+ All Categories
Home > Documents > Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Date post: 05-Jan-2016
Category:
Upload: marius
View: 33 times
Download: 0 times
Share this document with a friend
Description:
Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise. SCI-B1-0910 Blok 1, 2009 Aud M (NBI Blegdamsvej), kl 10-12 Mondays and Fridays. Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise. SCI-B1-0910 Blok 1, 2009 - PowerPoint PPT Presentation
Popular Tags:
134
Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise SCI-B1-0910 Blok 1, 2009 Aud M (NBI Blegdamsvej), kl 10-12 Mondays and Fridays 1
Transcript
Page 1: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

SCI-B1-0910 Blok 1, 2009Aud M (NBI Blegdamsvej), kl 10-12 Mondays and Fridays

1

Page 2: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

SCI-B1-0910 Blok 1, 2009Aud M (NBI Blegdamsvej), kl 10-12 Mondays and Fridays

John Hertz office: Kc-10 (NBI Blegdamsvej)email: [email protected] tel. 3532 5236 (office Kbh), +46 8 5537 8808 (office Sth), 2055 1874 (mobil)http://www.nbi.dk/~hertz/noisecourse/coursepage.html

2

Page 3: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Source material“text”: N G van Kampen, Stochastic Processes in Physics and Chemistry (North –

Holland) [very clear, good on general formal methods, but little recent stuff. I will not follow it slavishly in the lectures, but I recommend you buy and read it.]

These two are good for anomalous diffusion:L Vlahos et al, Normal and Anomalous Diffusion: a Tutorial arXiv.org/abs/0805.0419R Metzler and J Klafter, The Random Walker’s Guide to Anomalous Diffusion, Physics

Reports 339, 1-77 (2000)On first-passage-time problems:S Redner, A Guide to First-Passage Problems (Cambridge U Press) [library reserve]On finance-theoretical applications:J-P Bouchaud and M Potters, Theory of Financial Risks: From Statistical Physics to Risk

Management (Cambridge U Press) [library reserve](and more to be mentioned as we go along)

3

Page 4: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the course

4

Page 5: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

5

Page 6: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

6

Page 7: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

V1(x)

x 7

Page 8: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

V1(x)

x 8

Page 9: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

V1(x) V2(x)

x 9

Page 10: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

V1(x) V2(x)

x 10

Page 11: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Lecture 1: A random walk through the courseThe ubiquity of noise (especially in biology): Changing conditions does not changestates; rather, it changes the relative probabilities of states.

Example: protein conformational changePotential energy:

The real story:

P1(x)

V1(x) P2(x) V2(x)

x 11

Page 12: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

P1,2(x)∝ exp[−βV1,2(x)]

From (equilibrium) stat mech:

This course: how P(x) changes from P1(x) to P2(x):

12

Page 13: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

P1,2(x)∝ exp[−βV1,2(x)]

From (equilibrium) stat mech:

This course: how P(x) changes from P1(x) to P2(x): Dynamics of P(x,t)

www.nbi.dk/hertz/noisecourse/demos/Pseq.matwww.nbi.dk/hertz/noisecourse/demos/runseq.m

dP(x, t)

dt=L

13

Page 14: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

P1,2(x)∝ exp[−βV1,2(x)]

From (equilibrium) stat mech:

This course: how P(x) changes from P1(x) to P2(x): Dynamics of P(x,t)

www.nbi.dk/hertz/noisecourse/demos/Pseq.matwww.nbi.dk/hertz/noisecourse/demos/runseq.m

or

etc.

dP(x, t)

dt=L

d x

dt=L

d x(t1)x(t)

dt=L

14

Page 15: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walkswww.nbi.dk/~hertz/noisecourse/demos/brown.m

15

Page 16: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walkswww.nbi.dk/~hertz/noisecourse/demos/brown.m

16

Page 17: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks

XN = x i ;i=1

N

x i = 0; x i

2= a2; x i ⋅x j = 0

17

Page 18: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks

independent steps

XN = x i ;i=1

N

x i = 0; x i

2= a2; x i ⋅x j = 0

18

Page 19: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks

independent steps

XN = x i ;i=1

N

x i = 0; x i

2= a2; x i ⋅x j = 0

XN ⋅XN = x i ⋅x i

i=1

N

∑ + x i ⋅x j

i≠ j

N

= Na2

19

Page 20: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks

independent steps

i.e, rms distance

XN = x i ;i=1

N

x i = 0; x i

2= a2; x i ⋅x j = 0

XN ⋅XN = x i ⋅x i

i=1

N

∑ + x i ⋅x j

i≠ j

N

= Na2

XN

2= N a

20

Page 21: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

21

Step length distribution χ(y)

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

Page 22: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

22

Step length distribution χ(y)

Change in P from one step:

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

Page 23: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

23

Step length distribution χ(y)

Change in P from one step:

P

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

P χ

Page 24: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

24

Step length distribution χ(y)

Change in P from one step:

P

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

= dy χ (y) P(x, t) + y∂P

∂x+

1

2y 2 ∂ 2P

∂x 2+L

⎣ ⎢

⎦ ⎥∫P χ

Page 25: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

25

Step length distribution χ(y)

Change in P from one step:

P

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

= dy χ (y) P(x, t) + y∂P

∂x+

1

2y 2 ∂ 2P

∂x 2+L

⎣ ⎢

⎦ ⎥∫

= P(x, t) +1

2a2 ∂ 2P

∂x 2

P χ

Page 26: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusion

26

Step length distribution χ(y)

Change in P from one step:

P

Diffusion equation:

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

= dy χ (y) P(x, t) + y∂P

∂x+

1

2y 2 ∂ 2P

∂x 2+L

⎣ ⎢

⎦ ⎥∫

= P(x, t) +1

2a2 ∂ 2P

∂x 2

∂P

∂t= D

∂ 2P

∂x 2D =

a2

2Δt

P χ

Page 27: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Random walks and diffusionStep length distribution χ(y)

Change in P from one step:

P

Diffusion equation:

diffusion constant

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = a2∫

P(x, t + Δt) = dy χ (y)P(x − y, t)∫

= dy χ (y) P(x, t) + y∂P

∂x+

1

2y 2 ∂ 2P

∂x 2+L

⎣ ⎢

⎦ ⎥∫

= P(x, t) +1

2a2 ∂ 2P

∂x 2

∂P

∂t= D

∂ 2P

∂x 2D =

a2

2Δt

P χ

Page 28: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Solution of the diffusion equation:

28

Page 29: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Solution of the diffusion equation:

29

P(x, t) =1

4πDtexp −

x 2

4Dt

⎝ ⎜

⎠ ⎟

Page 30: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Solution of the diffusion equation:

30

P(x, t) =1

4πDtexp −

x 2

4Dt

⎝ ⎜

⎠ ⎟

Gaussian, spreading with time, variance 2Dt

http;//www.nbi.dk/~hertz/noisecourse/gaussspread.m

Page 31: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Solution of the diffusion equation:

31

P(x, t) =1

4πDtexp −

x 2

4Dt

⎝ ⎜

⎠ ⎟

Gaussian, spreading with time, variance 2Dt

http;//www.nbi.dk/~hertz/noisecourse/gaussspread.m

Page 32: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Distribution obtained by simulating 20000 random walks:

32

Page 33: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Anomalous diffusion

Normal diffusion:

x 2 = 2Dt

Page 34: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Anomalous diffusion

Normal diffusion:

An experimental counterexample: €

x 2 = 2Dt

Page 35: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Anomalous diffusion

Motion of lipid granules in yeast cells

Tolic-Nørrelykke et al, Phys Rev Lett 93, 078102 (2004)

Normal diffusion:

An experimental counterexample: €

x 2 = 2Dt

Page 36: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Anomalous diffusion

Motion of lipid granules in yeast cells

Tolic-Nørrelykke et al, Phys Rev Lett 93, 078102 (2004)

Normal diffusion:

An experimental counterexample: €

x 2 = 2Dt

x 2 ∝ t 0.75

Page 37: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Sub- and superdiffusion

37

x 2 ∝ t H

Page 38: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Sub- and superdiffusion

38

x 2 ∝ t HH: Hurst exponent

H < 1: subdiffusionH > 1: superdiffusion

Page 39: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Sub- and superdiffusion

39

x 2 ∝ t HH: Hurst exponent

H < 1: subdiffusionH > 1: superdiffusion

One way to get superdiffusion: long-time correlations between steps

Page 40: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Sub- and superdiffusion

40

x 2 ∝ t HH: Hurst exponent

H < 1: subdiffusionH > 1: superdiffusion

One way to get superdiffusion: long-time correlations between steps

One way to get subdiffusion: long-time anti-correlations between steps

Page 41: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

41

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

Page 42: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

42

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

power law tail in step length distribution:

χ(y)∝ y−a, a ≤ 3

Page 43: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

43

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

power law tail in step length distribution:

Example: Cauchy (Lorentz) distribution€

χ(y)∝ y−a, a ≤ 3

χ(y) =1/π

1+ y 2

Page 44: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

44

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

power law tail in step length distribution:

Example: Cauchy (Lorentz) distribution

http://www.nbi.dk/~hertz/noisecourse/levy.m (a = 5/2)

χ(y)∝ y−a, a ≤ 3

χ(y) =1/π

1+ y 2

Page 45: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

45

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

power law tail in step length distribution:

Example: Cauchy (Lorentz) distribution

http://www.nbi.dk/~hertz/noisecourse/levy.m (a = 5/2)

χ(y)∝ y−a, a ≤ 3

χ(y) =1/π

1+ y 2

Page 46: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Levy walks

46

Step length distribution χ(y):

_______________

dy χ (y) =1;∫ dy yχ (y) = 0;∫ dy y 2χ (y) = ∞∫

power law tail in step length distribution:

Example: Cauchy (Lorentz) distribution

http://www.nbi.dk/~hertz/noisecourse/levy.m (a = 5/2)

Note: <x2> = ∞ for all t

χ(y)∝ y−a, a ≤ 3

χ(y) =1/π

1+ y 2

Page 47: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Brown vs Levy

47

Page 48: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

48

(an example of a system with many degrees of freedom)

Page 49: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

49

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Page 50: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

50

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Dynamics: at every time step,

Page 51: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

51

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Dynamics: at every time step, (1) choose a spin (i) at random

Page 52: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

52

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Dynamics: at every time step, (1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t)

Page 53: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

53

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Dynamics: at every time step, (1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t)(3) Si(t + Δt) = +1 with probability

P(h) =1

1+ exp(−2hi)

Page 54: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Ising model

54

(an example of a system with many degrees of freedom)

Binary “spins” Si(t) = ±1

Dynamics: at every time step, (1) choose a spin (i) at random(2) compute “field” of neighbors hi(t) = ΣjJijSj(t)(3) Si(t + Δt) = +1 with probability

P(h) =1

1+ exp(−2hi)

Page 55: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Changing the interaction strength:

55

http://www.nbi.dk/~hertz/noisecourse/ising.m

Page 56: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Changing the interaction strength:

56

http://www.nbi.dk/~hertz/noisecourse/ising.m

Varying the interaction strength: Jneighbors = 0.25:

Page 57: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Changing the interaction strength:

57

http://www.nbi.dk/~hertz/noisecourse/ising.m

Varying the interaction strength: Jneighbors = 0.25, 0.45:

Page 58: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Changing the interaction strength:

58

http://www.nbi.dk/~hertz/noisecourse/ising.m

Varying the interaction strength: Jneighbors = 0.25, 0.45, 0.65:

Page 59: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

59

Random variable x

Page 60: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

60

Random variable x

Probability distribution (“density”) P(x)

Page 61: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

61

Random variable x

Probability distribution (“density”) P(x)If x is discrete-valued: P(xn) or Pn

Page 62: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

62

Random variable x

Probability distribution (“density”) P(x)If x is discrete-valued: P(xn) or Pn

Normalization:

P(x)dx =1 P(xn ) =1n

∑∫

Page 63: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

63

Random variable x

Probability distribution (“density”) P(x)If x is discrete-valued: P(xn) or Pn

Normalization:

Averages:

P(x)dx =1 P(xn ) =1n

∑∫

A(x) ≡ A(x)P(x)dx∫

Page 64: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

64

Random variable x

Probability distribution (“density”) P(x)If x is discrete-valued: P(xn) or Pn

Normalization:

Averages:

Moments:

P(x)dx =1 P(xn ) =1n

∑∫

A(x) ≡ A(x)P(x)dx∫

x n = x nP(x)dx∫

Page 65: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some basic concepts in probability theory

65

Random variable x

Probability distribution (“density”) P(x)If x is discrete-valued: P(xn) or Pn

Normalization:

Averages:

Moments:

Mean:

P(x)dx =1 P(xn ) =1n

∑∫

A(x) ≡ A(x)P(x)dx∫

x n = x nP(x)dx∫

x1

Page 66: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some common distributions

66

Gaussian (normal):

P(x) =1

2πe− 1

2 x 2

Page 67: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some common distributions

67

Gaussian (normal):

Cauchy (Lorentzian):

P(x) =1

2πe− 1

2 x 2

P(x) =1

π

1

1+ x 2

Page 68: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some common distributions

68

Gaussian (normal):

Cauchy (Lorentzian):

(one-sided) exponential:

P(x) =1

2πe− 1

2 x 2

P(x) =1

π

1

1+ x 2

P(x) = Θ(x)e−x

Page 69: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some common distributions

69

Gaussian (normal):

Cauchy (Lorentzian):

(one-sided) exponential:

Levy:

P(x) =1

2πe− 1

2 x 2

P(x) =1

π

1

1+ x 2

P(x) = Θ(x)e−x

P(x) =Θ(x)

1

x 3 / 2exp −

1

2x

⎝ ⎜

⎠ ⎟

Page 70: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Some common distributions

70

Gaussian (normal):

Cauchy (Lorentzian):

(one-sided) exponential:

Levy:

Poisson:

P(x) =1

2πe− 1

2 x 2

P(x) =1

π

1

1+ x 2

P(x) = Θ(x)e−x

P(x) =Θ(x)

1

x 3 / 2exp −

1

2x

⎝ ⎜

⎠ ⎟

Pn =an

n!e−a

Page 71: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Thin and fat tails

71

Page 72: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

72

Page 73: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

73

G(k) ≡ exp ikx( ) = e ikxP(x)dx∫

Page 74: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

74

G(k) ≡ exp ikx( ) = e ikxP(x)dx∫

G(k) is the moment-generating function (expand the exponential):

Page 75: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

75

G(k) ≡ exp ikx( ) = e ikxP(x)dx∫

G(k) is the moment-generating function (expand the exponential):

G(k) =(ik)n

n!n

∑ x n

Page 76: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

76

G(k) ≡ exp ikx( ) = e ikxP(x)dx∫

G(k) is the moment-generating function (expand the exponential):

G(k) =(ik)n

n!n

∑ x n

Note: G(0) = 1 (normalization)

Page 77: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Characteristic functions

77

G(k) ≡ exp ikx( ) = e ikxP(x)dx∫

G(k) is the moment-generating function (expand the exponential):

G(k) =(ik)n

n!n

∑ x n

Note: G(0) = 1 (normalization)

Gaussian: Cauchy:

Exponential: Levy:

G(k) = e− 12 k 2

G(k) = e− k

G(k) =1

1− ikG(k) = e− −2ik

Page 78: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

Page 79: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

logG(k) ≡(ik)n

n!n=1

∑ κ n

Page 80: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

logG(k) ≡(ik)n

n!n=1

∑ κ n

κ1 = x

κ 2 = x 2 − x2

= x − x( )2

≡ σ 2

κ 3 = x 3 − 3 x 2 x + 2 x3

κ 4 = x 4 − 4 x 3 x − 3 x 2 2+12 x 2 x

2− 6 x

4

Page 81: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

logG(k) ≡(ik)n

n!n=1

∑ κ n

κ1 = x

κ 2 = x 2 − x2

= x − x( )2

≡ σ 2

κ 3 = x 3 − 3 x 2 x + 2 x3

κ 4 = x 4 − 4 x 3 x − 3 x 2 2+12 x 2 x

2− 6 x

4

(mean)

Page 82: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

logG(k) ≡(ik)n

n!n=1

∑ κ n

κ1 = x

κ 2 = x 2 − x2

= x − x( )2

≡ σ 2

κ 3 = x 3 − 3 x 2 x + 2 x3

κ 4 = x 4 − 4 x 3 x − 3 x 2 2+12 x 2 x

2− 6 x

4

(mean) variance

Page 83: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Cumulants

Expanding log G generates the cumulants κn:

logG(k) ≡(ik)n

n!n=1

∑ κ n

κ1 = x

κ 2 = x 2 − x2

= x − x( )2

≡ σ 2

κ 3 = x 3 − 3 x 2 x + 2 x3

κ 4 = x 4 − 4 x 3 x − 3 x 2 2+12 x 2 x

2− 6 x

4

(mean) variance

skewness: γ3 = κ3/(κ2)3/2 kurtosis: κ4/(κ2)2

Page 84: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

84

P(x1,L ,xn ), P(x)

Page 85: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

85

P(x1,L ,xn ), P(x)

P(x1) = P(x1,L ,xn )dx2∫ L dxnmarginal distribution of x1:

Page 86: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

86

P(x1,L ,xn ), P(x)

P(x1) = P(x1,L ,xn )dx2∫ L dxn

P(x1,x2) = P(x1,L ,xn )dx3∫ L dxn

marginal distribution of x1:

etc.

Page 87: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

87

P(x1,L ,xn ), P(x)

P(x1) = P(x1,L ,xn )dx2∫ L dxn

P(x1,x2) = P(x1,L ,xn )dx3∫ L dxn

marginal distribution of x1:

etc.

Independence:

P(x,y) = P(x)P(y)

Page 88: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

88

P(x1,L ,xn ), P(x)

P(x1) = P(x1,L ,xn )dx2∫ L dxn

P(x1,x2) = P(x1,L ,xn )dx3∫ L dxn

marginal distribution of x1:

etc.

Independence:

Conditional probabilities:

P(y | x) : P(x,y) = P(x | y)P(y) = P(y | x)P(x)€

P(x,y) = P(x)P(y)

Page 89: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate distributions

89

P(x1,L ,xn ), P(x)

P(x1) = P(x1,L ,xn )dx2∫ L dxn

P(x1,x2) = P(x1,L ,xn )dx3∫ L dxn

marginal distribution of x1:

etc.

Independence:

Conditional probabilities:

Bayes’s (Bayes) rule:€

P(y | x) : P(x,y) = P(x | y)P(y) = P(y | x)P(x)€

P(x,y) = P(x)P(y)

P(y | x) =P(x | y)P(y)

P(x)=

P(x,y)

P(x)

Page 90: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Adding random variables

90

x : P1(x); y : P2(y)

Page 91: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Adding random variables

91

x : P1(x); y : P2(y)

z = x + y :

Page 92: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Adding random variables

92

x : P1(x); y : P2(y)

z = x + y :

P(z) = δ(z − x − y)P1(x)P2(y)dxdy∫

Page 93: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Adding random variables

93

x : P1(x); y : P2(y)

z = x + y :

P(z) = δ(z − x − y)P1(x)P2(y)dxdy∫= P1(x)P2(z − x)dx∫

Page 94: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Adding random variables

94

x : P1(x); y : P2(y)

z = x + y :

P(z) = δ(z − x − y)P1(x)P2(y)dxdy∫= P1(x)P2(z − x)dx∫

characteristic functions:

G(k) = G1(k)G2(k)

Page 95: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Page 96: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

Page 97: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

= Px∫ (x)δ[y − f (x)]dx

dydy

Page 98: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

= Px∫ (x)δ[y − f (x)]dx

dydy

= Px ( f −1(y))df −1(y)

dy

Page 99: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

= Px∫ (x)δ[y − f (x)]dx

dydy

= Px ( f −1(y))df −1(y)

dy(or use Py(y)dy = Px(x)dx)

Page 100: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

= Px∫ (x)δ[y − f (x)]dx

dydy

= Px ( f −1(y))df −1(y)

dy

Multivariate case:

Py (y) = Px (f−1(y))

∂f−1(y)

∂y

(or use Py(y)dy = Px(x)dx)

Page 101: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Change of variables:

x : Px (x)

y = f (x)

Py (y) = Px∫ (x)δ[y − f (x)]dx

= Px∫ (x)δ[y − f (x)]dx

dydy

= Px ( f −1(y))df −1(y)

dy

Multivariate case:

Py (y) = Px (f−1(y))

∂f−1(y)

∂y

inverse of Jacobian J

Jij =∂y i

∂x j

(or use Py(y)dy = Px(x)dx)

Page 102: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Gaussian (normal) distribution

102

P(x) =1

2πσ 2exp − 1

2 (x − μ)2 /σ 2( )

Page 103: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Gaussian (normal) distribution

103

P(x) =1

2πσ 2exp − 1

2 (x − μ)2 /σ 2( )

characteristic function:

G(k) = exp ikμ − 12 k 2σ 2

( )

Page 104: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Gaussian (normal) distribution

104

P(x) =1

2πσ 2exp − 1

2 (x − μ)2 /σ 2( )

characteristic function:

cumulants:

G(k) = exp ikμ − 12 k 2σ 2

( )

κ1 = μ

κ 2 = σ 2

κ m = 0; m > 2

Page 105: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Gaussian (normal) distribution

105

P(x) =1

2πσ 2exp − 1

2 (x − μ)2 /σ 2( )

characteristic function:

cumulants:

moments (μ = 0 case):

G(k) = exp ikμ − 12 k 2σ 2

( )

κ1 = μ

κ 2 = σ 2

κ m = 0; m > 2

x 2n = (2n −1)!! x 2 ≡ (2n −1)(2n − 3)L 3⋅1 x 2

Page 106: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

106

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

Page 107: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

107

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 108: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

108

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

characteristic function:

G(k) = exp ik j x j − 12

j

∑ k jC jkkk

jk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 109: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

109

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

characteristic function:

G(k) = exp ik j x j − 12

j

∑ k jC jkkk

jk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

higher moments (Wick’s theorem):

Page 110: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

110

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

characteristic function:

G(k) = exp ik j x j − 12

j

∑ k jC jkkk

jk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

higher moments (Wick’s theorem):

x1x2x3x4 = x1x2 x3x4 + x1x3 x2x4 + x1x4 x2x3

Page 111: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

111

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

characteristic function:

G(k) = exp ik j x j − 12

j

∑ k jC jkkk

jk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

higher moments (Wick’s theorem):

(sum of all pairwise contractions)

x1x2x3x4 = x1x2 x3x4 + x1x3 x2x4 + x1x4 x2x3

Page 112: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Multivariate Gaussian

112

correlation matrix

C jk ≡ x j − x j( ) xk − xk( )

P(x) =1

(2π )d / 2 detCexp −

1

2x j − x j( ) C

−1( )

jkxk − xk( )

jk

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

characteristic function:

G(k) = exp ik j x j − 12

j

∑ k jC jkkk

jk

∑ ⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

higher moments (Wick’s theorem):

(sum of all pairwise contractions)etc. for higher orders

x1x2x3x4 = x1x2 x3x4 + x1x3 x2x4 + x1x4 x2x3

Page 113: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

y =1

Nx i

i=1

N

Page 114: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

y =1

Nx i

i=1

N

p(x i)

Page 115: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

y =1

Nx i

i=1

N

p(x i) assume finite variance

Page 116: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

assume finite variance

Page 117: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

characteristic function of y:

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

G(y) = g k N( )[ ]N

assume finite variance

Page 118: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

characteristic function of y:

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

G(y) = g k N( )[ ]N

logG(y) = N logg k N( )

assume finite variance

Page 119: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

characteristic function of y:

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

G(y) = g k N( )[ ]N

logG(y) = N logg k N( )

= N −k 2

2Nσ 2 −

ik 3

6N 3 / 2κ 3 +

k 4

24N 2κ 4 +L

⎝ ⎜

⎠ ⎟

assume finite variance

Page 120: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

characteristic function of y:

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

G(y) = g k N( )[ ]N

logG(y) = N logg k N( )

= N −k 2

2Nσ 2 −

ik 3

6N 3 / 2κ 3 +

k 4

24N 2κ 4 +L

⎝ ⎜

⎠ ⎟

N →∞ ⏐ → ⏐ ⏐ − 1

2 k 2σ 2

assume finite variance

Page 121: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Central limit theorem

sum of N iid random variables

distribution of xi:

characteristic function

characteristic function of y:

y =1

Nx i

i=1

N

p(x i)

g(k) = exp − 12 k 2σ 2 − i

3! k 3κ 3 + 14! k 4κ 4 +L( )

G(y) = g k N( )[ ]N

logG(y) = N logg k N( )

= N −k 2

2Nσ 2 −

ik 3

6N 3 / 2κ 3 +

k 4

24N 2κ 4 +L

⎝ ⎜

⎠ ⎟

N →∞ ⏐ → ⏐ ⏐ − 1

2 k 2σ 2

y is Gaussian!

assume finite variance

Page 122: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

122

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Page 123: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

123

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Page 124: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

124

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Require

g k N1/α( )[ ]

N= g(k)

Page 125: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

125

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Require

g k N1/α( )[ ]

N= g(k)

N logg k N1/α( ) = logg(k)

Page 126: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

126

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Require

Solution:

g k N1/α( )[ ]

N= g(k)

N logg k N1/α( ) = logg(k)

logg(k) = −ckα

Page 127: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

127

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Require

Solution:

or

g k N1/α( )[ ]

N= g(k)

N logg k N1/α( ) = logg(k)

logg(k) = −ckα

g(k) = exp −ckα( ) (α ≤ 2)

Page 128: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

128

N-1/2 x sum of N Gaussian variables has same distribution as the originalvariables: stable

Are there distributions which are stable but with a different scaling factor N-1/α (α ≠ 2) instead?

Require

Solution:

or

characteristic function for stable distribution of order α

g k N1/α( )[ ]

N= g(k)

N logg k N1/α( ) = logg(k)

logg(k) = −ckα

g(k) = exp −ckα( ) (α ≤ 2)

Page 129: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

129

Pα (x) = gα (k)e−ikx∫ dk

2π= exp −ikx − ckα

( )∫ dk

Stable distribution of order α:

Page 130: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

130

Pα (x) = gα (k)e−ikx∫ dk

2π= exp −ikx − ckα

( )∫ dk

Stable distribution of order α:

Asymptotic behaviour for large x: P(x) ~ 1/x1+α

Page 131: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

131

Pα (x) = gα (k)e−ikx∫ dk

2π= exp −ikx − ckα

( )∫ dk

Stable distribution of order α:

Asymptotic behaviour for large x: P(x) ~ 1/x1+α

Note: Stable distributions have infinite variance for α < 2

Page 132: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

132

Pα (x) = gα (k)e−ikx∫ dk

2π= exp −ikx − ckα

( )∫ dk

Stable distribution of order α:

Asymptotic behaviour for large x: P(x) ~ 1/x1+α

Note: Stable distributions have infinite variance for α < 2Stable distributions have infinite mean for α < 1

Page 133: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions

133

Pα (x) = gα (k)e−ikx∫ dk

2π= exp −ikx − ckα

( )∫ dk

Stable distribution of order α:

Asymptotic behaviour for large x: P(x) ~ 1/x1+α

Note: Stable distributions have infinite variance for α < 2Stable distributions have infinite mean for α < 1

For symmetric distributions, use

gα (k) = exp −c kα

( ); Pα (x) = exp −ikx − c kα

( )∫ dk

Page 134: Non-equilibrium Statistical Mechanics: The Physics of Fluctuations and Noise

Stable distributions: examples

134

Special cases (can do the Fourier inversion analytically):

α = 1/2: Levy

α = 1: Cauchy/Lorentzian

α = 3/2: Holtsmark

α = 2: Gaussian


Recommended