+ All Categories
Home > Documents > Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G...

Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G...

Date post: 01-Apr-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
44
Neuroscience 201A (2016) Peter Sargent, PhD [email protected] Voice (cell) 415.728.8139
Transcript
Page 1: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Neuroscience201A(2016)

PeterSargent,[email protected](cell)415.728.8139

Page 2: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

OutlineforToday

• Courseorganizationandlogistics• “Electricity101”• TheElectricalPropertiesofNeurons• TheDeterminantsofMembranePotential

Page 3: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Courseorganization

• 201ACo-Directors:– PeterSargent– JenniferWhistler

• Partof200,201A,201B,201Csequence• Overallcoursedirector,EricHuang• Meets3-4morningsaweekforlectureordiscussion• Coursematerialsare(shouldbe)onthewebsite

Page 4: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Week Date Day Room Time Topic Leader

week$1 9/19/16 Mon Neuroscience$Asilomar$Retreat9/20/16 Tue Neuroscience$Asilomar$Retreat9/21/16 Wed no$class9/22/16 Thu GH@S261 9a@11a Membrane$Potential Peter$Sargent9/23/16 Fri GH@S261 9a@11a Action$Potentials Peter$Sargent

week$2 9/26/16 Mon GH@S261 9a@11a Single$Channels Peter$Sargent9/27/16 Tue GH@S261 8a@11a Biophysics$Problem$Set Peter$Sargent9/28/16 Wed no$class9/29/16 Thu GH@S261 9a@11a Structure@Function$1 Yuriy$Kirichok9/30/16 Fri BH@209 9a@11a Structure@Function$2 Yuriy$Kirichok

week$3 10/3/16 Mon Rosh$Hashana10/4/16 Tue Rosh$Hashana10/5/16 Wed no$class10/6/16 Thu GH@S261 8a@11a Potassium$Channels/Paper$Discussion Lily$Jan10/7/16 Fri BH@209 9a@11a Synaptic$Transmission$1 Peter$Sargent

week$4 10/10/16 Mon GH@S261 9a@11a Synaptic$Transmission$2 Peter$Sargent10/11/16 Tue no$class10/12/16 Wed Yom$Kippur10/13/16 Thur GH@S261 8a@11a Synaptic$Transmission$Problem$Set$&$Paper$Disc. Peter$Sargent10/14/16 Fri BH@209 9a@11a Integration$1 Kevin$Bender

week$5 10/17/16 Mon GH@S261 9a@12n exam$1,$in$class10/18/16 Tue GH@S261 9a@11a Integration$2 Kevin$Bender10/19/16 Wed no$class10/20/16 Thu GH@S261 8a@11a Integration$Paper$Discussion Kevin$Bender10/21/16 Fri BH@209 9a@11a Glutmate$Receptors Roger$Nicoll

week$6 10/24/16 Mon BH@261 9a@11a Plasticity Roger$Nicoll10/25/16 Tue GH@S261 8a@11a Plasticity$Paper$Discussion Roger$Nicoll10/26/16 Wed no$class10/27/16 Thu GH@S261 9a@11a Neurotransmitter$Release Rob$Edwards10/28/16 Fri GH@S261 9a@11a Neurotransmitter$Reuptake Rob$Edwards

week$7 10/31/16 Mon GH@S261 8a@11a Release/Reuptake$Paper$Discussion Rob$Edwards11/1/16 Tue GH@S261 9a@11a Receptor$Pharmacology$1 Jennifer$Whistler11/2/16 Wed no$class11/3/16 Thu GH@S261 9a@11a Receptor$Pharmacology$2 Jennifer$Whistler11/4/16 Fri BH@209 8a@11a Receptor$Pharmacology$Paper$Discussion Jennifer$Whistler11/4/16 Fri BH@209 11a@12n In$class$review

week$8 11/7/16 Mon GH@S261 9a@12n exam$2,$in$class11/8/16 Tue 9a@11a11/9/16 Wed 9a@11a11/10/16 Thu 9a@11a11/11/16 Fri 9a@11a Veteran's$Day,$no$class

SfN$starts$November$12

Schedule(2016)

Exam#1:45%

Exam#2:55%

Page 5: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Assessment

• Twoexams:October17,November7– Firstexam:inclass.3hours.Openbook,butnowebaccess.

– Secondexam:inclassor take-home.Classdecides.

• Thecourseisletter-graded(A,B,C,etc.)• YoumustgetaBorbettertopassthecourse(programspecific)

• Historically,thecoursehasbeengraded“B-modal”

Page 6: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Resources• Texts– onreserve(RutterCenterlibrary)

– FainG(2014)MolecularandCellularPhysiologyofNeurons,2nd ed.,HarvardUniversityPress.(1-dayreserve)

– Hille B(1984)IonChannelsofExcitableMembranes,2nd edition(currenteditionisthe3rd),Sinauer.(1-dayreserve)

– JohnstonD,WuSM(1995)FoundationsofCellularNeurophysiology.MITPress.(1-dayreserve)

– Kandel ERetal.(2013)PrinciplesofNeuralScience,4th edition(currenteditionisthe5th),McGraw-Hill.(1-dayreserve)

– NichollsJetal.(2001)FromNeurontoBrain,2nd edition(currenteditionisthe5th),Sinauer.(1-dayreserve)

– Purves Detal.(2001)Neuroscience,2nd edition(currenteditionisthe5th),Sinauer.(1-dayreserve).

• ReviewArticles• Me!8am– 9amsessions(bringquestions!)

– Friday,September23– Monday,September26– Thursday,September29– Friday,October7– Monday,October10

• Yourpeers.

Page 7: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

I.Electricity101

• Ourexpectations

Page 8: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Whatwascoveredinbootcamp?

• ElectricityBasics?• Electricalpropertiesofplasmamembranes:capacitanceandconductance?

• Neuronsaspassiveconductorsofelectricity?• Electricalequivalentofanexcitablecell(fromHodgkinHuxley)?

SlideswithGreenBackgroundaresupplemental:• Provide“Color”• Providebackground• Provideexpectationsoffamiliarity

(“youshouldknowthis”)

Page 9: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Units• ofvoltageorpotential(potentialdifference)V orE –volts(V)

• ofchargeQ – coulombs(C)• ofcurrentI – amperes(A)• ofcapacitanceC – Farads(F)• ofresistanceR – ohms(Ω)• ofconductanceG – Siemens(S)

-

+

CathodeAnode

SymbolsUnits

Page 10: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

FromCollegePhysics

• =aresistororaconductor;R=1/G;G=1/R•

• Voltageacrossaresistor:V=IR(Ohm’slaw)•

• Ifthinkingofasaconductor:I=GV(Ohm’slaw)•

• Voltageacrossacapacitor:V=Q/C• Inseries:resistorsadd,conductorsaddinversely,

capacitorsaddinversely• Inparallel:resistorsaddinversely,conductorsadd,

capacitorsadd

Page 11: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Fromcollegephysics(cont.)

• Kirchoff’s currentlaw(KCL)– thesumofcurrentsatanodeiszero.

• Kirchoff’s voltagelaw(KVL)– sumofpotentialdifferencesaroundaclosednetworkiszero.

• “Voltagedivider”“Currentdivider”

Page 12: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

EquivalenciesintheSIsystemofunits

• Ampere(A)=1C/s• Volt(V)=unitofelectromotiveforcerequiredtodrive1Aofcurrentacross1ohmofresistance.

• Farad(F)=1C/1V• Ohm(Ω)=1V/1A• Faraday(F)– chargepermoleofunitaryions.=elementarychargexAvogadro'snumber=~1.6x10-19 Cx~6.0x1023 =9.6x104 C.

Page 13: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

II.ElectricalPropertiesofNeurons

• Propertiesofbiologicalmembranes• Theconsequencesofcapacitanceontime-variantpropertiesofmembranepotential

• Whencellsare“isopotential”• Whencellsarenot“isopotential”

Page 14: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Membraneproperties• Thehydrocarboninteriorofmembranesisaninsulator

sandwichedbetweenconductors(saline):acapacitor• Thedialectric constant,e,ofhydrocarbonislow(≈2);evacuum=1;ewater=78)

• Ionsandpolarmoleculescrossvery rarely.

H2O,salts

(CH2)n

H2O,salts

Dialectric constant(EncyclopediaBritannica):propertyofanelectricalinsulatingmaterial(adielectric)equaltotheratioofthecapacitanceofacapacitorfilledwiththegivenmaterialtothecapacitanceofanidenticalcapacitorinavacuumwithoutthedielectricmaterial

Page 15: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Transportmechanisms

Ionmovementacrossmembranesismediatedbyproteins.

Page 16: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Consequencesofaddingchannelstoalipid bilayer

• Resistanceofapurelipidbilayer:≈109 ohmcm2(high!)• Q:Whatistheconductanceofa1µm2 patchofbilayer?• Q:Whatistheconsequenceofadding100channels,each

withconductanceof3pS,tothemembrane?– Calculatethis!– A:Itincreasesbyafactorof≈107.

• Q:Whathappenstothecapacitanceofthemembranewhenyouaddthese100channels?– A:verylittle!– Q:Why?– A:becausetheproteinoccupiesonlyabout1%ofthesurfacearea.

Rm =specificmembraneresistanceΩ·cm2

Cm =specificmembranecapacitanceF/cm2

Page 17: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Plasmamembrane=G(R)andCinparallel• >99%hydrocarbon– capacitance

<1%channels– conductance

http://www.tutorhelpdesk.com/

Extracellular

Intracellular

Anioncarryingoutwardcurrentmayeither passthroughachannelor itmaypartiallydischarge(orcharge)thepotentialacrossthemembrane

++++++++++

_____ _____

+

+

+

+ionic capacitative

RC

Page 18: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Eachpopulationofchannelsisequivalenttoaconductor(resistor)andabatteryinseries

• Theconductor representsthechannelsandtheirsummedconductance(butrememberthatchannelsareneverentirelyselectiveforindividualions)

• Thebattery representstheelectrochemicalgradientactingontheion

Page 19: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Thepresenceofcapacitanceinthemembraneresultsintime-varyingresponses

YoucancalculateVR(t),VC(t),fromI.

ChargingofthecapacitorE

E

CE

CE

Page 20: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Thegeometryofthecelldeterminesitspassiveelectricalproperties:(1)sphere

Spheres(cellbodies)areisopotential,sincetheresistancebetweenanytwopointswithinthesphereissmallcomparedtothemembraneresistance.Thus,themembranepotentialiseverywherethesameandtheactionpotentialoccurseverywhereatonce

cellbodyt =ReqCeq

))/exp(1()1( tt tRIeRIV mm

t

mmm --=-=-

))/(exp()( tt tRIeRIV mm

t

mmm -==-

Risingphase

Fallingphase

Whydoesfarad*ohm=second(unitsoft)?Faradºcoulomb/volt,butVoltºampere*ohm=coulomb*ohm/secThereforefaradºsec/ohm,andfarad*ohmºsec

Page 21: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Thegeometryofthecelldeterminesitspassiveelectricalproperties:(2)axonordendrite

exponentialdecay

Whatdeterminestherateofdecayoflocalpotentialswithdistancealongcylinders?Therelativevalueofthe“escape” andaxialresistances.

Axonsanddendritesarenotisopotential.Thereissignificantaxialresistance.

Page 22: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

The“lengthconstant”isameasureofthedegreetowhichapotentialdecayswithdistancealonganaxon

• Lengthconstant,l,=distanceoverwhichthesteadystatesignaldecaysto1/e(37%)ofitsoriginalvalue

rm

ri

ro

i

m

oi

mr

rrr

+=

)(l sinceusuallyri >>ro

Page 23: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Thelengthconstantisdefinedatsteadystate,whendV/dt=0

• It’smoreprecisetocalculatewhatwouldhappenasafunctionofdistancetotransient signals(likeEPSPs)

• Thecableequation (http://en.wikipedia.org/wiki/Cable_theory)

Usefulforcalculatinghowsignalswilldecayasafunctionoftimeanddistancefromtheirpointoforigin.

VtV

xV

+¶¶

=¶¶ tl 2

22

mm

i rV

tVc

xV

r+

¶¶

=¶¶

2

21

Substitutinginlengthconstant(l)andtimeconstant(t)

TheCableEquation

Page 24: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Actualdistance/electrotonic distance

Ifd=0.2l?Ifd=2l?

d

Electronicdistance,expressedasafractionofl

Page 25: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Synapticresponsesareslowerandsmallerthegreatertheirelectronicdistancefromtherecordingsite

FromBekkers andStevens(1996)

filtering

Page 26: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

III.TheDeterminantsofMembranePotential

• Twofactorsdeterminethemembranepotentialofacell:1. Thepermeability(conductance)ratiosofitsmembrane

topermeantions,and2. Theconcentrationgradientsofthoseionsacrossthe

membrane.

• Thesodiumpumpdetermines,directlyorindirectly,theconcentrationgradientsofions(#2above)andtheyalsomakeasmallcontributiontomembranebybeingelectrogenic.

Page 27: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

RestingPotentialandtheDeterminantsofMembranePotential

• Neurons(andmostothercells)haveastanding/restingpotentialthatisnegativeinsidewithrespecttotheoutside(definedas0mV).Thispotentialistypicallyintherangeof-40mVto-90mV.

• Thenegativepotentialarisesbecauserestingcellshaveahighpermeabilitytopotassium,whichismoreconcentratedinsidethecellthanout,andalowpermeabilitytosodium,whichismoreconcentratedoutsidethecellthaninside.

Page 28: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Ionsareasymmetricallydistributedacrossthemembrane

Ion Intracellular(mM) Extracellular(mM)

Potassium 135 4

Sodium 18 145

Chloride 8 105

Calcium 0.00005 1.5

Magnesium 0.2 2

Bicarbonateandotherorganicanions

10 25

Largeanions 135

Na+K+

Ca2+

Cl-

HCO3-

A- Cl-Na+K+

Page 29: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Buildingacell,part1:StartwithK+ channelsonly

• Potassiumcontinuestoleavethecelluntiltheconcentration“force”isbalancedbytheopposingelectricalpotential.

i

o

i

oK K

KmVKK

zFRTE

][][log58

][][ln ==

Thecell,andpotassium,areatequilibrium.

Page 30: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Movementofionsinsolution(Hille,2011)

• Diffusionflux,Fick(1855)• Ds isthediffusioncoefficient,whichhastheunitsofcm2/s.

• Meansquaredisplacement (onedimension)

MS = −DSdcSdx

r2 = 2Dt

1.

t ≈ r2

2D

For2and3dimensions,thedenominatoris4Dand6D,respectively.

Time Distance

0.01µm 100ns

0.1µm 10µs

1µm 1ms

10µm 100ms

100µm 10s

1mm 1000s

ForglucoseD=0.5x10-5 cm2/s

Page 31: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Movementofionsinsolution(cont.)

• Undertheinfluenceofanelectricfield,

MS = −uScSdψdx

Convertingtocurrent IS = zSFMS = −zSFuScSdψdx

Molarflux

Replacingdy/dx withE/d … IS =−zSFuScS

dE

uS electricalmobilitycS concentrationzS valenceΨ potential

Whatisthis?

2.

Page 32: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Nernst-Planckequation

• Nernst(1888)andPlanck(1890)realizedthatthetwotermsdescribingtheinfluenceofelectricfieldsandBrownianmotiononionscouldbecombinedintoasingleexpression.

• Weneedtoconvertmolarfluxintocurrent,where• Multiplyequation#3bytoproduce

• SubstituteforfromtheEinsteinrelation(1905),relatingdiffusionandelectricalmobility,toget:

MS = −DSdcSdx

−uScSdψdx

Combining1. and2.

IS = zSFMS

3.

uS

IS = −zSFDSdcSdx

− zSFuScSdψdx

DS =uSRTzSF

IS = −zSFDSdcSdx

− zSFDszsFRT

cSdψdx

zSF

Page 33: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Nernst-Planck

• Rearrangingterms…

• WhenIs =0,

• Integratingoverx,

÷øö

çèæ +-=

dxd

RTcFz

dxdcfDzI SSS

SSSy

( )SSSS

cdxd

FzRT

dxd

cFzRT

dxd ln1

-=-=yy

1

221 ][

][lnSS

FzRTEEES

=D=-

NPE:NernstPlanckequation

Forourpurposes,2is“outside”andE2 =0.

Page 34: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Modelcell,permeableonlytoK+

• IfKo is4mMandKi is135mM,Vm willgoto~-89mV. i

o

i

oK K

KmVKK

zFRTE

][][log58

][][ln ==

• Butwait!IsitOKtoassumethattheconcentrationshaveremainedconstant?

• Consideracellthatisaspherewitha25µmdiameter.• vol.=8x10-12 l.;surfacearea=2x10-5 cm2

• Whatisthecapacitanceofthemembrane?• Q=CV,V=Q/C• Capacitanceofbiologicalmembranes@ 10-2 F/m2 =1µF/cm2;

thereforeC=2x10-11 F• Calculatecharge(Q)neededtochargethemembraneto90mV

• Q=CV=2x10-11 F*0.09V=1.8x10-12 coulombs• Thismuchchargecarriedby1.8x10-17 molesofmonovalention,which,in

thiscell,correspondstoabout2µM (1partin70,000).

Page 35: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Buildingacell,part2:AddNa+ channels

• Neitherpotassiumnorsodiumisatequilibrium.Althoughnetcurrentiszero,thissituationisnotsustainable.

• Thesodiumpump(Na+/K+-dependentATPase)comestotherescue.

Page 36: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Sodium-potassiumATPase

• Coupled K+ entry)• Drivenbymass

action underphysiologicalconditions,meaningthatsubstrateavailabilityislimiting

• Electrogenic,meaningthatitproducesacurrent

Page 37: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

GoldmanHodgkinKatz(GHK)equation

• Thisappliestonon-equilibriumsituationswhentotalmembranecurrentiszero.It’sthusamoregeneralexpressionthantheNernstequation,whichreferstoanequilibriumsituation.

• Goldman(1943)andHodgkinandKatz(1949)• Assumptions:

– ionfluxisinfluencedbothbytheconcentrationgradientandbytheelectricfield,accordingtotheNernst-PlanckEquation

– ionscrossthemembraneindependentlyofoneanother(nophysicalorelectrostaticinteraction)

– theelectricfieldisconstant(constantfield).

oCliNaiK

iCloNaoKrev ClPNaPKP

ClPNaPKPFRTE

][][][][][][ln

++++

=

Page 38: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

• Ionsdon’tinteractwithoneanother.• Nosaturation• Nointeractionoftheionwiththechannel(whichwouldviolatetheconstantfieldassumption)

• Nochannelblock

• Nonethelesstheequationhasproventobefairlyaccurate.Someoftheassumptions(e.g.,block,saturation)havelittleeffectontheestimateofreversalpotential.

SomeoftheassumptionsusedtoderivetheGHK:

arewrong!

Page 39: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Anelectricalapproach(g,notP)

0=++= ClKNai IIII

)( imii EVgI -= Ohm’slaw:current=conductance*drivingforce

0)()()( =-+-+- ClmClKmKNamNa EVgEVgEVg

SolveforVm

Cli

ClK

i

KNa

i

Nam E

ggE

ggE

ggV

S+

S+

S=

• NotasgeneralasGHK• If youchangetheconcentrationorpermeantionsoutsidethecell,gis

likelytochange,butnotP• Nonetheless useful• BoththisexpressionandGHKreducetoNernst whenonlyoneionis

considered,assumingthatgandPareequivalent.

drivingforce =extenttowhichanionisoutofequilibrium

Page 40: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

ElectricalEquivalentofaNeuron

Convention:directionoftravelofpositiveions=directionofcurrentflowConvention:inwardcurrentisnegativeinsign(FranklinB)

Page 41: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

1. Bygeneratinggradientsofpermeantions2. Bypassingcurrent.GHKdoesnot accountforthis

contribution.

• Inamodelwithonlysodiumandpotassiumcurrents,whatistheratioofiNa andiK fluxthroughchannelsintheabsenceofthepump?

• Inthepresenceof thepump?

Howdoesthepumpcontributetotherestingpotential?

Page 42: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Leakcurrentandtherestingcell

• Whatarethechannelsthataccountfortherestingcell’s“K-like”potential?Arethesesimplyafewofthevoltage-dependentpotassiumchannelsthathappentobeopenatrest?

• No.– HCN(hyperpolarizationactivatedcyclicnucleotidegated),cation

channels,whichproducetheIh current– 2PK channels– Mcurrent(K)– BK andSK channels(calciumactivated)– NALCNchannel(NaLeakChannelNon-selective),cation

Page 43: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

Thepropertiesofleakchannels,actingtogether

• Whatistheinfluenceofleakchannelsonsignaling?• Whatisthedifferencebetweentheinfluenceofleakchannels

andthatofchloridechannels,whenchlorideisatequilibrium?

Page 44: Neuroscience 201A (2016) · Resources • Texts – on reserve (Rutter Center library) – Fain G (2014) Molecular and Cellular Physiology of Neurons, 2nd ed., Harvard University

• Endofday1


Recommended