+ All Categories
Home > Documents > Node-breaker model

Node-breaker model

Date post: 03-Jan-2016
Category:
Upload: quyn-gray
View: 39 times
Download: 5 times
Share this document with a friend
Description:
Node-breaker model. January 23 2014 TSS J. Gronquist, S. Kincic. West-wide System Model (WSM) as example of node-breaker model. WECC WSM is a product of the three existing RCO models (RDRC, CMRC, and PNSC) CIM XML formatted Models (RDRC & CMRC) & Areva EMS Netmom (PNSC) were merged - PowerPoint PPT Presentation
24
Node-breaker model January 23 2014 TSS J. Gronquist, S. Kincic
Transcript
Page 1: Node-breaker model

Node-breaker model

January 23 2014TSS

J. Gronquist, S. Kincic

Page 2: Node-breaker model

2

• WECC WSM is a product of the three existing RCO models (RDRC, CMRC, and PNSC)o CIM XML formatted Models

(RDRC & CMRC) & Areva EMS Netmom (PNSC) were merged

o Merged Model required clean-up: removal of duplicate lines & substations, standardization of basic modeling methodology & naming conventions

o Result: West-wide System Model (WSM) Areva EMS Netmom

West-wide System Model (WSM) as example of node-breaker model

PNRC (Areva)

CMRC(ABB)

RDRC(GE Harris)

Page 3: Node-breaker model

3

West-wide System Model (WSM) - usageoWECC RC (Peak Reliability) run SE every

minute and RTCA every 5 minutes;oNext day operation studies;oNear real time studies as needed;oUsed for update for BPA and CAISO SE

external model;o Providing access to WECC members to

advanced applications; o Post cases in PTI30 and .csv format daily at

www.peakrc.com

Page 4: Node-breaker model

4

WSM vs. basecase

• Planning Basecase – Cholla 500kV (1-bus:14000)

Page 5: Node-breaker model

5

WSM vs. basecase (bus number)

• WSM Model – Cholla 500kV (4-busses)

Page 6: Node-breaker model

6

WSM vs. basecase

• WSM Model – Cholla 500kV (4-busses)

Page 7: Node-breaker model

7

WSM vs. basecase• WSM Model – Cholla 500kV (4-busses)

Page 8: Node-breaker model

8

Node-breaker vs. bus-brunch model:

• Node-breaker model is more flexible:o It can represent all operating conditions;o Allows more accurate modeling of RASs (SPS) and

contingencies;o There is usually no convergence problems;o Can easily be benchmarked against measurements;o Event analysis-SE case is saved automatically;o Corrective switching action;o Needs for more frequent studies-renewable resources ;o Dynamic assessment of SOLs;o Stuck breaker;o Lot of base-cases;

Page 9: Node-breaker model

• To the right is a redacted detail of what the topology of the 500 kV bus at Grand Coulee

• It’s a Breaker and a Half configuration

• This would be a single bus in a “planning case”

Model Detail

Page 10: Node-breaker model

10

Planning Case Bus View

Bus: COULEE (40287)Nom kV: 500.00Area: NORTHWEST (40)

Zone: Central Washington (403)

CHIEF JO

CKT 1 COULE R1

BELL BPA

CKT 6

HANFORD CKT 1

MS

SCHULTZ CKT 1

MS

CKT 2

MS

COULEE19

COULEE19

CKT 1

COULEE20

COULEE20

CKT 1

COULEE21

COULEE21

CKT 1

COULEE22

COULEE22

CKT 1

COULEE23

COULEE23

CKT 1

COULEE24

COULEE24

CKT 1

COULEES2

CKT 1

A

M VA

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

A

Am ps

COULEE

1.0800 pu

540.00 KV 59.94 Deg 0.00 $/MWh

0.00 MW 0.00 Mvar

218.6 MW 22.8 Mvar

219.8 MVA

402331.0800 pu

540.00 KV

40288

37.4 MW 143.0 Mvar

147.8 MVA

400911.0893 pu

544.65 KV

1244.3 MW 34.0 Mvar

1244.7 MVA

404991.0791 pu

539.53 KV

1264.9 MW 77.6 Mvar

1267.3 MVA

40957

1.0813 pu540.66 KV

1264.9 MW 77.6 Mvar

1267.3 MVA

41739

0.0 MW 0.3 Mvar

0.3 MVA

40291

1.0035 pu 15.05 KV

41740

545.0 MW 38.1 Mvar

546.3 MVA

402931.0198 pu 15.30 KV

41741

549.9 MW 36.8 Mvar

551.2 MVA

402951.0197 pu 15.30 KV

41742

615.3 MW 48.6 Mvar

617.2 MVA

402961.0018 pu 15.03 KV

41743

629.9 MW 52.5 Mvar

632.1 MVA

402971.0013 pu

15.02 KV

41744

629.9 MW 52.5 Mvar

632.1 MVA

402981.0013 pu

15.02 KV

1.0476 tap

548.0 MW 9.4 Mvar

548.1 MVA

413571.0342 pu

237.87 KV

Page 11: Node-breaker model

11

• Now what happens when Line A is taken out of service?

Breaker a4 Out for Maintenance

Page 12: Node-breaker model

12

Invalid Contingency SimulationsExample 2

Line D isolated from Line B and Line C

Page 13: Node-breaker model

13

• PSLF to read WSM in node breaker format in V19;• PSLF to match .dyd file to WSM using EMS names;

PSLF

Page 14: Node-breaker model

14

WSM vs. basecase (WSM in PSLF)

Page 15: Node-breaker model

15

• Model Update Process:o WECC RC Modeling Engineers use the Alstom E-terrasource

modeling tool to build (RC’s BCCS)o Each modeler works in their own independent workspaces

Allows for parallel modeling - can have different models & projects loaded

Avoids the issue of shared resources Avoids the risk of “one-corrupts-all” Avoids the need for close-coordination of work

(e.g. when performing validation, model export)o Each modeler begins with the latest Model Authority Set – MAS

(most recent model “basecase”) to create their projectso Model Integrator integrates the projects

together, validates, and create a new MAS

Building node-breaker model

Page 16: Node-breaker model

16

Modeling in E-terrasource

Network ParameterData

Page 17: Node-breaker model

17

Modeling in E-terrasource (GUI)

Node ConnectivityData

Node 900C

Node 900D

Page 18: Node-breaker model

18

Modeling in E-terrasource (GUI)Graphical Modeler

Page 19: Node-breaker model

19

• Model Export Formats:o PTI Raw File Format

Mapping done via Alstom Translation Table Mapping, manually maintained by WECC RC Modeling Staff

o Alstom Netmom Savecaseo CIM version 12o Powerworld CSV File Format

** WSM is available to signatories of the WSM License Agreement or the Universal NDA

West-wide System Model (WSM)

Page 20: Node-breaker model

20

• Running state estimation once every minute results in continuous model validation;

• Comparing measurements (kV, MW, MVARs) to powerflow solution;

• Peak Reliability has 24x7 monitoring support of the State Estimator solution quality;

Continuous Model Validation

Page 21: Node-breaker model

21

• System event: Arlington plant trip and loss of Palo Verde unit on 04/07/2012

• Differences:o Some difference in in initial conditions;o Differences in power flow data;o No plant load in WSM;o Not all units are matched in .dyd file;o Composite load model used with base-case;o WSM in TSAT and base-case in PSLF;

Model Validation-Dynamic

Page 22: Node-breaker model

22

Generator active power (MW)

Time (sec)

10.00 12.00 14.00 16.00 18.00 20.00 1100

1200

1300

1400

1500

1600

Progress update: dynamic

Generator active power (MW)

Time (sec)

10.00 12.00 14.00 16.00 18.00 20.00 140.00

144.40

148.80

153.20

157.60

162.00

Generator terminal voltage (pu)

Time (sec)

10.00 12.00 14.00 16.00 18.00 20.00 1.00

1.01

1.02

1.02

1.03

1.04

Page 23: Node-breaker model

23

Progress update: dynamicGenerator active power (MW)

Time (sec)

10.00 12.00 14.00 16.00 18.00 20.00 1130

1144

1158

1172

1186

1200

Generator terminal voltage (pu)

Time (sec)

10.00 12.00 14.00 16.00 18.00 20.00 0.99

1.00

1.00

1.01

1.01

1.02

Page 24: Node-breaker model

Questions?


Recommended