+ All Categories
Home > Documents > NEW MODEL SYSTEMS FOR EXPERIMENTAL EVOLUTION

NEW MODEL SYSTEMS FOR EXPERIMENTAL EVOLUTION

Date post: 08-Dec-2016
Category:
Upload: sinead
View: 213 times
Download: 1 times
Share this document with a friend
4
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/evo.12116 New model systems for experimental evolution Sinéad Collins Experimental evolution is a powerful method for understanding general processes and estimating key parameters in evolution, such as mutation rates and the fitness distributions of those mutations (Ness et al. 2012), mechanisms of adaptive radiation(McDonald et al. 2009), and determinants of extinction rates. The success of experimental evolution is due largely to a standard set of techniques (Collins 2011) applied to a small but well‐behaved set of model organisms. These model organisms (e.g., E.coli, Pseudomonas sp, Chlamydomonas, Saccharomyces, Drosophila) are easy to grow, store, revive, and manipulate genetically and physiologically, and they have characterized variants that are available from culture collections. This allows large, powerful experiments that can span hundreds or even thousands of generations, and gives evolutionary biologists access to an arsenal of high‐throughput culturing that can exploit a wide range of physiological and genetic tools. In short, these are the perfect systems in which to ask general questions about evolution. Accepted Article
Transcript

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/evo.12116

Newmodelsystemsforexperimentalevolution

SinéadCollins

Experimentalevolutionisapowerfulmethodforunderstandinggeneral

processesandestimatingkeyparametersinevolution,suchasmutationrates

andthefitnessdistributionsofthosemutations(Nessetal.2012),mechanisms

ofadaptiveradiation(McDonaldetal.2009),anddeterminantsofextinction

rates.Thesuccessofexperimentalevolutionisduelargelytoastandardsetof

techniques(Collins2011)appliedtoasmallbutwell‐behavedsetofmodel

organisms.Thesemodelorganisms(e.g.,E.coli,Pseudomonassp,Chlamydomonas,

Saccharomyces,Drosophila)areeasytogrow,store,revive,andmanipulate

geneticallyandphysiologically,andtheyhavecharacterizedvariantsthatare

availablefromculturecollections.Thisallowslarge,powerfulexperimentsthat

canspanhundredsoreventhousandsofgenerations,andgivesevolutionary

biologistsaccesstoanarsenalofhigh‐throughputculturingthatcanexploita

widerangeofphysiologicalandgenetictools.Inshort,thesearetheperfect

systemsinwhichtoaskgeneralquestionsaboutevolution.

Acc

epte

d A

rticl

e

Sadly,weknownexttonothingabouttheecologyoftheseorganisms,though

thereisgrowinginterestindoingexperimentalevolutioninsituorinnatural

assemblages(GomezandBuckling2011;Lawrenceetal.2012).Thisisfineso

longasstudiesaremotivatedbyexpandingortestinggeneralevolutionary

theory,butexperimentalevolutioncanalsobeusedtounderstandevolutionin

organismswherewearemotivatedbytheirparticularecology.Whileonecan

(andIhave)arguedthatusingafreshwateralgatounderstandgenerallyhow

marinealgaemightevolveinacidifyingoceans,atsomepointChlamydomonas

becomesapoorstand‐inforcoccolithophores.Thatpointcomeswhenwewant

tounderstandtheeffectsofevolutionaryresponsesonbiogeochemicalcycles,

fisheries,andmarinefoodwebs.Atthatpoint,particularbiologymatters.

Thisspecialsectionhighlightsevolutionarystudiesinorganismsthatarenewto

experimentalevolution,thoughtheyareallwell‐studiedmodelorganismsin

otherfieldssuchasphysiology,biogeochemistry,developmentalbiology,and

ecology.First,astudybyMorranetal.(thisissue)usingC.elegansshowshow

detailedknowledgeofasystemusuallyusedfordevelopmentalbiologycanbe

co‐optedtoaddressfundamentalquestionsinhost‐parasitecoevolutionina

systemthatisprobablyfamiliartomostevolutionarybiologists,since

evolutionaryanddevelopmentalbiologyhavehistoricallymovedforwardin

lockstep.Therestofthespecialsectionfocusesonmodelsystemsinmarine

biology,whereexperimentalevolutionisbeingrapidlyadoptedtounderstand

howmarinecommunitiesmayrespondtooceanacidification(Lohbecketal.

2012).Experimentalevolutionandmarinebiologyhavehistoricallybeenquite

separate(butsee(Lynchetal.1991)),soashortperspectivebyReuschandBoyd

hasbeenincludedbywayofanintroduction.Threestudiesinmarinemicrobes

highlightexperimentalevolutionstudiesthatinvestigateresponsestoocean

acidificationinecologicallyimportanttaxa,eitherusingtraditionalsingle‐lineage

selectionexperiments(Lohbecketal.,Pengetal.thisissue),orbyinvestigating

howinteractionsbetweenspeciesevolve(Tattersetal.,thisissue).Finally,a

studybyPespeniandcolleagueslooksataclassicquestion–thatoflocal

adaptation–usingnaturalpopulationsofseaurchins.Together,thestudiesin

thisspecialsectionofEvolutiondemonstratethatmarinebiologistsaremore

Acc

epte

d A

rticl

e

thanwillingtoacceptthechallenges(andbenefits)ofexperimentalevolutionas

atooltounderstandhowmarinecommunitieswillrespondtoocean

acidification,andofferseveralnewmodelsystems,aswellasanimportant

ecologicalscenario,withwhichtodevelopfundamentalevolutionarytheory.

Acc

epte

d A

rticl

e

LiteratureCited

Collins,S.2011.ManyPossibleWorlds:ExpandingtheEcologicalScenariosin

ExperimentalEvolution.EvolutionaryBiology38:3–14.

Gomez,P.andA.Buckling.2011.Bacteria‐PhageAntagonisticCoevolutioninSoil.

Science332:106–109.

Lawrence,D.,F.Fiegna,V.Behrends,J.G.Bundy,A.B.Phillimore,T.BellandT.G.

Barraclough.2012.SpeciesInteractionsAlterEvolutionaryResponsestoaNovel

Environment.PLoSbiology10:e1001330.

Lohbeck,K.T.,U.RiebesellandT.B.H.Reusch.2012.Adaptiveevolutionofakey

phytoplanktonspeciestooceanacidification.NatureGeoscience5:346–351.

Lynch,M.,W.GabrielandA.M.Wood.1991.Adaptiveanddemographic

responsesofplanktonpopulationstoenvironmentalchange.Limnologyand

Oceanography36:1301–1312.

McDonald,M.J.,S.M.Gehrig,P.L.Meintjes,X.X.ZhangandP.B.Rainey.2009.

AdaptiveDivergenceinExperimentalPopulationsofPseudomonasfluorescens.

IV.GeneticConstraintsGuideEvolutionaryTrajectoriesinaParallelAdaptive

Radiation.Genetics183:1041–1053.

Ness,R.W.,A.D.Morgan,N.ColegraveandP.D.Keightley.2012.Estimateofthe

SpontaneousMutationRateinChlamydomonasreinhardtii.Genetics.Genetics

SocAmerica.

Acc

epte

d A

rticl

e


Recommended