring continuous fire suppression and limiting the applicability of using prescribed fire as a dominant tool for creating diversity in crown and surface fuels. Maintaining wildlife habitat for a variety of species also is a major value placed on the Black Hills. Addressing these issues in an integrated fashion offers 

Page 4: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐4 

both challenges and complexity to forest management. The objective of this study is to develop, implement, and evaluate a variety of management activities designed to integrate these many issues at multiple spatial scales.  One such technique that will be tested at BHEF is an approach developed by Graham and Jain (2005) which attempts to balance management objectives and stakeholder values within an ecological context, resulting in the development of the irregular (or free) selection silvicultural system.   The implementation of irregular selection concepts was tested in a study that was installed on the moist mixed conifer forests at Priest River Experimental Forest (PREF) beginning in 2004 (Jain and others 2008). However, these results, if only applied in this one location, have limited applicability to other landscapes and places. To understand the applicability of results, similar studies need testing in other locations. Therefore, the study located at BHEF is a replication of the concepts used at PREF; however, because BHEF is a dry forest a different approach in developing the irregular selection within the ecological, social, economic context of the Black Hills. Moreover, the research will complement a similar study on the Boise Basin Experimental Forest which is also a dry mixed conifer/ponderosa pine forest.  Several elements will be measured and statistically evaluated based on forest conditions created by these silvicultural systems. Long‐term ecological elements include evaluating whether the silvicultural system favors forest compositions and structures that are more resilient and resistant to native and introduced disturbances (regeneration hypotheses). In the Black Hills, this will focus on the manipulation and the influence of large tree density and regeneration establishment of ponderosa pine that create conditions that favor wildlife habitat, insect resilience, and fire behavior and severity.  To address the regeneration capacity of ponderosa pine we will develop thresholds based on methods and concepts presented by Jain and others (2002, 2004) which were developed for western white pine. We will evaluate the regeneration establishment and abundance as a function of different canopy openings created by the harvest. For altering potential fire behavior and the burn severity it might cause we want to introduce heterogeneity within the vegetation (fuels) on the Forest (e.g. vegetation composition and structure, surface and ground fuel composition, structure, and distribution) (fuel dynamics hypotheses). Therefore, if a fire were to occur, the pattern of tree and soil post‐fire environments would hypothetically also be heterogeneous. Evaluation of this will be conducted through simulation models and through data collection and evaluation (the methodology currently being developed and evaluated at PREF) (refer to Jain and others 2008) (landscape fuel dynamics hypothesis). Although the influence of climate change in forests is uncertain and long‐term, we hypothesize that insect and disease may become more active. Thus, survival, growth, and abundance of ponderosa pine and subsequent beetle infestation, but also other species such as quaking aspen, birch and other surface vegetation within harvested sites will be used as indicators of insect resilience within the context of climate change (disease and insect hypotheses).  Wildlife habitat attributes will include forest structures that favor goshawk foraging area or value of hiding cover for deer and elk.   This will be a long‐term study (from decades to possibly centuries); therefore, the locations of sampling points will be recorded using Global Positioning Systems (GPS) and data will be archived when the Principal Investigators either retire or leave. Therefore, future research opportunities will be maintained. Although not directly addressed in this study plan, other research studies are being developed to address soil effects from harvest such as long‐term soil productivity, insects, fuel treatment longevity, and wildlife habitat.   Current Condition  The forests on the BHEF have abundant ponderosa pine in various stages of development with small intrusions of quaking aspen with meadows intermixed throughout the forest that contain some white spruce.  Past studies have created a diversity of forest structures ranging from small openings (< 1 acre) to an occasional 5 acre opening that now contains an overabundance of ponderosa pine saplings. The remaining Forest has a diversity 

Page 5: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐5 

of structures ranging from sites that contain multi‐storied canopies with an abundance of ponderosa pine to sites that have complete canopy closure with only a needle mat in the understory.  Many of the sites that contain complete canopy closure are experiencing beetle infestations and in its current state will experience large amounts of mortality.  Desired Future Condition ‐ Long‐term Hypothesis  The desired forest condition within the study area is to insure there is a representation of all the potential forest species and structures, and with emphases on increasing quaking aspen where appropriate.  The techniques, methods and evaluation of the distribution, abundance and patch size of the forest structures will be a primary research focus in relation to beetle infestation, fuel heterogeneity at all spatial scales from 0.02 – 3,500 acres (short‐ and long‐term hypothesis 2).  Methods   Study Area    The study is being conducted throughout the entire Experimental Forest (Fig. 1).   Irregular Selection Concepts Used in Developing Study Design  Irregular selection combines basics from both even‐aged and uneven‐aged systems and can be used to produce a variety of forest compositions and structures (Graham and Jain 2005, Graham and others 2007, Nyland 2002). Rather than only emphasizing trees, the system includes snags, decadence, understory vegetation, down wood, interspersion of structural stages, groups of trees with interlocking crowns, and openings of sufficient size to insure tree establishment. It is a multi‐entry selection system, which includes elements inherent to patch and strip clearcutting, group‐selection, shelterwood, seed tree, and individual tree selection systems. This includes the full array of site preparation, seedling establishment, and intermediate treatments available. Applying adaptive management is critical to using the irregular selection system. As the term “irregular” implies, the frequency, kind, intensity, and timing of treatments is dependent upon stand development and how the current forest and stand conditions fulfill the guiding vision. A “vision” (research objectives) describes a desirable set of short‐ and long‐term forest and stand conditions over multiple spatial scales (canopy gaps to landscapes) and frames the treatments and their implementation (Graham and Jain 2005, Graham and others 2007).   Heterogeneity in composition and structure is a key component of the objectives, which we will use to guide our irregular selections system. The advent of bark beetle infestation combined with the nature of the growth and development of these forests will guide the placement and distribution of patches; tree canopy densities will be highly variable in order to minimize edge effect and create conditions that favor successful regeneration (e.g. feathering of the edges). Because BHEF is dominated by ponderosa pine with hardwoods growing in as intrusions there will be single species to multiple species groups and clumps of trees where they occur naturally; we will maintain this character by avoiding the creation of uniformly geometrically shaped openings. Such highly variable forest conditions can be subjected to isolated wind, snow, disease, and insect disturbances are expected. These endemic disturbances will contribute to important forest structures such as snags, decadence, and down wood recruitment  The application of the silvicultural system combined with the productivity of the Black Hills forests should create highly variable canopy densities resulting in a fine‐scale (0.12 acres) mosaic of ground‐ and mid‐level vegetation, as well as surface organic materials (i.e., abundant surface and ladder fuels). Similar to treating the high canopy structures, we will use irregular selection and activity fuels and slash treatments to treat ground and mid‐level structures to create a diversity of canopy cover, surface vegetation composition and structure, coarse woody 

Page 6: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐6 

debris amounts and structure, and a variety of forest floor conditions. Within these conditions, we expect abundant natural regeneration of forbs and ponderosa pine. This ground level (fuel) mosaic would develop in response to the wide range of operational environments reflected in this first entry of a selection system. Depending on the locale, we expect groups and clumps of young forest to develop with numerous saplings (100s to 1000s) intermixed with an herbaceous and grass understory. Within the sapling component (up to 30 years of age), we would determine whether a weeding, cleaning, or both would be needed to favor the development of ponderosa pine and aspen (Graham 1990, Graham and others 1983, Sheppard et al. 2002). The justification for the timing and intensity of such treatments and the removal of additional overstory trees will be a function of how the forest (fuels) develops. One of the results we hope to obtain from the study is to identify the key elements (i.e., regeneration establishment, release of advanced regeneration, cleanings, or weeding to favor species composition) that identify the need for a second entry.  Areas Surrounding Growing Stock Level and Other Established Studies  The Black Hills Experimental Forest has a long history of research. During this time several studies have been established with some being currently active and others being inactive. Each study will be evaluated for future research opportunities and also as to whether the current forest structure is resilient to the ongoing beetle infestation. In cases where there are too many trees, we will conduct a harvest to insure the integrity of the study is maintained. There is a replicated study called the Growing Stock Level (GSL) where different even‐aged sites have been maintained at specific basal areas (reference). Surrounding these sites, plots will be expanded using an even‐aged system reflecting the density noted in a particular plot. In cases where multiple GSL plots exist at different densities, plot edges will reflect the specific plot density and decrease to a median stand density approximately 50’ to 150’ from plot.  Experimental Design    Tree canopy dynamics (e.g. opening and gap creation along with tree and canopy growth), along with the forest floor conditions, determine how a forest regenerates and develops. Moreover, these two forest characteristics are the ones predominantly managed to produce desired forest conditions. Therefore, in our study we will use a spilt‐split plot design with the whole plot being canopy opening (Treatment C for canopy opening) created by different opening sizes and residual tree density during harvest. Forest floor conditions (first split) which includes mineral versus organic surface (Treatment S for soil) and burned versus unburned (Treatment F for fire/no fire) (second split). The soil disturbance and burned versus unburned is created by prescribed fire and mechanical treatments. The unburned will have two mechanical treatments (mastication and grapple pile/or no site prep). A completely crossed design with canopy opening/forest floor conditions would be ideal; however, with the advent of beetle activity, logistics in implementing prescribed fire, harvesting limitations and current variability in sites achieving this completely crossed design may not be possible.  Therefore, the split‐split plot design is being applied.   Study Implementation  Prescription   A thorough reconnaissance of the area was completed to identify areas containing high levels of insect activity, presence of other species in addition to ponderosa pine, or areas containing or potentially containing old‐forest conditions. Operational constraints (access, slope angles) were also identified, as well as areas where different slash treatments would be limited or preferred.   In general, increasing species diversity where opportunities exist is preferred. Heterogeneity, groups, and clumps of trees are preferred and tree marking is to have minimal impact on the inherent clumps of trees. 

Page 7: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐7 

Clumps or groups of trees will either have interlocking crowns or, depending on beetle risk, crowns will not be touching but will be within 5 to 10 feet of each other. Vigorous dominant or co‐dominant trees with >40 percent crown are favored.  The largest tree possible will be favored, but on‐site conditions will dictate exceptions to this preference. Since beetle infestation is high, large ponderosa pine that contain a week crown and are not contributing to a beetle threat are eligible to become potential snags and subsequent large log recruitment, which will provide wildlife habitat.  A cleaning and weeding will be conducted post‐harvest to favor species composition and spacing that promotes heterogeneity as the forest develops. Mortality of overstory will continue in some areas, thus creating snags and large wood recruitment through time and simultaneously releasing understory trees. These areas, depending on beetle threat (they will be removed if currently infested by beetles) may or may not be harvested during this entry.  Harvesting  We will use ground based yarding systems, depending on the slope grade and residual tree densities (Fig. 1). Depending on the preferred post‐harvest outcome, research scientists and Black Hills National Forest personnel will discuss the preferred choice of machines to maintain the experimental design.   Slash Treatments  Slash treatments will vary depending on the amount of slash that will be created combined with feasibility of either prescribed fire or mechanical treatments. Five treatments will be considered: log forwarding during harvest, lop and scatter, lop and scatter followed by mastication, whole tree yarding, whole tree yarding with prescribed fire, and whole tree yarding followed by jackpot prescribed fire. To sustain a valid study design, a minimum of three sites will be treated per treatment type within the entire Experimental Forest.  The minimum of three treatments do not need to occur simultaneously. Specific designation will be finalized after harvest. Pile burning (jackpot), especially in areas where we will use individual tree selection, will allow fires to creep, creating a mosaic of soil burn severities and diverse surface conditions.  Masticating fuels will occur in locations where implementing prescribed fire is difficult and an abundance of slash is created during harvest. Moreover, in places where advanced regeneration is of low vigor and is unable to be released, portions of these saplings will be removed.  District crews will conduct prescribed fires. These fires will be very low intensity with short (<4 ft) flame lengths and conducted when the lower duff moisture are such to minimize complete consumption of the organic layer but favor a diversity of soil burn severities. At these moisture contents, forest floor organic material consumption is minimal, preserving the microbial communities and nutrients intrinsic to them, yet providing a burned over surface. In addition to the prescribed fires, jackpot burns will remove concentrations of slash.   Data Collection and Analysis  Within Unit Sampling  Because the post‐harvest units vary in size and shape, the number of samples will be a function of this variability. However, we will place a minimum of three sampling points in units <3 acres; in larger units (≥3 acres) plot density will be approximately one point/acre. Sampling points will be installed along transects creating a grid of points. Depending on unit size and shape, the sampling points will be placed either 99 feet (1.5 chains) or 198 feet (3 chains) apart.  The transect azimuths will be parallel to the unit’s longest edge. The first sampling point will be installed 70 feet from the selected edge corner, at a 45 degree offset from the identified transect direction. Each transect within the grid will be placed either 99 or 198 feet apart, depending upon unit size. Using this sampling technique will cover the entire unit and be unbiased. In addition, this sampling 

Page 8: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐8 

technique will allow for spatial analysis of fuels and vegetation as they develop over time. Each sampling point will be permanently marked with rebar and the location recorded using a GPS unit. We will select three reference trees from where distance and azimuth to plot center will be recorded. Identification characteristics of these reference trees, such as species and dbh will be obtained. These trees will have identification paint placed on them facing plot center.  Surface Data (300th acre plot)   After recording the slope and aspect of the plot, we will establish a 6.8 feet radius circular plot (300th acre) at the selected sampling point. We will obtain ocular estimates of  percentage cover of  litter, humus, mineral soil, rocks, brown cubical rot, coarse woody debris greater than and less than three inches, stumps, trees bases, grass, forbs, tree seedlings by species, shrubs, and mosses/lichens/liverworts. In addition, the number of live and dead stems of shrubs (both live and dead) will be tallied by height class, low (<1.5 ft tall or from 0 to 25 inches in diameter), medium (1.5 to 6.0 ft tall or 0.25 to 1.0 inches in diameter), and tall (≥6.0 feet tall or ≥1.0 inches in diameter). We will record litter and humus depth at the four cardinal directions at a 3.4‐foot radius and then average these measurements.    Tree Data  Seedlings <1.0 inch dbh will be tallied by species on the 300th acre plot. We will tally saplings from 1.0 to 5.0 inches dbh on the same plot by status (live or dead), species, height, and dbh to nearest tenth of an inch.  Larger trees will be tallied using a 20 basal area factor prism.  Besides the metrics mentioned above that were recorded for saplings, uncompacted crown ratio and surface‐to‐live crown will be recorded for these larger trees.  In addition, snags will be assigned a code, based upon decay status (codes from Thomas and others 1979).  Coarse Woody Debris (CWD) Immediately after harvest, prior to treating harvest activity slash, Brown (1974) will be used to quantify woody residue. After treating activity slash through mastication, prescribed burning, grapple piling or no treatment, we will use Brown (1974) for quantifying all wood residues.  Six photographs will be taken at each sampling point.  Photograph 1 will be taken of the 300th acre plot with engineering flags delineating the plot edge, photographs 2 through 5 will be taken from the sampling point facing outward at azimuths of 360, 90, 180, and 270 degrees, respectively. Photograph 6 will include the fixed and variable tree plots and be taken from the down slope direction of the sampling point along the grid transect.  Data Summaries The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE‐FVS) (Reinhardt and Crookston 2003) will be used to summarize data by individual sampling point to be used for regression analysis. FFE‐FVS will also be used to summarize data to the unit level for mixed analysis of variance tests. A variety of indices will be developed, such as a soil disturbance index and a fuel heterogeneity index.  Plot measurements will occur post‐harvest, pre‐activity slash treatments, post‐activity slash treatments, and five years after regeneration harvest. Future measurements will vary, depending upon funding. However, if funding is available year 10 would be the next sampling period. Additional sampling will be dependent on change in stand development and adaptive management decisions.  Landscape Sampling Two spatial data sets will be created that include pre‐ and post‐harvest site (aspect, slope, elevation) and vegetation (cover, canopy height, canopy base height) characteristics. Pre‐harvest data will be obtained from the RMRS and Black Hills National Forest. Post‐harvest data will include harvest unit delineations and 

Page 9: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐9 

summarized plot data. If funding opportunity arises, some remote sensing data collection methods such as LIDAR could also be obtained.  Statistical Analysis  Implementation  Research Question: What is the difference in implementation strategies (resulting forest structure) in relation to the reverse‐J uneven‐aged management prescriptions (Table 1) that were created using FVS?  Null Hypothesis: The resulting forest structures are similar to the forest structures created using the reverse‐J uneven‐aged silviculture prescriptions created using FVS.   Regeneration (5 years after regeneration harvest) 

Research Question: Are we able to create heterogeneity in ponderosa pine regeneration as a function of canopy opening and forest floor conditions?  Null Hypothesis 1: Unsuccessful at creating heterogeneity in regeneration of ponderosa pine.  Null Hypothesis 2: Unsuccessful at regenerating and establishing quaking aspen where present in different  canopy openings.  Null Hypothesis 3 (10 years after regeneration harvest):  Growth and survival of established seedlings will not  vary as a function of treatment combination.   Statistical Analysis: Analysis of variance using canopy opening, mineral/organic, burned/unburned to predicting  early‐seral/total seedlings per acre.   Fuel Dynamics  Landscape (1 year after all treatments are implemented)   Short‐term Research Question: Does landscape heterogeneity increase wildfire resilience concerning fire behavior and effects?  Note:  Although we cannot answer this by introducing a wildfire, a modeling approach will be used.  Null Hypothesis 4: The heterogeneity of within and between units did not alter fire behavior (e.g. fire type, fire spread, and flame length). This will be evaluated using FARSITE and FlamMap and new developed fire behavior fire models (Finney 1998, 2006). Outcomes will be compared to the FARSITE and FlamMap outcomes associated with similar analyses conducted for the Priest River Experimental Forest study (Jain and others 2008).  Within Unit 

Short‐term Research Question:  By increasing the variability in the implementation of harvest and activity slash treatments do we create heterogeneity in surface fuels both in the short (1‐5 years) and long‐term (> 5 years) within a given unit? 

Null Hypothesis 5 (5 years after regeneration harvest):  Variation in soil disturbance (e.g. mineral soil or organic surface, charred mineral soil, charred organic surface) and canopy opening will not create variation in surface 

Page 10: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐10 

fuels.  If funding opportunity arises fuel moisture will be added to data collection beginning year 5.  Statistical analysis: Two approaches: 1) create spatial data sets from sampling point grid and compare variation in data sets across the different canopy opening/forest floor conditions and 2) Develop a fuel heterogeneity index for each sampling point and predict this index as a function of canopy opening and soil disturbance  treatments.  Insect  Research Question: Did we succeed in increasing the abundance of aspen and other hardwoods to increase species diversity?  Null Hypotheses 6‐9 (long‐term 5 years to decades)  Null Hypothesis 6: Treatments do not favor the growth and development of hardwoods; rather, they favor faster growth in ponderosa pine.   Null Hypothesis 7: Mortality rates are above 50% in hardwoods from competition.   Null Hypothesis 8: Trees will dominate site and shrubs and grasses will not be favored (> 50% cover).   Null Hypothesis 9: The level of insect infestation will be correlated with tree density regardless of group size.   Statistical analysis: Two approaches: 1) Indirect approach is to evaluate the changes in species composition, growth over time using a repeated measures statistical analysis or other similar analysis with treatments and 2) Direct approach is to insect occurrence as a function of multiple spatial scales beginning with tree groups followed by original harvest unit, followed by entire study area as the experimental units using either mixed analysis or classification and regression trees.  Other research associated with this study: There are several studies being developed in collaboration with this one, which will be added as individual study plants. We will address and evaluate future hypotheses over time as a function of funding availability until the Principal Investigators retire or leave. All data will be archived for future research opportunities.  Safety  Job hazard analyses will be developed and followed throughout the entire process from sale preparation to administration to study implementation and data collection. Black Hills National Forest or Northern Hills Ranger District will be in charge of safety during timber sale preparation, harvesting and conducting post‐harvest treatments. Tail gate sessions will be conducted at the beginning of each project and when new people are involved in the different aspects of the study.  All research and District teams will carry and use an operating and functional Forest Service radio.   References 

 Adams, Mary Beth; Loughry, Linda; Plaugher, Linda. Compilers. 2004. Experimental forests and ranges of the USDA Forest Service. Gen. Tech. Rep. NE‐321. Newtown Square, PA: USDA Forest Service. 178 p. 

Brown, J. K. 1974. Handbook for inventorying downed woody material. Gen. Tech. Rep. INT‐16. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 

Page 11: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐11 

Finney, Mark A. 1998. FARSITE: Fire Area Simulator‐model development and evaluation. Res. Pap. RMRS‐RP‐4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47 

Finney, Mark A.  2006.  An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comp. Fuels management‐‐‐How to measure success: Conference proceedings; Portland, OR . Proc. RMRS‐P‐41. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station:  213‐220.  

Graham, R. T. 1990. Importance of integrating harvesting, site preparation, and regeneration: the silvicultural system. In. Forestry on the frontier: proceedings of the 1989 Society of American Foresters National Convention; 1989 September 24‐27; Spokane, WA.Washington, D.C.: Society of American Foresters: 217‐218.  

Graham, Russell T.; Jain, Theresa B. 2005. Application of free selection in mixed forests of the inland northwestern United States. Forest Ecology and Management. 209(1‐2): 131‐145. 

Graham, R. T.; Smith, R. A. 1983. Techniques for implementing the individual tree selection method in the grand fir‐cedar‐hemlock ecosystems of northern Idaho.  Res. Note  INT‐332 Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 4 p. 

Graham, Russell T.; Jain, Theresa B.; Sandquist, Jonathan. 2007. Free selection: a silvicultural option. In: Powers, Robert, ed. Restoring fire‐adapted forested ecosystems. 2005 National Silviculture Workshop; 2005 June 6‐10; Lake Tahoe, CA. Gen. Tech. Rep. PSW‐GTR‐203. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 121‐156. 

Jain, Theresa B.; Graham, Russell T. 2005. Restoring dry and moist forests of the inland northwestern U.S. In: Stanturf, John A.; Madsen, Palle, eds. Restoration of boreal and temperate forests; Boca Raton, FL: CRC Press: 463‐480. 

Jain, Theresa B.; Graham, Russell T.; Morgan, Penelope. 2004. Western white pine growth relative to forest openings. Canadian Journal of Forest Research. 34: 2187‐2197. 

Jain, Theresa B.; Graham, Russell T.; Sandquist, Jonathan; Butler, Matthew; Brockus, Karen; Frigard, Daniel; Cobb, David; Sup‐Han, Han; Halbrook, Jeff; Denner, Robert; Evans, Jeffery. 2008. Restoration of northern Rocky Mountain moist forests: integrating fuel treatments from the site to the landscape. In: Deal, R. L., ed. Integrated restoration of forested ecosystems to achieve multi‐resource benefits: proceedings of the 2007 National Silviculture Workshop;  2007 May 7‐11; Kitchkin, AK.  Gen. Tech. Rep. PNW‐GTR‐733.  Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 1‐26. 

Jain, Theresa B.; Graham, Russell T.; Morgan, Penelope. 2002. Western white pine development in relation to biophysical characteristics across different spatial sales in the Coeur d'Alene River Basin in northern Idaho, U.S.A. Canadian Journal of Forest Research. 32: 1109‐1125. 

Nyland, R. D. 2002. Silviculture: concepts and applications: 2nd ed. New York: McGraw‐Hill. 633 p. 

Reinhardt, Elizabeth; Crookston, Nicholas L. Technical Editors. 2003. The fire and fuels extension to the forest vegetation simulator.  Gen. Tech. Rep.  RMRS‐GTR‐116.  Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p. 

Shepperd, Wayne D.; Battaglia, Michael A. 2002. Ecology, silviculture, and management of Black Hills ponderosa pine. Gen. Tech. Rep. RMRS‐GTR‐97. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 112 p. 

Page 12: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐12 

Thomas, J. W.; Anderson, R. G.; Maser, C.; Bull, E. L. 1979. Snags. In: Thomas, J. W., ed. Wildlife habitats in managed forests, the Blue Mountains of Oregon and Washington;  Agric. Handb. 553. Washington, DC: U.S. Department of Agriculture, Forest Service: 60‐77. 

   

Page 13: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐13 

Table 1. Pre‐ and Post‐harvest for reverse J uneven‐aged silviculture system which was developed using Forest Vegetation Simulator. These distributions will be used to compare the irregular selection results to the FVS results. Table is organized by stand number. 

Stand  Size  Current   PIPO   Basal area (ft2) removal by dbh class  Trees/ac removal by dbh class Presence of other 

species  Post Trt Struc Stage 

ID  Acres basal area  Trees/ac  >17.5 

15‐17.5 

13‐15 

11‐13 

9‐11 

7‐9 

5‐7  >17.5

15‐17.5 

13‐15 

11‐13 

9‐11  7‐9  5‐7  birch  aspen  spruce Percent 

(>1" dbh)  1 2 3 4 5

1  25  142  1389  0  0  0 0 0 0 45 0 0 0 0 0  0  179 28 10 60 2 0

2  13  110  249  0  0  0 0 30 15 0 0 0 0 0 34  38  0 yes  27 10 5 54 4

3  98  104  279  0  0  0 0 15 15 0 0 0 0 28  36  25 11 15 43 6

4  47  102  209  0  0  0 0 25 5 4 0 0 0 0 49  18  22 26 12 13 42 7

5  35  101  138  0  17  5 0 5 3 3 0 10 15 0 10  7  12 17 12 10 54 7

6  18  100  215  5  0  4 8 3 2 0 4 10 3  yes  15 10 22 41 12

7  59  104  271  0  0  0 0 10 25 5 0 0 0 0 21  73  30 28 10 25 37 0

9  35  123  622  0  0  0 0 20 15 5 0 0 0 0 37  43  27 21 10 35 34 0

10  39  162  808  0  0  0 0 32 20 44 0 0 0 0 62  64  234 40 10 25 25 0

12  28  57  178  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  31 10 9 40 10

13  145  Skippy's corner (248 trees/ac)  3 3 3 9  yes  yes  yes  50 10 10 15 15

14  80  48  303  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  yes  41 10 14 32 3

15  138  107  155  0  0  3 18 22 0 0 0 0 3 24 40  0  0 28 10 4 53 5

16  99  107  227  5  0  0 0 21 19 0 3 0 0 0 41  57  0 30 10 13 32 15

17  23  106  246  0  0  10 0 7 16 10 0 0 9 0 14  43  34 yes  yes  31 10 22 30 7

18  171  158  300  9  4  1 16 33 25 3 5 3 1 22 61  71  16 yes  22 10 16 42 10

20  65  114  688  0  0  12 0 23 0 0 0 0 11 0 37  0  0 yes  17 6 21 51 5

21  133  105  223  0  0  0 6 21 7 4 0 0 0 8 41  20  18 25 10 13 50 2

22/75  91  177  553  0  0  0 33 26 33 9 0 0 0 42 51  94  45 23 10 20 43 4

23  31  156  384  0  0  0 0 34 39 17 0 0 0 0 68  105  72 25 10 22 43 0

24  53  164  601  0  0  0 0 6 40 44 0 0 0 0 12  119  207 yes  22 36 30 12 0

25  21  114  495  0  0  0 4 10 16 12 0 0 0 5 19  49  68 yes  18 10 34 38 0

26  30  236  1088  0  0  0 0 12 60 70 0 0 0 0 23  176  359 7 10 47 36 0

27  54  112  174  0  0  14 2 14 10 3 0 0 14 3 25  28  18 yes  30 8 10 36 16

Page 14: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐14 

Table 1 cont. 

Stand  Size  Current   PIPO   Basal area (ft2) removal by dbh class Trees/ac removal by dbh class Presence of other 

species Post Treatment Structure Stage 

ID  Acres basal area  Trees/ac  >17.5 

15‐17.5 

13‐15 

11‐13 

9‐11 

7‐9 

5‐7  >17.5 

15‐17.5

13‐15 

11‐13 

9‐11  7‐9  5‐7  birch  aspen  spruce Percent 

1 2 3 4 5

28  23  43  88  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  51 5 10 32 2

29  19  112  231  0  0  0 0 16 24 3 0 0 0 0 31  76  13 26 5 13 44 12

30  172  158  390  0  0  0 0 40 29 22 0 0 0 0 70  78  101 yes  11 2 40 47 0

31  11  115  361  0  0  0 0 22 14 6 0 0 0 0 41  44  41 yes  27 5 16 44 8

32  29  103  174  0  0  0 0 0 10 4 0 0 0 0 0  29  18 yes  yes  38 4 20 34 4

33  133  102  254  0  0  0 0 10 17 11 0 0 0 0 19  50  53 36 5 15 42 2

34  21  28  98  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  63 5 18 12 2

35  34  112  215  0  0  0 0 33 8 2 0 0 0 0 64  24  11 yes  27 0 10 58 0

36  63  100  148  0  0  2 9 16 4 2 0 0 2 12 30  12  10 yes  40 5 3 42 10

37  29  157  292  0  0  0 0 85 6 0 0 0 0 0 162  12  0 30 5 5 60 0

38A  31  113  198  4  2 yes  yes  yes  32 5 7 40 16

38B  10  113  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  yes  yes  79 5 10 3 3

39  135  156  446  0  0  0 0 21 48 24 0 0 0 0 104  140  39 34 5 22 36 3

40  83  150  418  0  0  0 0 0 51 32 0 0 0 0 0  130  142 yes  yes  29 5 26 40 0

41  146  102  175  0  0  0 0 2 26 9 0 0 0 0 4  55  16 yes  yes  31 5 12 45 7

42  117  112  237  0  0  0 10 16 13 2 0 0 0 13 30  41  12 yes  30 5 13 52 0

43  63  119  290  0  0  0 6 20 13 0 0 0 0 8 38  39  0 yes  yes  27 5 15 50 3

45  31  118  203  0  0  0 0 22 8 6 0 0 0 0 43  23  18 yes  yes  29 5 16 50 0

46  10  101  239  0  0  0 1 12 13 6 0 0 0 2 24  42  36 yes  29 5 16 50 0

48  2  43  65  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  53 5 2 40 0

49  3  253  4352  0  0  0 0 0 0 0 0 0 0 0 0  0  0 42 0 58 0 0

50  69  102  329  0  0  0 0 0 20 10 0 0 0 0 0  27  41 21 0 43 36 0

51  47  108  279  0  0  0 0 14 12 13 0 0 0 0 27  35  84 34 0 10 53 3

52  87  162  414  0  0  0 0 33 48 7 0 0 0 0 63  149  32 33 0 21 46 0

53  21  157  343  0  0  4 10 26 25 19 0 0 4 13 50  73  87 yes  32 0 13 55 0

Table 1 cont. 

Stand  Size  Current   PIPO   Basal area (ft2) removal by dbh class Trees/ac removal by dbh class Presence of other  Post Trt Struc Stage 

Page 15: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐15 

species 

ID  Acres basal area  Trees/ac  >17.5 

15‐17.5 

13‐15 

11‐13 

9‐11 

7‐9 

5‐7  >17.5 

15‐17.5

13‐15 

11‐13 

9‐11  7‐9  5‐7  birch  aspen  spruce

Percent 

1 2 3 4 5

54  36  165  444  0  0  20 0 24 32 19 0 0 20 0 48  96  103 40 0 18 30 12

55  23  168  354  0  0  0 14 46 28 9 0 0 0 18 85  84  39 31 0 16 53 0

56  30  184  640  0  0  0 5 5 76 25 0 0 0 7 10  228  133 32 0 19 49 0

57  42  103  305  0  0  0 0 18 7 5 0 0 0 0 34  17  24 yes  31 0 7 50 12

58  42  121  244  0  0  0 3 26 19 2 0 0 0 4 53  52  13 32 0 10 58 0

59  2  279  782  0  9  0 9 76 82 0 0 6 0 13 134  235  0 32 0 12 35 21

60  36  42  126  0  0  0 0 0 0 0 0 0 0 0 0  0  0 51 10 39 0 0

61  48  37  128  0  0  0 0 0 0 0 0 0 0 0 0  0  54 10 36 0 0

62  3  205  1013  0  0  0 0 0 57 57 0 0 0 0 0  169  280 30 0 70 0 0

65  5  61  206  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  42 0 58 0 0

66  21  174  594  0  0  0 0 0 34 66 0 0 0 0 0  109  317 30 0 24 46 0

68  24  29  297  0  0  0 0 0 0 0 0 0 0 0 0  0  0 70 0 18 12 0

69  15  44  100  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  yes  87 10 3 0 0

73  14  28  155  0  0  0 0 0 0 0 0 0 0 0 0  0  0 yes  yes  74 5 9 4 8

Page 16: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐16 

Page 17: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐17 

Figure 1 caption: Map of past and future study sites on the Black Hills Experimental Forest (BHEF). Stands are delineated in white with stand numbers. These numbers refer to Table 1. Individual studies are identified in color. The studies include the growing stock level study (GSL), arboretum, wildlife fenced areas (no longer active), clearings (not active), pine provenance and racial variation studies.  The spacing studies are circular and will be thinned to decrease insect infestation potential. The “mystery plots” are the controls for the growing stock level study.  All stands that do not have specific study areas will be included in this study plant for evaluating the irregular selection silviculture system in relation to the FVS prescriptions concerning the reverse J uneven‐aged selection system. Stand 13 is currently being used to evaluate the SDI‐Flex silviculture system. 

Page 18: Nautilus FEIS Appendix Da123.g.akamai.net/7/123/11558/abc123/forestservic... · 2010. 9. 1. · Nautilus Project Final Environmental Impact Statement Appendix D –Black Hills Experimental

Nautilus Project                                                                  Final Environmental Impact Statement

 Appendix D –Black Hills Experimental Forest Study Plan           D‐18 

This page intentionally left blank. 


Recommended