+ All Categories
Home > Documents > NavierStokes IOP Watermark

NavierStokes IOP Watermark

Date post: 18-Aug-2015
Category:
Upload: dayver-daza-salgado
View: 235 times
Download: 0 times
Share this document with a friend
Description:
jj
Popular Tags:
26
What do the Navier-Stokes equations mean? Simon Schneiderbauer 1 and Michael Krieger 2 1 Christian Doppler Laboratory on Particulate Flow Modeling, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria. 2 Institute for Fluid Mechanics and Heat Transfer, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria. Abstract. The Navier-Stokes equations are non-linear partial differential equations describing the motion of fluids. Due to their complicated mathematical form they are not part of secondary school education. A detailed discussion of the fundamental physics – the conservation of mass and Newton’s second law – may, however, increase the understanding of the behavior of fluids. Based on these principles the Navier-Stokes equations can be derived. This article attempts to make these equations available to a wider readership, especially teachers and undergraduate students. Therefore, in this article a derivation restricted to simple differential calculus is presented. Finally, we try to give answers to the questions “what is a fluid?” and “what do the Navier-Stokes equations mean?”. corresponding author: [email protected] This is a preprint of an article accepted for publication in the European Journal of Physics
Transcript

WhatdotheNavier-Stokesequationsmean?SimonSchneiderbauer1andMichaelKrieger21ChristianDopplerLaboratoryonParticulateFlowModeling,JohannesKeplerUniversity,Altenbergerstrae69,4040Linz,Austria.2InstituteforFluidMechanicsandHeatTransfer,JohannesKeplerUniversity,Altenbergerstrae69,4040Linz,Austria.Abstract. TheNavier-Stokesequationsarenon-linearpartialdierentialequationsdescribingthemotionof uids. Duetotheir complicatedmathematical formtheyarenotpartofsecondaryschooleducation. AdetaileddiscussionofthefundamentalphysicstheconservationofmassandNewtonssecondlawmay,however,increasethe understanding of the behavior of uids. Based on these principles the Navier-Stokesequationscanbederived. Thisarticleattemptstomaketheseequationsavailabletoa wider readership,especially teachers and undergraduate students. Therefore,in thisarticleaderivationrestrictedtosimpledierential calculusispresented. Finally, wetry to give answers to the questions what is a uid?and what do the Navier-Stokesequationsmean?. correspondingauthor: [email protected] is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 21. IntroductionThe Navier-Stokes equations describe the motionof uids andare the fundamentalequationsofuiddynamics. TheyarenamedafterGeorgGabriel Stokes(18161903)andLouisMarieHenriNavier(17851836),whoderivedtheseequationindependently.TheNavier-StokesequationsarebasedonworkofLeonhardEuler(17071783). Eulerconsideredtheuidasacontinuumallowinghimtoderivegoverningequationsforthemotionof invisciduids basedondierential calculus. His equations weretherstwritten down non-linear partial dierential equations the Euler equations. Stokes andNaviercontributedaviscousdiusiontermtoaccountfortheviscosityofauid.TheNavier-Stokesequationsarewidelyusedinscienceandengineering. However,their complicated mathematical form mostly restricts engineers to the numerical solutionoftheseequations[1,2]. Themathematicalproofoftheexistenceofaglobalsolutionof the Navier-Stokes equations is still one of the millennium problems [3]. Nevertheless,theNavier-Stokes equations aresuccessfullyappliedtodesignairfoils [4], reducethedragof(racing)cars,optimizeparticlelters,understandthewindthrowofforests[5],analyzeoceancurrents[6],studyenvironmentalparticletransport[7]andsoforth.DuetothefactthattheNavier-Stokesequationsarepartialdierentialequationsand their solutions are non-trivial, these are commonly not included in secondary schoolcurriculums. A detailed discussion of the fundamental assumptions of the Navier-Stokesequationsandof theunderlyingphysicsmay, however, increasetheunderstandingofthebehaviorofuids. Especially,thephysicsofuidscanbetopicofin-depthphysicscourses.This article aims tointroduce the Navier-Stokes equations tosecondaryschoolteachersandundergraduatestudents. Wealsointendtoprovideteachingmaterial forextraordinaryinterestedstudents. Therefore, we restrict our calculations tosimpledierentialcalculus,forexample,partialderivatives andTaylor series expansions. Thisisincontrasttostandardderivationsusingintegraltheorems.This article is organized as follows. In section 2 we begin with a practical denitionofuids. Then, wediscusstheunderlyingassumptionsoftheNavier-Stokesequationsandthe basic concepts. Insection5 we derive the two-dimensional Navier-Stokesequationsusingdierential calculus. Attheendof thearticle, somesimpleexamplesfortheexactsolutionoftheNavier-Stokesequationsarediscussed.2. Whatisauid?Each natural or articial material is characterized by its distinct state of matter. Thesestatesaresolid, gasandliquid. Thereisalsoafourthstateof matter, referredtoasplasma, which we do not discuss in more detail. Intuitively, one is tempted to categorizeuidsbyitsstateof matter. Forexample, waterisauidsinceitisliquidatroomtemperatureandatmosphericpressure. However, suchaclassicationof uidsseemstobetoorestrictivesincebothgaseousandliquidmatterisconsideredasuid[2, 8].This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 3Inuidmechanicsitiscommontoassignall materials, whicharenotclearlysolid, touids. Thus,eachmaterialcanbedistinctlyassignedtoeithersolidsoruids.F C DA BC' D'FA BC D D'' C''(a)(b) !A !A!D' C'Figure1. Anexternalforceisappliedtoa)asolidandb)auid, whichconsistsofrandomlymovingmolecules. Theamountof deformationof thesolidisdeterminedbythebalanceof theexternal andtheshearforces. Theuidestablishesavelocitygradient, whichcounteractstheexternal force. Theuidproceedsmovingaslongastheforceisapplied. ThisisindicatedbytheparallelogramsABC

D

andABC

D

.The uidcounterpart of the elasticityof the solids is knownas viscosity. Thephysical dierence between elasticity and viscosity is outlined by the following example.Letusconsiderablockofelasticsolid(Figure1a),whichismountedtothegroundatpointsAandB. Themoleculesofthesolidholdtogetherbyexertingattractiveforcesoneachother. Whenanelasticsolidisdeformedittriestodeformbacktoitsinitialstate. Thus,qualitativelywemaymodeltheseattractiveforcesbysprings(Figure1a).Furthermore,a force F,which is parallel to AB,is applied at point D. In case of smalldeformationsweobtainfortheshearstress(= force/area = F/A) kA, (1)wherekdenotesthestinessofthesprings. Ourillustratingexampleindicatesthatinelasticsolidstheshearstressisproportional totheangleof deformation. Ingeneral,thedisplacementoftheatomsinsolidsbyexternal shearforcesisreversibleforsmalldeformations(elasticdeformation).Incontrast tothedeformationof solids, inuids avelocitygradient establisheswhenanexternal forceis applied(Figure1b) [9, 10, 2]. Thevelocitygradient is aconsequenceofmomentumdiusionatmolecularscale. AccordingtoNewtonssecondlawmoleculesatpointDareacceleratedbytheappliedforceF. Incontrasttosolids,themolecules moverandomlyinauid. Thus, someof thesefastmolecules nearDmovedowntowardsA(Figure1b). Therefore, themomentumof theuidinthedirection of the force Fnear A increases. Similarly, some slow molecules near A moveuptowardsDleadingtoadecreaseofmomentumintheregionofD. Mathematically,theshearstressonanareaAiswrittenas[11]= uy, (2)WhatdotheNavier-Stokesequationsmean? 4where u denotes the velocity of the uid in lateral direction and ythe spatial coordinateinvertical direction. Theviscosity(Ns)isacharacteristicpropertyoftheuidlikethestinessofaspring. Amoredetailedderivationofequation(2)isgiveninsection5.2. Whenthe appliedshearforceiswithdrawnthevelocitygradientvanishesuntiltheuidisatrest. Therandomnatureof themovementof themoleculesindicatesthatthedisplacementofthemoleculesunderanexternalforceisnotreversible,whichisincontrasttoelasticsolids.Thisexampledemonstratesthatauidatrest, incontrasttosolids, isnotabletosupportexternal shearforces. Itimmediatelyreactstotheappliedshearforcebyestablishing a velocity gradient. Viscous shear forces are completely dierent from elasticshearforces[10]. Strictlyspeakinguidsdonottransmitshearforces; theseforces(time rate of change of momentum) rather appear due to the random motion of the uidmolecules. Asaconsequenceunderexternal forces, i.e. theearthsgravitational eld,uidsneedcontainingwallstokeeptheirgeometricshape.Althoughsolidsanduidsbehaveverydierentlywhensubjectedtoshearforces,they behave similarly under the action of pressure, i.e. normal compressive stresses [10].However, whereas solids are able to support both normal tensile and compressive forces,auidusuallysupportsonlycompression(pressure).3. ContinuumhypothesisFluidsarecomposedofahugenumberofmolecules,whichareinconstantmotionandundergoing collisions with each other [10]. Typical orders of magnitudes for air at 1 barand 0C are dm 41010m for the diameter of the molecules, m 3109m for theaveragedistancebetweentwomolecules,mfp 6108mforthemeanfreepath(thedistancebetweensubsequentcollisions)and1025moleculesperm3. Inprinciple, itispossible to study the behavior of uids by following the trajectory of each single moleculeincludingits collisions withthesurroundingmolecules [10, 9], as donebymoleculardynamics. However, it is morepractical toaskfor themacroscopicbehavior of theuid. The idea is to take account of the behavior of the molecules and their properties byconsideringahugeensembleofmolecules[2]. Thus,thediscretemolecularstructureof uids is replacedbycontinuous distributions, calledcontinuum[9]. For example,wecandenethemacroscopiccontinuouspressureataconstrainingwall asthetimerateofchangeofmomentumperunitareaofahugeensembleofcollidingmolecules.Similarly,wecandenethetemperatureofauidasthekineticenergyofanensembleof molecules; thedensityasthenumberof moleculesperunitvolume; thevelocityofthe uid as the average velocity of the ensemble. Note, since we consider the propertiesand behavior of uids by considering an ensemble of molecules, the molecular nature ofuidsisnotneglected. Itremainstodiscusshowmanymoleculesweneedforsuchanensembleandinwhichcasesthecontinuumhypothesisisvalid.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 53.1. DenitionofthemacroscopiccontinuousdensityandpressureIt is commontodenethedensityof auid(x0, y0) at (x0, y0) (seealsoFigure2)byconsideringtheaggregatedmassof moleculesmVinvolumeV xedinspaceat(x0, y0)(x0, y0) =mVV. (3)Since the molecules are not xed in a lattice but move freely [9], the uid density has noprecisemeaning. ThenumberofmoleculesinagivenvolumeVcontinuouslychanges.On the one hand, molecules enter the volume and on the other hand, molecules leave thevolume. If the volume is very small, that is in the order of 3m 1026m3, estimating thedensity would, therefore, result in a huge uncertainty (Figure 3a). Increasing the volumereduces the inuence of leaving and incoming molecules since their contribution becomesnegligiblecomparedtothenumberofmoleculesoccupyingV . InFigure2thedensityascalculatedfromtheaggregatedmassofthemoleculesisplotted. Thereisalimitingvolume V 1018m3above whichthe contributionof the leavingandincomingmolecules gets negligible. For smaller volumes than V considerable uncertainty in theevaluationofthedensitymaybeobserved.uid yx!Vp!Am!VFigure2. Sketchofthedenitionoftheuiddensityanduidpressure.According to the denition of , we dene the pressure p(x0, y0) by considering thetime rate of change of momentum of the molecules FpAat a plane of area A at (x0, y0)(Figure2)p(x0, y0) =FpAA . (4)Thus, the order of magnitude of the minimum size of A should be O(A) O(V2/3) =O(1012) to ensure an accurate denition of the pressure. This is also indicated in Figure3b, wherethelimitingareaA, abovewhichthepressurecanbepreciselydened, isapproximately1012m2.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 6!V (m3) 10!3010!1810!10microscopic uncertainty macroscopic density (a)pA (m2) 10!1510!1210!5microscopic uncertainty macroscopic pressure (b)Figure3. Uncertaintiesintheestimationofa)theuiddensityasafunctionofthevolumeV occupiedbytheconsideredmoleculesandb)ofthepressureasafunctionoftheareaunderconsideration[9,2].3.2. KnudsennumberThe Knudsen number is a dimensionless number (Note in uid mechanics there are lotsofdimensionlessnumbers),thatisKn =mfpL, (5)which is the ratio between the mean free path of the molecules mfpand a characteristicphysical lengthscaleLof theproblemunderconsideration. Forexample, Lmaybethelengthof anairfoil. TheKnudsennumbergivesameasureforthevalidityof thecontinuumhypothesis. If theKnudsennumber isverysmall (Kn 1) thephysicallength scale is much larger than the mean free path of the molecules. Thus, the physicalobstacle does only feel the average molecular behavior and we can apply the continuumhypothesistothephysical descriptionof theow. Incaseof ournumerical examples(mfp 6108m, A=1012m2)thelimitingKnudsennumber, belowwhichthecontinuumhypothesiscanbeused, yieldsKn=mfp/A 6102. Incaseof aKnudsennumbergreaterthanKnstatisticalmethodsormoleculardynamicsmustbeused. Anexampleisaspaceshuttleenteringtheearthsexosphere, wherethemeanfree path of the molecules is several kilometers (high temperature and low density), andthus,Kn 1. Similarly,theowaroundnanobersinaextra-neparticleltershowsKnudsennumbersof Kn 1. Hence, thecontinuumhypothesiscannotbeappliedtothesecases.3.3. Finitecontrol volumesInnitesimal uidelementsBasedontheideaof thecontinuumhypothesis weareabletoderivethegoverningequations of uiddynamics. It is, therefore, commonto introduce the concept ofnitecontrol volumes V , whichareveryuseful inuiddynamics [1]. Accordingtothe discussion about the denition of density (section 3.1), one has to keep in mind thatthese nite control volume have to be greater than V . Then, the fundamental physicalprinciplescanbeappliedtotheuidinsidethecontrolvolumeV . SuchavolumecanWhatdotheNavier-Stokesequationsmean? 7eithermovewiththeowoccupyingaxedensembleof uidmolecules, asshowninFigure4a, orcanbexedinspacewiththeuidpassingvolumeV , aspresentedinFigure4b. Therefore, onlyasmall nitecontrol volumeisconsidered, insteadof thewholeoweldat once[1]. Wecandirectlyderivethegoverningequations of uiddynamicsbylookingatthephysicalpropertiesoftheuidwithinsuchanitecontrolvolumeV . Asnotedabovewehavetodistinguishbetweentwodierentapproaches[2,9,10,12]:Lagrangiandescriptionof thegoverningequations, whichareobtainedfromthenite uid element moving along with the ow (Figure 4a). Since a xed ensembleofuidmoleculesisfollowedthemassofaLagrangiancontrolvolumeisconstant.Euleriandescriptionof the governing equations, which are obtained from the niteuidelementxedinspace(Figure4b).WhatdotheNavier-Stokesequationsmean? 7eithermovewiththeowoccupyingaxedensembleof uidmolecules, asshowninFigure4a, orcanbexedinspacewiththeuidpassingvolumeV , aspresentedinFigure4b. Therefore, onlyasmall nitecontrol volumeisconsidered, insteadof thewholeoweldat once[1]. Wecandirectlyderivethegoverningequations of uiddynamicsbylookingatthephysicalpropertiesoftheuidwithinsuchanitecontrolvolumeV . Asnotedabovewehavetodistinguishbetweentwodierentapproaches[2,9,10,12]:Lagrangiandescriptionof thegoverningequations, whichareobtainedfromthenite uid element moving along with the ow (Figure 4a). Since a xed ensembleofuidmoleculesisfollowedthemassofaLagrangiancontrolvolumeisconstant.Euleriandescriptionof the governing equations, which are obtained from the niteuidelementxedinspace(Figure4b).------ControlVolumeVLControlSurfaceAL(a)----ControlVolumeVEControlSurfaceAE(b)Figure4. Modelsofaow: a)Finitecontrolvolumemovingwiththeuidsuchthatthesameindividualuidparticlesarealwaysinthiscontrolvolume;b)Finitecontrolvolumewhichisxedinspace. Theuidismovingthroughit.Thesameideascanalsoberepresentedbyinnitesimal uidelements. Theuidelementisinnitesimal inthesenseof dierential calculus[1]. Theinnitesimal uidelement has also to be large enough to contain a suciently large number of molecules,thatisV V ,sothatthecontinuumhypothesiscancanbeapplied.4. MaterialderivativeThevelocityuandtheaccelerationaof aLagrangianuidelementmovingwiththeowaregivenby[2,9,10,12]u(VL, t) =dxdt

VLand a(VL, t) =dudt

VL, (6)wherethepositionvectorxandvelocityuintwodimensionalcartesianspacearex = exx +eyy,u = exu +eyv,(a)WhatdotheNavier-Stokesequationsmean? 7eithermovewiththeowoccupyingaxedensembleof uidmolecules, asshowninFigure4a, orcanbexedinspacewiththeuidpassingvolumeV , aspresentedinFigure4b. Therefore, onlyasmall nitecontrol volumeisconsidered, insteadof thewholeoweldat once[1]. Wecandirectlyderivethegoverningequations of uiddynamicsbylookingatthephysicalpropertiesoftheuidwithinsuchanitecontrolvolumeV . Asnotedabovewehavetodistinguishbetweentwodierentapproaches[2,9,10,12]:Lagrangiandescriptionof thegoverningequations, whichareobtainedfromthenite uid element moving along with the ow (Figure 4a). Since a xed ensembleofuidmoleculesisfollowedthemassofaLagrangiancontrolvolumeisconstant.Euleriandescriptionof the governing equations, which are obtained from the niteuidelementxedinspace(Figure4b).------ControlVolumeVLControlSurfaceAL(a)----ControlVolumeVEControlSurfaceAE(b)Figure4. Modelsofaow: a)Finitecontrolvolumemovingwiththeuidsuchthatthesameindividualuidparticlesarealwaysinthiscontrolvolume;b)Finitecontrolvolumewhichisxedinspace. Theuidismovingthroughit.Thesameideascanalsoberepresentedbyinnitesimal uidelements. Theuidelementisinnitesimal inthesenseof dierential calculus[1]. Theinnitesimal uidelement has also to be large enough to contain a suciently large number of molecules,thatisV V ,sothatthecontinuumhypothesiscancanbeapplied.4. MaterialderivativeThevelocityuandtheaccelerationaof aLagrangianuidelementmovingwiththeowaregivenby[2,9,10,12]u(VL, t) =dxdt

VLand a(VL, t) =dudt

VL, (6)wherethepositionvectorxandvelocityuintwodimensionalcartesianspacearex = exx +eyy,u = exu +eyv,(b)Figure4. Modelsofaow: a)Finitecontrolvolumemovingwiththeuidsuchthatthesameindividualuidparticlesarealwaysinthiscontrolvolume;b)Finitecontrolvolumewhichisxedinspace. Theuidismovingthroughit.Thesameideascanalsoberepresentedbyinnitesimal uidelements. Theuidelement is innitesimal in the sense of dierential calculus [1] but has to be large enoughtocontainasucientlylarge number of molecules, that is V V , sothat thecontinuumhypothesiscancanbeapplied.4. MaterialderivativeThevelocityuandtheaccelerationaof aLagrangianuidelementmovingwiththeowaregivenby[2,9,10,12]u(VL, t) =dxdtVLand a(VL, t) =dudtVL, (6)wherethepositionvectorxandvelocityuintwodimensionalcartesianspacearex = exx +eyy,u = exu +eyv,This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 8with ex and eydenoting the cartesian unit basis vectors. In equation (6) the symbol [VLindicatesthatwefollowthetrajectoryoftheuidelementVLofxedmass,whichwehighlighted at t = 0. However, in uid dynamics it is not practical to use the governingequations in Lagrangian form. It is common to obtain these equation based on Euleriancontrol volumes VE(Eulerian form), which are xed in space and where the velocity anddensity elds are functions of x and t. It is straightforward to transform the velocity ofaLagrangianuidelementintoEulerianformatanarbitrarytimet0u(x, t0) = u(VL, t0) if VE= VL(t0). (7)Hence,we simply consider a Eulerian control volume VEequal to VL(t0) at t = t0. ForuastreamlineubVFigure5. Steadyowthroughaconvergentpipe. Thetimerateof changeof thevelocity at an arbitrary location x is zero for all t. A uid element Vmoving throughthe pipe (Figure 5) experiences acceleration due to the area reduction in the middle ofthepipe.thederivationof theaccelerationinEulerianformthesituationismorecomplicated,since the time rate of change of the velocity at location x at time t0 is in general not equaltotheaccelerationoftheLagrangianuidelementpassingxatt0. Asimpleexampleis showninFigure5. Thegureillustrates asteadyincompressibleowthroughaconvergent pipe. Thus, thetimerateof changeof thevelocityat anarbitraryxedlocationxiszeroforall tsincetheowisstationary. However, theuidelementVmovingthroughthepipe(Figure5)hastobeacceleratedduetotheareareductioninthemiddleofthepipe. Theconclusionappliestoastationarywaterfall. Ifwemonitoraxedlocationatthewaterfall wewill observethatthevelocityoftheowdoesnotchangewithtime. Incontrast, thewater is accelerateddownstreamof theobservedlocationbygravity. Thus,aleaveoatingonthewaterisacceleratedwhenpassingthewaterfall. Inotherwords, theleaveisequivalenttotheuidelementmovingwiththeow. Since the uid element is accelerated the time rate of change of the velocity of theuidelementisnotzero. Therefore,wehavedudtVL,= 0 anddudtVE= 0 (8)inthiscase. Thesymbol [VEindicatesthatweevaluatethetimerateofchangeoftheuidvelocityforaEuleriancontrolvolumexedinspace.As anexample, wederiveanexpressionfor theaccelerationinx-directionof aLagrangianuidelement inEulerianform. Let us consider aninnitesimallysmallLagrangian uid element moving with the ow in two-dimensional cartesian space. TheThis is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 9velocitycomponentsuandvarefunctionsofthespacecoordinates(x, y)andthetimetu = u(x, y, t) and v= v(x, y, t). (9)Thus,thetotaldierentialofureadsdu =utdt +uxdx +uydy. (10)Dividingequation(10)bydtyieldsdudt=ut+uxdxdt+uydydt, (11)where(dx/dt, dy/dt) describes thepathof theuidelement inspace. Incaseof aLagrangiannitecontrolelementweobtainfromequation(6),(dx/dt, dy/dt) = (u, v),whichdenotesthevelocityoftheuidelement. Therefore,equation(11)readsdudtVL=ut+ uux+ vuy. (12)InuidmechanicsitiscommontodeneTuTt:=dudtVL. (13)Thesymbol T/Ttiscalledthematerial orsubstantial derivative, whichdescribesthetimerateofchangeofascalarquantityofthegivenuidelementasittravelsthroughspace. Inotherwordsoureyesarelockedontheuidelementandweobservethatthex-component of the velocity u of the element changes as it moves through a point (x, y).IncaseofanEulerianuidelementwetakethederivative(11)ataxedlocationand,therefore,(dx/dt, dy/dt) = 0. Thus,equation(11)revealsdudtVE=ut. (14)Notethatu/t,whichindicatesthetimerateofchangeofuatthexedpoint(x, y),isdierentfromthematerial derivative. Inliteraturethematerial derivative T/TtiscalledtheLagrangiandescriptionof thedynamicsof auidwhereasthelocal partialderivativeu/tistermedastheEuleriandescriptionofuiddynamics[1].Fromequation (12) we can obtain an expression for the material derivative[9,10,1,2]TTt=t+ ux+ vy. (15)The expression ux +vyon the right hand side of equation (15) is called the convectivederivative, whichdescribesthetimerateof changeduetothemovementof theuidelementfromonelocationtoanotherintheoweld, wheregenerallytheconsideredow property (i.e. u, , p, etc.) is spatially dierent. The substantial derivative appliestoanyow-eldvariable[1],forexampleTTt..material derivative=t..local derivative+ ux+ vy. .convectivederivative.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 105. ConservationlawsInobtainingthebasicequationsof uiddynamicswehavetochoosetheappropriatefundamentalphysicalprinciplesfromthelawsofphysics[1,9,10,2]:(i) Massisconserved. Therearenonuclearreactionsinvolvedinuiddynamics.(ii) Newtonssecondlaw: F=ddt(mu)5.1. ConservationofmasscontinuityequationIngeneral,thecontinuityequationdescribesthatthetimerateofdecreaseoftheuiddensityinanarbitrarycontrolvolumeequalsthenetowoutofthisarbitrarycontrolvolumethroughitssurface. Intuitively, thecontinuityequationinuiddynamicscanbeeasilyderivedfromtheprincipleofmassconservation. IfweconsideraLagrangiancontrolvolumemovingwiththeow,theconservationofmassreadsdmVLdt=d(VL)dt= 0, (16)i.e. the mass mVLof aLagrangiancontrol volume VLdoes not change withtime.However, VLisnophysical eldquantityand, therefore, wecannotusethematerialderivative to simplify equation (16). It is more practical to consider an arbitrary Euleriancontrol volumexedinspace(comparewithFigure6). Sincethevolumeandnottheuid yx!(x0 !"x / 2, y0, t)!Axu(x0 !!x / 2, y0, t) u(x0 +!x / 2, y0, t)!(x0 +"x / 2, y0, t)!Ay!VE =!x!y!zp(x0, y0, t)!(x0, y0, t)u(x0, y0, t)p(x0 !!x / 2, y0, t) p(x0 +!x / 2, y0, t)Figure6. Fluidenters theEuleriancontrol volumeVEwiththevelocityu(x0 x/2, y0, t)fromtheleftside. FluidleavesVEwiththevelocityu(x0+ x/2, y0, t)to the right side, which leads to a change of the density of the uid occupyingVE= xyz. Thepressurep(x0 x/2, y0, t)actsontheleftfaceandthepressurep(x0+ x/2, y0, t)actsontherightfaceof theEuleriancontrol volumeVE, whichleads toanon-zeronet forceonVE=xyz. Inthetwo-dimensional casez isequivalenttoz 1.mass of an arbitrary Eulerian control volume is xed we have to account for the in- andoutowofmassperunittime,thatis,mVEt= m+..inow m..outow. (17)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 11Note that we have to apply partial (local) derivatives to Eulerian control volumes. Thelefthandsideofequation(17)canbewrittenasmVEt=(x, y, t)VEt= VE(x, y, t)t. (18)For the last step we made use of the fact that the Eulerian control volume VEdoes notchangewithtime.Expressions for the in- and outow of mass per unit time can be derived from Figure6. Withoutloosinggeneralityweassumethattheowisalignedwiththepositivex-axis. Hence, thereisnomassowthroughthelowerandupperfaces. TheinowofmassperunittimeintoVEovertheleftmostarea,therefore,reads min_kgs_ = density_kgm3_inowvelocity_ms_area_m2. (19)IntermsofFigure6theinowandoutowofmassperunittimeread m= (x0x/2, y0, t)u(x0x/2, y0, t)Ax. (20)Thus,substitutingequation(20)intoequation(17)andusing(18)yieldsVEAx(x0, y0, t)t= _x0x2, y0, t_u_x0x2, y0, t__x+x2, y, t_u_x+x2, y, t_.(21)Wecanexpandthetermsontheright handsideof equation(21) inaTaylor seriesyielding_x0x2_u_x0x2_ = (x0)u(x0) u(x0)xx0x2(x0)uxx0x2+O. (22)It is reasonable to neglect the higher order terms as x tends to 0. Thus, by substitutingthelinearizedin-andoutowofmassperunittimeintoequation(21)yieldsVE(x0, y0, t)t= Axx_u(x0)xx0(x0)uxx0_. (23)ByusingAx= yz,VE= Axxequation(23)canbewrittenas(x0, y0, t)t= u(x0)xx0(x0)uxx0. (24)Inequation(23)thephysicaleldsanduandtheirlocalderivativesareevaluatedat(x0, y0, t). Sincex0,y0andtarearbitraryweskiptheexplicitdependencies. Applyingtheproductruletothelasttwotermsontherighthandsideofequation(24)yieldsux ux= ux. (25)Finally,wehavet= ux(26)forthecontinuityequation.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 12Inthe case of anon-zerogradient of v iny direction, we canapplythe sameprinciples we used for the above derivation of the continuity equation, which then readst+ux+vy= 0. (27)Forincompressibleuids,i.e. = const.,thecontinuityequationcanbesimpliedasfollowsux+vy= 0 orux= vy. (28)5.2. NewtonssecondlawmomentumequationAsmentionedatthebeginningof section5, wecanderiveamomentumequationforthe dynamics of the ow by applying Newtons second law to an arbitrary nite controlvolumeV . Therearetwosourcesof forcesactingonsuchanitecontrol volumeV[1,9,10,2]:Bodyforces,whichactdirectlyonthevolumetricmassoftheuidelement. Theseforces act throughout the nite control volume; examples are gravitational, electric, andmagnetic forces. In most applications, only the gravitational force on the uid particlesis taken into account [1]. At the earths surface the gravitational force on a uid elementissimplyFg= mVg,where g= (0, g) denotes the standard acceleration due to gravity at the earths surface.Surfaceforces, whichactacrossthesurfaceof theuidelement. Theseresultingeneral fromtherandommotionof theuidmolecules. Itiscommontodistinguishbetween:Pressure, whichistheforceactingatrightanglesonthesurface. Thepressureisimposedbytheoutsideuidsurroundingtheuidelement. Onamolecularscalethepressureisthetimerateofchangeofcollidinguidmoleculesatthesurfaceofthecontrolvolume.The shear andnormal stress distributions actingonthe surface; these are alsoimposedbythe outside uid. These arise frommomentumdiusiondrivenbytherandommotionof themolecules. Inliteraturethesearealsointerpretedastugging or pushing of the surrounding uid on the surface by means of friction[1].IfweexamineanarbitraryLagrangiannitecontrolvolumemovingwiththeow,theforcebalance,therefore,readsdmVLudt. .time rate of change of momentum= mVLg. .body forces+Fp+Fm..surface forces. (29)Notetheright handsideof equation(29) does not containtimederivatives. Thus,theappliedforcescanalsobeevaluatedforthetimeindependentandspatiallyxedEuleriancontrolvolumeVE,whichrequiresVL= VEattimet.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 13Applyingtheproductruletothelefthandsideofequation(29)yieldsdmVLudt= mVLdudt+udmVLdt. (30)Inorder toevaluate the rst termonthe right handside we canuse the materialderivative. Thesecondtermisequivalenttotheconservationofmass(equation(16))and,therefore,iszero. Thus,wehavedmVLudt= VLTuTt . (31)Due to these manipulations the time derivative of the Lagrangian control volumedisappearsinequation(31)andweareabletosubstituteVLbyVE,whichwechooseequaltoVLattimet. Thus,inEulerianformequation(29)reads_ut+ uux+ vuy_= fgx+ fpx+ fmx, (32)_vt+ uvx+ vvy_= fgy+ fpy+ fmy, (33)wherethefjisdenotetheforcedensities(forcepervolume Fji/VE)ofthedierentcontributions. The rst term on the left hand side of equations (32) and (33) is the timerateof changeof themomentum. Thesecondandthirdtermsof equations(32)and(33)arethetimerateof changeof momentumduetothemovementof aLagrangianuidelementfromonelocationtoanotherintheoweld.Pressure forces: Before we derive an expression for the force on a uid element exertedbythe uidpressure, we discuss the pressure inuids inmore detail. Tosimplifyouranalysiswefocusourattentiononsemi ideal gases, wherethedimensionsof themolecules are much smaller than the distances betweenthe molecules. Therefore,thesecanbe consideredas point particles. Other properties of semi ideal gases are thatinteraction forces between the molecules are neglected, the particles move randomly andthatparticle-particlecollisionsandparticle-wall collisions, respectively, areconsideredasperfectlyelastic.!VE!AxIdeal gas Figure7. Semiidealgasconnedbyacontainer: Randommotionofmolecules.Perdenition(comparewithsection3.1)thepressureistheforceperunitareaappliedinthedirectionperpendiculartoasurface. Fromthediscussioninsection3.1This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 14this force can be calculated from the time rate of change of momentum of the moleculesataspecicarea. Therefore,letusconsideranEuleriancontrolvolumeinacontainerlled with a semi ideal gas at rest. Following Figure 7 the number of molecules NhittingtheleftsurfaceAxof theEuleriancontrol volumeVEfromtheleftsidewithinthetimeintervaltcanbeestimatedfrom[2]Nleftin= nxAxumt,wherenxdenotesthenumberof moleculesperunitvolumemovinginthepositivex-direction. Sincethemoleculesmoverandomlynxcanbecalculatedfromnx=16n = nx= ny= ny= nz= nz,wherenyandnzdenotethenumber of molecules movingin yand z-directionrespectively. nis the number of molecules per unit volume andumis the thermalvelocityof themoleculesinanyparticular direction[13]. Withinadistanceof mfpfromAxthesemoleculescollidewithmoleculesleavingVEtotheleftsideNleftout= nxAxumt =16nAxumt.The time rate of change of the momentum of the incoming colliding particles at surfaceAx,i.e. theforceperpendiculartoAx,is,therefore,calculatedasFAx=(2mum)Nleftint,where2mumdenotesthechangeofmomentumofasinglecollidingmoleculeandmitsmass. NotethatFAxtakesthesameformwhetherAxisawallorlocatedwithintheuid. Recognizingthat = mnandsimplicationyieldsFAx=13Axum2.DividingbyAxnallygivesthepressureinasemiidealgasp =13um2.It is important to note that the above analysis shows that rst, the pressure in a uid isisotropic,i.e. hasnodirection,sinceonesixthoftheparticleswithinadistanceumtfromeacharbitraryorientedplaneAmovefromonesidetotheotherandviceversa.Second,thepressurearisesfromthemolecularnatureofuids.The force fpon a uid element can be calculated similarly to the derivation of thecontinuityequation. Again, weconsider anEuleriancontrol volumeVE(Figure6).Notingthatthepressureisisotropicthepressureforceontheleftmostsurfaceof thecontrolvolumeVEisfp, leftxVE= Axp(x0x/2, y0, t). (34)Theforceontheuidelementduetothepressureontherightmostsurfacereadsfp, rightxVE= Axp(x0 + x/2, y0, t). (35)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 15Combiningequations(34)and(35)givesfpx(x0, y0, t)VE= Ax_p(x0x/2, y0, t) p(x + x/2, y, t)_(36)TaylorseriesexpansionandneglectinghigherordertermsyieldsfpxVE= Axxpx. (37)SinceVE= Axx,wenallyhavefpx= px, (38)fpy= py. (39)Fromequations(38)and(39)weobtainthatanon-zeropressuregradientproducesaowintheoppositedirectiontothegradient. For example, windis inducedbythepressuregradientbetweenhighandlowpressureareas. Sincethepressuregradientisdirectedfromlowtohighpressureareas(i.e. theslopeofthepressureispositivefromalowtoahighpressurearea), theair ows fromthehighpressureareatothelowpressurearea.Normal andshearstressesinincompressibleNewtonianuids: Inthelastsection,wehavediscussedthetime rateof changeof momentumdue totherandommolecularmotion. However,ifthelocalvelocitygradients,theseareux,uy,vxandvy,are non-zero, additional forces on the surface of the control volume arise from the randommotion of the molecules,which contribute to fm. The following example illustrates thev1v2! m12! m21!mfp!mfpyxFigure8. Illustrationof themolecular momentumdiusion[2]. Railroadworkersshovel coal from their own train to the other, which induces a change of momentum ofbothtrains.WhatdotheNavier-Stokesequationsmean? 16underlyingphysics, whichisreferredtoasmolecularmomentumdiusion[2]. Letusconsidertwoparallel trainsmovingwithdierentvelocitiesv1andv2(Figure8)withv2> v1. Ontrain1railroadworkersshovelcoalfromtheirowntraintotrain2witharate m12(inkg s1). Ontrain2equallyhardworkingrailroadworkersshovelcoalbacktotrain1witharate m21(kg s1). Forsimplicityweassumethat m12= m21. Thus,themassesofthetrainsdonotchangewithtime. Theshovelingofcoalcausestrain2todeceleratesincethetimerateofchangeofitsmomentumisnegativeF21= m12v1 m21v2= m12 (v1v2). .0> 0.Inthecaseofaverysmalldistance2mfpbetweenthetrainswemaywritev1= v[x=0mfpvxx=0,v2= v[x=0 + mfpvxx=0.Inour example, v[x=0is the meanvelocityof bothtrains and2mfpis theaveragethrowingdistanceof therailroadworkers. Thetimerateof changeof momentumofbothtrains,therefore,readsF12= 2 m12mfpvx,F21= F12.Applyingthistrainmodeltotherandommotionofthemoleculesofasemiidealgastheshovelingofcoalfromtrain1totrain2canberegardedasthenumberofparticlesmovinginpositivex-directionnx. Similarly, nxcorrespondstotheshovelingof coalfromtrain2totrain1. mfpisinterpretedasthemeanfreepathofthemolecules,i.e.theaveragedistancebetweentwosubsequentcollisions. Thus,adoptingthederivationofthepressureinidealcaseswehave m12=16nm..=Aum.Hence,weobtainthetimerateofchangeofmomentumperunitarea,thatistheshearstress(1)yx , whicharisesfromaowiny-directionandfromthemoleculesmovinginx-direction,(1)yx=F12A=13ummfpvx. (40)In accordance with (1)yxa time rate of change of y-momentum per unit area results fromaowinx-directionandfromthemoleculesmovinginy-direction[2](2)yx=16um_u(yAy+ mfp) u(yAy mfp)_. (41)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 17Taylor series expansionof thelast twoterms inequation(41) andneglectinghigherordertermsgives(2)yx=13ummfpuy. (42)Thusthetotaltimerateofchangeofmomentumreadsyx= (1)yx+ (2)yx=13ummfp_uy+vx_. (43)Itiscommontodene =13ummfp, (44)wheredenotes themolecular viscosity. FromFigure9it canbededucedthat yxcontributestofmy. Notethatthevelocitygradientiscommonlydenotedasshearratesinceithasthedimensionsofs1.uid yx!VE =!x!y!z!Ax!Ay!xx!yx!yy!xyFigure9. Normal andtangential constraintsduetoowini-directionarisingfrommolecularmomentumdiusioninj-direction(i, j x, y. Thesecanbetakenintoaccountbynormal andshearstresses(normal andtangential forceperarea)actingonthe Euleriancontrol volume VE=xyz. Inthe two-dimensional case z isequivalenttoz 1.An additional contribution to fmyis caused by a ow in y-direction and the moleculesmovinginy-direction. Thatis[11]yy= 2vy, (45)which can be obtained from equation (43) by replacing x by yand u by v. Note that incase of vanishing velocity gradients the pressure forces remain the only force componentresultingfromrandommotionofmolecules.Byfollowingthederivationoffpinsection5.2aandfromFigure9wendfmy=yxx+yyy. (46)Substitutingequations(43)and(45)intoequation(46)yieldsfmy= x_uy+vx_ + 22vy2. (47)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 18ManipulatingaboveequationandapplyingSchwarztheoremyieldsfmy= _yux+2vx2+ 22vy2_. (48)Bysubstitutingthecontinuityequationforincompressibleuids(28)weobtainfmy= _2vx2+2vy2_. (49)Bysimilarconsiderationsfmxiscalculatedasfmx= _2ux2+2uy2_. (50)Note that the above derivation shows that xy= yxholds. Fluids, where isproportional tothevelocitygradient(i.e. =const.), arereferredtoasNewtonianuids. Forexample,airandwatercanbeconsideredasNewtonianuids. Incontrast,uids,wheretheviscosityitselfisafunctionofthevelocitygradient,arereferredtoasnon-Newtonianuids. Forinstance,ketchupshowsnon-Newtonianbehavior.5.3. SummaryofthegoverningequationsforincompressibleuidsCombiningtheresultsof sections5.1and5.2yieldsthesetof incompressibleNavier-Stokesequations, whichisasetof partial dierential equations. Theseconsistof thecontinuityequationandthemomentumequations. Sincewehaverestrictedourselvestoincompressibleowsgravityfgcanbeincludedinthepressuretermyielding p = p + gy. (51)Thequantity pissometimescalledtotalhydrostaticpressure[14]. Thus,theNavier-Stokesequationsforanincompressibleuidreadux+vy= 0, (52)ut+ uux+ vuy= 1 px+_2ux2+2uy2_, (53)vt+ uvx+ vvy= 1 py+_2vx2+2vy2_. (54)The mathematical properties of solutions of the Navier-Stokes equations is one concernof the millennium problem referred to as The Navier-Stokes existence and smoothnessproblem [3]. While numerical solutions of the Navier-Stokes equations are widelyestablishedinscienceandapplications,thetheoreticalunderstandingofitssolutionsisquite incomplete [15]. Exact solutions are mostly restricted to special cases as discussedinthenextsection.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 19NoteonvectorialnotationoftheNavier-Stokesequations: Equations (52)(54) can bepresentedinamoreconcisevectorialnotation,whichreads u = 0,ut+uu = 1 p +u +1fb,where u=(u, v),=(/x, /y), uu=(uu, uv), p = p gand =2/x2+2/y2. In this notation denotes the dot product and fbdescribes additional bodyforces, as for example, magnetic or electric forces. Thisnotationallows easilythe generalizationof equations (52)(54) tothree dimensionsbydeningu=(u, v, w), =(/x, /y, /z), uu=(uu, uv, uw), = 2/x2+ 2/y2+ 2/z2.Noteoninitial andboundaryconditions: Solutionsoftheinitial valueproblem(52)(54)aredeterminedbyinitial andboundaryconditions. Theinitial conditionsforthegoverningequationsforincompressibleuids(52)(54)aregivenbyu(x, t0) = u0(x), (55)p(x, t0) = p0(x), (56)whereu0andp0aretheinitial velocityandpressureelds. Theboundaryconditionsforuandpforagivendomaincanbeexpressedindierentways:(i) Dirichlet boundaryconditions: Auidproperty,thatisuorp,isprescribedattheboundaryofasfollows(x, t) = D(x, t), (57)withx andwhereD(x, t)isagivenfunction.(ii) Von Neumann boundary conditions: The gradient in normal direction to theboundaryofauidpropertyisspeciedas(x, t)n(x, t) = vN(x, t), (58)withx andwherevN(x, t)isagivenfunction. ndenotestheoutwardunitsurfacenormaland isdenedas = (/x, /y).(iii) TheRobinboundaryconditionsrepresentalinearcombinationoftheabove,i.e.a(x, t) + b(x, t)n = R(x, t), (59)withx ,a ,= 0,b ,= 0andR(x, t)given.Physical boundaryconditions for pressureandvelocityareusuallyacombinationofDirichlet- andvonNeumann-type boundaryconditions. At aninlet withspeciedvelocityor a wall (Dirichlet boundarycondition) a vonNeumann(zero-gradient innormal direction)boundaryconditionmustbesuppliedforpressure. Foraconstantpressure outlet, a zero-normal-gradient boundary condition for velocity must bespecied. Atsymmetryplaneszero-normalgradientboundaryconditionsmustbeusedThis is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 20for all ow quantities. Robin-type boundary conditions are hardly ever used for pressureandvelocitybut can, for example, occur for temperatureboundaryconditions whensolvingadditionallytheenergyequation.Noteoncompressibleuids: Inthecaseofcompressibleuidsadditional termsariseinthemomentumequations(53)and(54). Theseresultfromthetimerateofchangeof thevolumeof thecontrol uidelement movingwiththeow. Whenthevolumedilates (increases or decreases) the momentum of the control volume changes due to therandommotionofthemolecules.Additionally,thesetofcompressibleNavier-Stokesequationsisnotclosed. Thereare3partialdierentialequationsbut4unknowns(u,v,pand). Therefore,weneedanadditionalequationtoclosethesystemofequations. Itiscommontointroduceanequationof state, forexampletheisothermal ideal gaslaw, whichrelatesthedensitywiththepressure,thatis = (p).6. ExactsolutionsoftheincompressibleNavier-StokesEquationsIn this section we discuss three simple examples of exact solutions of the Navier-Stokesequations, whichshowtheinuenceoftheviscosityoftheuidonthevelocitydistribution. Theseexamplesmayalsobesubjectofin-depthphysiccoursesatseniorhighschools.6.1. SimpleshearowIntherstexampleweconsidertheowbetweentwoinniteparallel conningwallsparallel tothex-axis. Theowis drivenbytheupper movingwall andaconstantpressure is assumed. In literature such a owis referred to a simple shear ow.Furthermore, insteadystatetheowdoesnotvaryinx-direction. Thus, thevelocityandpressuregradientsreadux= 0,vx= 0, px= 0. (60)Sinceu/x = 0,itfollowsfromthecontinuityequation(equation(52))thatvy= 0. (61)Integrationyieldsthatvisconstant. Itisclearthatvhastobezerobecausev ,=0wouldimplyaowthroughtheconningwalls, whichisnotpossible. Thus, forthesteadystate,whenthevelocitiesdonotvarywithtime,wehaveut= 0,ux= 0, px= 0,vt= 0,vx= 0,vy= 0. (62)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 21Substitutingequation(62)intoequations(53)and(54)yields2uy2= 0, (63) py= 0. (64)Integrationof equation(64) andusingthedenitionof pyields p(y) = gy. Thepressurevarieslinearlywithyinordertocounteractthegravitationalforcebuthasnoinuenceonthevelocityeld. Hence,equation(54)isidenticallyzerosincev(x, y) = 0anduissolelyafunctionofy. Integrationoftheu-momentumequationgivesu(y) = ay + b, (65)where a and b are constants of integration. These can be calculated by substituting theboundaryconditionsu(0) = 0andu(h) = uhu(0)= 0 = b, (66)u(h) = uh= ah + b. (67)Theseboundaryconditionsassumethattherelativevelocitybetweenthewallandtheadjacent uid particles is zero (no-slip condition). Solving the linear system of equationsyieldsa = uhy/handb = 0. Thus,wenallyhavealinearvelocityproleu(y) =uhhy with y [0, h]. (68)The solution is shown in Figure 10a. It is noteworthy that the steady solution (t )forudoesnotdependontheviscosity, whereastheshearstressesactingonthewallsarexy=uyy=0=uyy=h=uhh. (69)Thus, increasing the viscosity of the uid increases the force required to move the upperconstrainingwallwithuh,whichisF=uhAh,whereAistheareaofthewall. However, forinvisciduids, i.e. =0andthereforenomomentumdiusion, wewouldobtainu(y)=0sincethereisnophysical process,whichtransfersthemomentumoftheconstrainingwallstotheuid.6.2. Two-dimensional shearowwithpressuregradientNowthepreviousexamplewillbemodiedbydroppingtheassumptionp/x = 0,sothat the uid will not only be driven by the wall movement, but also due to the pressuregradient. Weconsideratwo-dimensional channel of lengthl andheighth, whereweapplyattheinletapressurepinandattheoutletapressurepout. Thus, thepressuregradientsread px=poutpinl, py= 0. (70)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 22(a) (b)Figure 10. a) Simple steady shear ow (Couette-ow) between two constraining wallsatadistanceh. Theupperwall moveswithavelocityuhinpositivex-direction; b)Steadyowthroughatwo-dimensional channel of lengthl andheighth(Poiseuille-ow). Attheinletapressurepinandattheoutletapressurepoutareapplied.Byusingthedenitionof p(gravityacts innegativey-direction) equation(63) nowbecomes1pl=2uy2(71)byintroducingp = poutpin. Integrationgivesu(y) =p2ly2+ by + c, (72)wherebandcareconstantsofintegration. Applyingtheboundaryconditionsu(0) = 0andu(h) = uhyieldsu(0)= c = 0, (73)u(h) = uh=p2lh2+ bh. (74)Theconstantbcaneasilybecalculatedfromthesecondequationandwenallyobtainu(y) = p2ly(h y) +uhhy. (75)The result is a superposition of a quadratic velocity prole due to the pressure gradientand the linear prole due to the wall movement already known from equation (68). Thetwospecial cases, whenoneofthetwovelocitycomponentsvanishes, arebothnamedafterfrenchphysicists. Thelinearprolewhenp = 0iscalledCouette-ow.For uh=0 andp,=0 the velocityprole is of a parabolic shape andis calledPoiseuille-ow(comparewithFigure10b). Itsmaximumvelocityinthecenterofthechannelisumax=u(h/2)= (p)h2/8l. Increasingtheviscosity(forexampleusinghoneyinsteadofwater)leadstoadecreaseofthemaximumvelocityandtoadecreaseThis is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 23ofthemassowthroughthechannel,thatisq0= z_h0u(y)dy= zp2l_y2h2y33_h0= z12plh3. (76)zdenotesthewidthofthechannelinthethirdspatialdirectiontoreceivetherightdimensions of themass ow(kg s1). This behavior sounds plausiblesinceviscosityiscommonlydenotedasinternal friction. Finally, notethatif pout1thevelocityinthechannel exceedsthewallvelocity. ForP< 1thestrongadversepressuregradientleadstolocalbackownearthelowerwall. Theviscousforcebetweentheuidlayersisnotstrongenoughtoovercometheadversepressuregradient.In pratice, simple Couette ows are very important in rheology, viscosimetry andrheometry,thestudiesoftheviscousshearbehaviourofliquidsandtheirexperimentalinvestigation, respectively. The main advantage of Couette viscometers is linear relationbetweenthewall forceandtheuidviscosity(seeequation(69)), whichallowsforasimpledeterminationoftheviscositybyforceormomentmeasurements.Poiseuille-Couette ows are an important aspect in lubrication theory, or, moregenerally, for ows through small gaps and channels with moving boundaries,encounterede.g.inthecoatingprocessofsurfaces,non-hermeticsealing,etc.6.3. Poiseuilleowwithwall suction/injectionA simple generalization of the Poiseuille ow is possible, if we consider the ow throughachannel madeof porouswalls. Fluidcanenterorexitthechannel viatheseporouswalls. We consider the same setting as before, but with the upper wall at rest (uh= 0).Fluidisnowinjectedthroughthelowerwall (y=0)withaconstantvelocityvwandalsoexitsattheupperwall (y=h)withthesameconstantvelocity. If thechannelisassumedtobeinnitelylong, wecanstill chosethevelocityindependentofx. Thecontinuityequationthenreadsux+vy=vy= 0v(y) = vw= const. (79)This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 24(a) (b)Figure 11. a) Dierent solutions for a Poiseuille-Couette-ow between twoconstraining walls at a distance h. Pis the dimensionless pressure gradient according toequation(78);b)Velocityprolesofasteadyowthroughatwo-dimensionalchannelheight hwithuniformcrossowat dierent crossowReynolds numbers Revfor agivenpressuregradientinx-direction.Hence, thereisaconstantvertical uidmotioninthechannel. Theinuenceof thisuniformcrossowonthe owinx-directionwill be calculatedinthe following. Incontrast tothe previous examples the termvuyinequation(53) is nolonger zero.Hence,thex-momentumequationbecomesvwuy= 1pl+2uy2. (80)Thus,wehavetodealwithaninhomogeneousordinarydierentialequationofsecondorder with constant coecients. First we solve the homogeneous part of the dierentialequation2uy2 auy= 0,witha = vw/. Thecharacteristicpolynomialofthisequationis2a = 0withthesolutions 1=0and2=a. Thesolutionof thehomogeneous equation,therefore,isuhom(y) = c1 e1y+ c2 e2y= c1 + c2 eay.Sincetheinhomogeneous pressuretermis constant and1=0, weassumealinearparticularsolutionypar= c3 y. Substitutionintothedierentialequationyieldsc3= 1 vwplupar(y) = y vwpl.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 25Superpositionofthehomogeneousandtheparticularsolutionsleadstou(y) = c1 + c2 evwyy vwpl.The constants c1andc2canbe determinedfromthe no-slipconditionat the wallsu(0) = u(h) = 0. Thesolutionnallybecomesu(y) =h vwpl1 evwy1 evwhy vwpl. (81)If we introduce dimensionless quantities this solution can be written in a more simple andgeneral form. By relating the x-velocity to the maximum velocity of the Poiseuille-ow,thatisu0,max= (p)h2/8l andbyintroducingadimensionlesscrossowReynoldsnumberRev= vw h, (82)thesolutionreadsu(y)u0,max=8Rev_yh 1 eRev y/h1 eRev_. (83)CalculatingthemassowandrelatingittotheresultforthePoiseuille-owq0fromequation(76)yieldsqq0=12Rev_12 1Rev11 eRev_. (84)Several solutionsforthevelocityprolesatdierentcross-owReynoldsnumbersareshowninFigure 11b. The velocityprole is shiftedupwards, awayfromthe wallwithuidinjection. Themaximumvelocityandthemassowdecreasewithhigherinjection/suction rates. At higher injection/suction rates, i.e. higher crossow Reynoldsnumbers, the prole becomes nearlylinear throughout most of the channel height.Applicationsof channel owswithsuperposedcrossowarecommoninthechemicalindustry,forlterapplications,etc.6.4. FurtheranalyticsolutionsAwiderangeof otherproblemsexist, whereithasbeenpossibletosolvetheNavier-Stokes-equations analytically. Coveringthemhere exceeds the scope of this paper,especiallysincetheseproblemsarewellcoveredinexistingliterature[2,16,17,14,18,19]. Someexamplesarethestagnationpointowinthevicinityof awall positionednormal to the oncoming ow (Hiemenz-ow), the ow through converging and divergingchannels (Jerey-Hamel-ow), the diusionof avortexinaviscous uidover time(Lamb-Oseenvortex),etc.7. SummaryIn this article we have attempted to make the Navier-Stokes available to a widerreadership, especially teachers and undergraduate students, by outlining the underlyingphysicalprinciplesandassumptions.This is a preprint of an article accepted for publication in the European Journal of PhysicsWhatdotheNavier-Stokesequationsmean? 26AcknowledgmentsThe authors wouldlike tothankProfessors UrbaanTitulaer, ErichSteinbauer andStefanPirkerformanyusefuldiscussionsandhelpfulcomments.References[1] J. D. Anderson Jr. Computational Fluid Dynamics. The McGraw-Hill Companies, US, New York,US,1996.[2] F.Durst. Fluidmechanics: anintroductiontothetheoryofuidows. Springer-Verlag,Berlin,Heidelberg,2008.[3] C. L. Feerman. Existence and smoothness of the Navier-Stokes equation. Themillennium prize problems, 2000. http://www.claymath.org/millennium/Navier-StokesEquations/navierstokes.pdf(downloadedat29/04/12).[4] H.Babinsky. Howdowingswork? PhysicsEducation,38:497503,2003.[5] F. Barnes, D. Ford, R. Jordinson, andN. Macleod. The varietyof uiddynamics. PhysicsEducation,15:2430,1980.[6] K. J. Heywood. Fluidowsintheenvironment: anintroduction. PhysicsEducation, 28:4347,1993.[7] S. Schneiderbauer and A. Prokop. The atmospheric snow-transport model: SnowDrift3D. JournalofGlaciology,57(203):526542,2011.[8] P.Drazin. Fluidmechanics. PhysicsEducation,22:350354,1987.[9] F.M.White. FluidMechanics. TheMcGraw-HillCompanies,NewYork,US,2001.[10] P.K.KunduandI.M.Cohen. FluidMechanics. AcademicPress,SanDiego,2ndedition,2002.[11] R. G. Deissler. Derivation of the Navier-Stokes equations. American Journal of Physics,44(11):11281130,1976.[12] H. Schade and E. Kunz. Stromungslehre. Walter de Gruyter, Berlin, New York, 3rd edition, 2007.[13] R. Salmon. Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York, Oxford,1998.[14] F. M. White. Viscous FluidFlow. TheMcGraw-Hill Companies, NewYork, US, 3rdedition,2006.[15] O. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible Flows. GordonandBreach,NewYork,2ndedition,1969.[16] D.C.Wilcox. BasicFluidMechanics. DCWIndustries,LaCa nada,2ndedition,2003.[17] D.J.Acheson. ElementaryFluidDynamics. OxfordUniversityPress,Oxford,UK,1990.[18] H. Schlichting and Gersten K. BoundaryLayerTheory. Springer, Berlin, Heidelberg, 8th edition,2000.[19] P. G. DrazinandN. Riley. The Navier-Stokes equations: a classicationof ows and exactsolutions. CambridgeUniversityPress,NewYork,2006.This is a preprint of an article accepted for publication in the European Journal of Physics


Recommended