+ All Categories
Home > Documents > NM Ln5 6 PDE Compatibility Mode

NM Ln5 6 PDE Compatibility Mode

Date post: 03-Jun-2018
Category:
Upload: angelo-di-maria
View: 220 times
Download: 0 times
Share this document with a friend

of 44

Transcript
  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    1/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    2/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    3/44

    3

    Accuracy/consistency

    The discretised equations are notthereal ones

    x

    u

    real

    e sc eme oes notso ve t e reaequations !

    1/25/2012 Numerical Methods 5

    approximatex

    u

    Important Properties of Numerical Schemes

    Convergence

    numerical scheme solution isconvergent if it comes closer and

    closer to the analytical solution of the real ODE/PDE when the

    ConsistencyConvergence

    Stability

    me s ep ecreases;

    LaxTheorem: 2 conditions needed for convergence

    Consistency

    A scheme isconsistent if it gives a correct approximationof the ODE/PDE as the time/space step is decreased

    verified using Taylor Series expansion

    Stability

    A scheme is stable if any initially finite perturbation

    remains bounded as time grows

    Verification: Matrix method, Fourier method, Domain of

    dependence

    1/25/2012 I.Popescu: Numerical Methods 6

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    4/44

    4

    Accuracy/consistencyTo reduce the truncation error :

    Decrease both t and x

    ConsistencyConvergence

    Stability

    . .reasonable range)

    If the truncation error is small:

    the discretised equation is consistent

    x

    taCr

    1/25/2012 Numerical Methods 7

    with the real one.

    Accuracy and suitability

    Consistency of schemes for PDEs

    nnnUCrCrUU

    110

    Ua

    U

    ConsistencyConvergence

    Stability

    xt

    uInitial profile of u

    Exact solution, (Cr=1)

    Cr=0.5, dx=100m

    Cr=0.5, dx=50m

    umerical diffusion

    1/25/2012 Numerical Methods 8

    x

    Numerical diffusion

    causes amplitude error

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    5/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    6/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    7/44

    7

    What you want to solve :

    uu

    Accuracy/consistency ConsistencyConvergence

    Stability

    What the scheme sees :

    xt

    3

    2

    2

    uuuu

    Numerical

    diffusion

    1/25/2012 Numerical Methods 13

    ...32 xxxt

    Truncation errorNumerical

    dispersion

    Accuracy and suitability

    Stability of schemes for PDEs

    nnnUCrCrUU

    110

    Ua

    U

    ConsistencyConvergence

    Stability

    xt

    uInitial profile of u

    Exact solution, (Cr=1)

    Cr=0.5, dx=100m

    Cr=0.5, dx=50m

    umerical diffusion

    1/25/2012 Numerical Methods 14

    x

    Numerical diffusion

    causes amplitude error

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    8/44

    8

    Accuracy and suitability Stability of schemes for PDEs

    Because of numerical diffusion we try to use a better scheme,

    like for instance Preismann scheme with psi=0.5;

    a dis ersion e uation

    ConsistencyConvergence

    Stability

    0

    x

    Ua

    t

    U3

    3

    x

    Uk

    x

    Ua

    t

    U

    Dispersion equationu

    Initial

    profile

    Analytical profile,

    Advected

    downstream

    Numerical dis ersion

    1/25/2012 Numerical Methods 15

    x

    Computational

    result

    Due to derivatives estimation

    Sharper profiles and oscilations

    Create phase errors umerical dispersion

    Numerical diffusion : profile smearing

    1.2 Initial

    Analytical

    Accuracy/consistency ConsistencyConvergenceStability

    0.4

    0.6

    0.8

    1

    u

    Numerical

    1/25/2012 Numerical Methods 16

    0

    0.2

    0 2 4 6 8 10 12 14 16 18 20

    x

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    9/44

    9

    Numerical dispersion : oscillations

    1.2 Initial

    Accuracy/consistency ConsistencyConvergence Stability

    0.2

    0.4

    0.6

    0.8

    1

    u

    Numerical

    1/25/2012 Numerical Methods 17

    -0.4

    -0.2

    0

    0 2 4 6 8 10 12 14 16 18 20

    x

    Accuracy and suitability

    Stability of explicit schemes Von Neumann stability method (Using Fourier

    analysis)

    ConsistencyConvergence

    Stability

    Same principle: amplitude factor is less than 1

    1/25/2012 Numerical Methods 18

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    10/44

    10

    Stability Stability of explicit schemes

    Von Neumann stability method (Using Fourier analysis)

    Same principle: amplitude factor is less than 1

    xijtnnj eUU

    00 xjixjtnitntnUU iir

    n

    j sincossincosexp0

    0

    n

    j

    n

    j

    n

    j

    n

    j

    NU

    UCrCr

    U

    UA

    1

    1

    1

    i

    1-1

    1/25/2012 Numerical Methods 19

    xixijtnU

    xjitnU

    U

    Un

    j

    n

    j

    exp

    exp

    1exp0

    0

    0

    01

    CrxixCrAN sincos1

    Cr

    Unit

    circle

    -i

    -

    Amplitude and phase portraits

    Wave amplitude

    Amplification factor =1

    Any difference between the numerical phase speed

    and true phase speed is the phase error

    The graph that shows how the Fouriercomponents are amplified is called anamplitude portrait.

    1/25/2012 Numerical Methods 20

    The graph that shows at what speed theFourier components travel is called aphaseportrait.

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    11/44

    11

    Amplitude and phase portraits

    x

    2

    M- The wave number - represents the

    number of grid intervals needed to cover

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1 10 100

    A

    1.2

    1/25/2012 Numerical Methods 21

    2

    MAArg

    Cr

    aAArgc N

    NN

    CrM

    iM

    CrAN

    2

    sin2

    cos1

    M

    0

    0.2

    0.4

    0.6

    0.8

    1 10 100

    M

    c/u

    Phase and amplitude errors

    1/25/2012 Numerical Methods 22

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    12/44

    12

    (B)Parabolic PDEs

    1/25/2012 Numerical Methods 23

    Parabolic Equations Initial Value Problems

    A 1D time-dependent parabolic eqn (b=c=0)

    2u

    au

    Lx0

    t

    Com utational

    T

    xt t

    )()0,( xfxu

    )(),()(),0(

    thtLutgtu

    x

    domain

    0 L

    With I.C

    With B.C

    1/25/2012 Numerical Methods 24

    x

    u

    0 L

    t=0

    f(x)

    t

    u

    0 T

    x=0

    g(t)

    t

    u

    0 T

    x=L

    h(t)

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    13/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    14/44

    14

    2

    2

    x

    ua

    t

    u

    nnnnn 1

    t

    n

    1nn

    iu n

    iu 1n

    iu 1

    1ni

    u

    Parabolic PDE:Solution Methods Explicit Methods2

    iiiii uuuruu 11

    x

    1niu

    i 1i1i

    1n

    I.C.: )(0

    xifui B.C.:

    tnun

    1/25/2012 Numerical Methods 27

    )( tnhunN We can calculate the unknown values of from the known

    values of starting from the initial condition

    1niun

    iu

    0

    iu

    Parabolic PDE: Stability of the Explicit Method

    The explicit method is unstable if the timestep is too large.

    conditions is

    Stability condition for derivative boundaryconditions is

    210 r

    a

    xt

    2

    2

    1/25/2012 Numerical Methods 28

    for )(fuu

    n

    uk

    x

    rk

    2

    10

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    15/44

    15

    Parabolic Equation An example calculation

    Solve

    for2

    2u

    au

    x 10

    (Where u represents temperature)

    with initial condition

    t

    0.15.0for)1(2

    5.00for2)0,(

    xx

    xxxu

    u

    1

    1/25/2012 Numerical Methods 29

    and boundary conditions

    0),1(

    0),0(

    tu

    tu

    x10.5

    Parabolic Equation An example calculation2

    Solve

    for

    2u

    au

    x 10

    (Where u represents temperature)

    with initial condition

    xt t

    0.15.0for)1(2

    5.00for2)0,(

    xx

    xxxu

    u

    1

    1/25/2012 Numerical Methods 30

    and boundary conditions

    0),1(

    0),0(

    tu

    tu

    1 21

    222

    2sinsinx

    exp8),(

    n xnn

    tnntxu

    Analytical (exact) solut ion

    x1.

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    16/44

    16

    Parabolic Example : Case 1 (r

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    17/44

    17

    1Evolution of temperature distribution

    Parabolic Example : Case 1 (r

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    18/44

    18

    Evolution of temperature distribution

    Parabolic Example : Case 3 (r>0.5)

    Plot of the temperature distribution at 0 and 18time steps

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    temperature

    t=0

    t=0.1

    0055.0

    1.0

    t

    x

    55.02

    x

    tar

    analytic

    1/25/2012 Numerical Methods 35

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.1

    0.2

    0.3

    0.4

    x

    UNSTABLE

    solution is

    meaningless

    Parabolic Example :Evolution of maximum temperature (r=0.1)

    0.9

    1Evolution of maximum temperature

    exact solution

    r=0.1 solution

    0.5

    0.6

    0.7

    0.8

    maximum

    temperature

    STABLE

    solution

    1/25/2012 Numerical Methods 36

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.3

    0.4

    time

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    19/44

    19

    0.9

    1Evolution of m aximum temperature

    exact solution

    r=0.5 solution

    Parabolic Example :

    Evolution of maximum temperature (r=0.5)

    0.5

    0.6

    0.7

    0.8

    maximumt

    emperature

    STABLE

    solution but

    not v.

    accurate

    1/25/2012 Numerical Methods 37

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.3

    0.4

    time

    Parabolic Example :Evolution of maximum temperature (r=0.55)

    0.9

    1Evolution of maximum temperature

    exact solution

    r=0.55 solution

    0.5

    0.6

    0.7

    0.8

    maximumt

    emperature UNSTABLE

    solution is

    meaningless

    1/25/2012 Numerical Methods 38

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.3

    0.4

    time

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    20/44

    20

    Parabolic Example : Explicit Method Error

    r M u % error

    Comparison of temperature values at x=0.5 and t=0.1 (for N=11)

    analytic - 0.3021 -

    0.001 10000 0.3071 1.65

    0.01 1000 0.3070 1.60

    0.1 100 0.3056 1.16

    0.5 20 0.3071 1.64

    need to

    increase N

    to reduce

    1/25/2012 Numerical Methods 39

    0.55 18 0.6336 109

    0.6 16 7.2340 2294

    error

    furtherunstable

    (C)Eliptic PDEs

    1/25/2012 Numerical Methods 40

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    21/44

    21

    Elliptic Equations No time variable

    ),,(),(2

    2

    2

    2

    yxufyxux

    u

    y

    u

    y

    x

    Ly

    Lx

    0

    0

    - Poisson equation

    - Laplace equation

    ),,(02

    2

    2

    2

    yxufx

    u

    y

    u

    0002

    2

    2

    2

    x

    u

    y

    ufand

    With different typs of B.C.:

    Dirichlet : u is specified at the boundary

    1/25/2012 Numerical Methods 41

    t

    Neumann : erivative o u is speci ie at t e oun ary

    Mixed(robin): both u and its derivative is specified atthe boundary

    Example : Laplace equation

    Equation is:

    Lx0

    2

    2

    2

    2

    x

    u

    y

    u

    y

    1, jiu1j

    j

    1jjiu , jiu ,1jiu ,1

    1, jiu

    NLyy

    M

    1/25/2012 Numerical Methods 42

    xi 1i1iApproximate solution determined at all grid pointssimultaneously by solving single system of algebraicequations

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    22/44

    22

    Elliptic PDE:Solution Methods Explicit Methods

    y

    j

    1jjiu , jiu ,1jiu ,1

    1, jiu

    02

    2

    2

    2

    x

    u

    y

    u

    2

    ,1,,1

    2

    2 2

    x

    uuu

    x

    u jijiji

    x

    1, jiu

    i 1i1i

    1j

    1/25/2012 Numerical Methods 43

    04 ,1,1,,1,1 jijijijiji uuuuu2

    1,,1,

    2

    2 2

    y

    uuu

    y

    u jijiji

    02

    1,,1,

    2

    ,1,,1

    yx

    jijijijijiji

    Holds for all interior points of the domain

    Finite difference methods

    What you should remember

    1/25/2012 Numerical Methods 44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    23/44

    23

    What you should remember Numerical solutions to PDEs can be

    obtained by discretising both space andtime.

    Explicit numerical schemes for PDEs aresubject to stability constraints.

    Implicit numerical schemes for PDEs arealways stable.

    1/25/2012Numerical Methods

    45

    solution of non-linear PDEs.

    The notions of consistency, stability andconvergence also hold for numericalschemes for PDEs.

    What you should remember

    First-order accurate schemes producenumerical diffusion; numerical profilesobtained are smoothed and may lead topeak underestimation. Numericaldiffusion leads to amplitude error.

    Second-order accurate schemes producenumerical dispersion; numerical profilesexhibit artificial oscillations. Undesirable

    1/25/2012 Numerical Methods 46

    behaviours (such as negativeconcentrations) may appear. Numericaldispersion causes phase error.

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    24/44

    24

    What you should remember Decreasing t or x alone is not sufficient to

    reduce the truncation error : tand xshouldbe reduced together.

    T e MOC is a speci ic in o numerica met oused for advection modelling. Its maindrawback is that it is generally not conservative(some water, pollutant, or energy, may be lostartificially).

    At least three points in space are needed to

    1/25/2012 Numerical Methods 47

    solve a diffusion equation.

    The design of 2-D and 3-D computational gridshould be carried out with care, long andnarrow grids should be avoided.

    6 Finite volume methods

    (FVM)

    1/25/2012 Numerical Methods 48

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    25/44

    25

    FVM principle (1)FVMs are applicable to conservative equations, i.e. equations of the

    form

    problems)(1D0

    x

    F

    t

    U

    problems)(3D0

    problems)(2D0

    z

    H

    y

    G

    x

    F

    t

    U

    y

    G

    x

    F

    t

    U

    F, G, H : Fluxes in x, y and z

    U : Conserved variable

    nnn

    (5.1)

    1/25/2012 Numerical Methods 49

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    n

    nnn

    z

    U

    y

    U

    x

    U

    z

    U

    y

    U

    x

    UUHH

    z

    U

    y

    U

    x

    U

    z

    U

    y

    U

    x

    UUGG

    zyxzyxUFF

    ,,,,,,

    ,,,,,,

    ,,,,,,

    Eqs. (5.1) express the conservation of U over any bounded volume of

    space

    (5.2) 0

    zHyGxF

    t

    U

    FVM principle (2)

    : Divergence operator

    By definition of the divergence, Eq. (5.2) can be rewritten as

    0d.ddd nzHyGxFzyxU

    t

    n

    1/25/2012 Numerical Methods 50

    F

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    26/44

    26

    Application:

    1) Discretise space into volumes

    2) Compute the fluxes at the edges between the volumes

    FVM principle (3)

    e erm ne e c anges n v a a a ance equa on

    (5.3) Vt

    UU nn

    outin1 FluxFlux

    1/25/2012 Numerical Methods 51

    V

    The conservation law together with piecewise constant data

    having a single discontinuity is known asthe Riemann problem.

    FVM application (1)

    0

    if

    l

    x

    r

    q xq

    q x

    husQus

    hds

    husQus

    hds

    h-discontinuity

    1/25/2012 Numerical Methods 52

    Qds Qds

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    27/44

    27

    husQus

    hds

    husQus

    hds

    h-discontinuity

    FVM application (2)

    ds ds

    Three possible patterns:

    zones of constant state (depth and velocity are

    homogeneous over such zones),

    a shock wave (information coming from upstream catches

    1/25/2012 Numerical Methods 53

    and information downstream),

    a rarefaction wave (information downstream travels faster

    than the information upstream).

    Transport equations

    2/12/11

    jjj

    nj

    nj FF

    x

    tCC0

    x

    CDuC

    xt

    C

    FVM applications (3)

    C

    xj

    Fj-1/2 Fj+1/2

    1/25/2012 Numerical Methods 54

    0if2

    0if2

    1

    1

    1

    1

    1

    2/1

    uxx

    CCDuC

    uxx

    CCDuC

    F

    jj

    n

    j

    n

    jn

    j

    jj

    n

    j

    n

    jn

    j

    j

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    28/44

    28

    Applications in 1DDiscontinuous flows

    PDE)(scalar0

    x

    U

    t

    U

    FVM applications (4)

    When F [F] is a non-linear function of U [U], the solution

    may become discontinuous

    Ex. Burgers equation

    PDEs)of(system0

    xt

    FU

    form)ion(conservat0

    2uu

    1/25/2012 Numerical Methods 55

    invariant)Riemannais(d

    dalong0

    D

    D

    form)istic(character0

    uut

    x

    t

    u

    x

    uu

    t

    u

    Applications in 1DBurgers Eq. (continued): formation of shocks from initially

    smooth profiles

    FVM applications (5)

    t

    U

    x

    A

    B

    A

    B

    Shock (u travels faster

    behind than ahead)

    1/25/2012 Numerical Methods 56

    x

    t0

    t1

    A B

    dx/dt = u

    u = Cst

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    29/44

    29

    Applications in 1D (4)In finite volume methods: the flux is calculated from the

    solution of a Riemann problem

    FVM applications(6)

    U

    Initial

    Final

    U = Cst here

    1/25/2012 Numerical Methods 57

    t

    x

    The characteristics are straight

    lines in the phase space

    Applications in 1DThe solution of the Riemann problem exists even though the

    initial profile is discontinuous

    FVM applications (7)

    Algorithm

    1) At each interfacej-1/2, define the Riemann problem

    2) Solve it => solutionUj-1/2

    3) Compute the flux

    njnj UU ,1

    2/12/1 jj UFF

    1/25/2012 Numerical Methods 58

    4) For each cell, carry out balance forU

    2/12/11

    jjj

    nj

    nj FF

    x

    tUU

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    30/44

    30

    Multidimensional problemsWave splitting (scalar equations)

    0

    Uv

    x

    Uu

    t

    U

    FVM applications(8)

    M (xi1/2,yM)

    ut

    M(xi1/2 ut,yM)

    Cell (i,j)Cell (i 1,j)

    Interface (i 1/2,j)

    1/25/2012 Numerical Methods 59

    vt

    x

    M(xi1/2ut,yMvt)

    Multidimensional problems (2)

    Wave splitting (systems of equations)

    FVM applications (9)

    Decomposed into

    0

    yxt

    byfollowed

    00

    xtxtUAUFU

    1/25/2012 Numerical Methods 60

    => Decompose the Riemann problem into 2 R.Ps: 1 along x

    and 1 along y

    00

    ytyt

    B

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    31/44

    31

    Multidimensional problems (3)

    Wave splitting (2)

    FVM applications(10)

    tpx )(

    tp

    y )1(

    P(p, 1)

    N(p) M

    B

    U(p)

    1/25/2012 Numerical Methods 61

    tp

    y )2,(

    P(p, 2)A

    What you should remember

    Finite Volume Methods (FVMs) are well-suited for the solution of conservativePDEs. The weak solution of the PDE issought.

    FVMs ensure mass conservation

    automaticly and can handle shocks anddiscontinuities.

    The solution of the advection PDE b the

    1/25/2012 Numerical Methods 62

    Godunov-type FVMs involves thedefinition and the solution of a Riemannproblem.

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    32/44

    32

    7. Finite Element Method

    (FEM) - useful for problems withcomplicated geometries and

    discontinuities, where analytical

    1/25/2012 Numerical Methods 63

    solutions can not be obtained

    What is it FEM?

    The finite element method is a numerical methodfor solving problems of engineering andmathematical physics, useful for problems withcomp icate geometries an iscontinuities,where analytical solutions can not be obtained.

    1/25/2012 Numerical Methods 64

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    33/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    34/44

    34

    Principle of the method -(3)Discretization

    Model the domain by dividing it into an equivalent system ofsmaller domains or units (finite elements) interconnected atpoints common to two or more elements (nodes or nodal points)and/or boundary lines and/or surfaces.

    1/25/2012 Numerical Methods 67

    Principle of the method -(4)

    Discretization

    eN

    jjj

    1

    ,

    N1 and N2 are called Shape Functions or Interpolation Functions.

    They express the shape of the assumed U.

    For a linear representation of 1D elements:

    N =1 N =0 at node 1

    1/25/2012 Numerical Methods 68

    N1 =0 N2 =1 at node 2

    N1 + N2 =1

    1 2

    N1

    L1 2

    N2

    L

    1 2

    2

    L

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    35/44

    35

    MethodologyObtain a set of algebraic equations to solve for unknownnodal quantity (displacement).

    Principle of the method -(5)

    Secondary quantities (stresses and strains) are expressedin terms of nodal values of primary quantity

    History

    Hrennikoff [1941] - Lattice of 1D bars

    McHenry [1943] - Model 3D solids

    Courant [1943] - Variational form

    1/25/2012 Numerical Methods 69

    Levy [1947, 1953] - Flexibility & Stiffness

    Argryis and Kelsey [1954] - Energy Prin. for MatrixMethods

    Turner, Clough, Martin and Topp [1956] - 2D elements

    Clough [1960] - Term Finite Elements

    Applications

    Fluid Flow

    Heat Transfer

    Structural/Stress Analysis

    Electro-Magnetic Fields

    Soil MechanicsAcoustics

    1/25/2012 Numerical Methods 70

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    36/44

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    37/44

    37

    Application -1D advection equation

    0

    x

    Ua

    t

    U),(0.

    0

    yxwdxwx

    yc

    t

    yL

    0.0

    *11

    L

    ji

    in

    ii

    n

    i

    n

    i dxNx

    NUc

    t

    UU

    0..0 0

    *1*1

    L L

    ji

    in

    ijii

    n

    i

    n

    i dxNx

    NUcdxNN

    t

    UU

    1/25/2012 Numerical Methods 73

    11110

    1

    2

    1

    n

    j

    n

    j

    L

    ij

    in

    i UUdxNx

    NU

    Application - 1D advection equation

    0

    x

    Ua

    t

    U

    111 1 nnL in N

    110 2

    jji ji x

    j

    n

    jj

    n

    jj

    n

    jj dycybya

    1

    1

    11

    1

    12/1

    xa

    j xx jj 2/12/12 12/1

    xc

    j

    1/25/2012 Numerical Methods 74

    3 tc tcj 3 3 tc

    nj

    jn

    j

    jjn

    j

    j

    j Ux

    Uxx

    Ux

    tcd 1

    2/12/12/1

    1

    2/1

    636

    2

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    38/44

    38

    Modeling Considerations

    Solve the tridiagonal system [A]Y=B Sy m m et r y -means correspondence in size, shape and position of U and

    boundary conditions that are on opposite sides of a dividing line orplane;

    Use of symmetry allows us to consider a reduced problem instead of the actual

    problem.

    The order of the total (global) stiffness matrix and the total number of equations can be

    reduced.

    Solution time is reduced!

    Ba n d w i d t h- An envelope that begins with the firstnonzero component in each column of the [A] matrix

    1/25/2012 Numerical Methods 75

    741

    2

    2PL

    8

    6

    5

    3

    2

    1

    4

    5

    L

    1/25/2012 Numerical Methods 76

    L L

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    39/44

    39

    41

    2

    LP

    5

    3

    2

    1

    4

    L

    1/25/2012 Numerical Methods 77

    L L

    00000X0XX0XX

    000000XX0XX0

    0000000XXXXX

    00000000X0XX

    00X0XX000000

    XX0XX0X000000XXXXXXX0000

    00X0XX0XX000

    000XX0XX0X00

    1/25/2012 Numerical Methods 78

    X00X00000000

    0X0XX0000000

    X is a nonzero 2 x 2 block nb

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    40/44

    40

    Bandwidth

    nb = ndof( m + 1 )

    ere:

    nb is the semibandwidth

    ndof is the number of degrees of freedom per node.

    m is the maximum difference in node

    numbers for any element.

    1/25/2012 Numerical Methods 79

    Poor Shapes

    b

    h

    b >> h

    >>

    very small cornerangles

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    41/44

    41

    Poor Shapes

    uadrilateral de eneratin

    h1h2

    h1 >> h2

    into triangular shape

    Quadrilateral approachingtriangular shape

    Finite Element Program.

    1/25/2012 Numerical Methods 82

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    42/44

    42

    START

    Input Data

    Zero [K] and {F}

    Do JE=1,NELE

    Compute element stiffness [k]

    Assemble Global stiffness [K] and forces {F}

    Apply B.C.s

    Solve [K]{d}={f}

    Compute element quantities

    Output Results

    END

    INPUT

    Control parameters

    Number of Elements

    Number of B.C.s

    Geometry

    x,y,z location of each node Element connectivity (which nodes are

    associated with which elements)

    1/25/2012 Numerical Methods 84

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    43/44

    43

    INPUT

    Element Properties

    Area

    Moment of Inertia

    Thickness

    Location of Neutral Axis

    Physical parameters Information

    1/25/2012 Numerical Methods 85

    Programs

    ALGOR

    COSMOS/M

    STARDYNE

    IMAGES-3DMSC/NASTRAN

    1/25/2012 Numerical Methods 86

    ADINA

    NISA

  • 8/12/2019 NM Ln5 6 PDE Compatibility Mode

    44/44

    What you should remember Finite Element Methods (FEMs) seek a

    weaksolution to the PDEs.

    set of basis or shape functions. Thosecan be piecewise linear, or parabolic, etc.

    The Galerkin technique uses a weightingof the solution by functions that are the

    1/25/2012 Numerical Methods 87


Recommended