+ All Categories
Home > Documents > Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University

Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University

Date post: 24-Feb-2016
Category:
Upload: anakin
View: 45 times
Download: 0 times
Share this document with a friend
Description:
Normally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University Note: this presentation is based on the paper “Normally Distributed Seasonal Unit Root Tests” authored by D. A. Dickey in the book Economic Time Series: Modeling and Seasonality - PowerPoint PPT Presentation
Popular Tags:
35
ormally Distributed Seasonal Unit Root Tests D. A. Dickey North Carolina State University Note: this presentation is based on the paper “Normally Distributed Seasonal Unit Root Tests” authored by D. A. Dickey in the book Economic Time Series: Modeling and Seasonality edited by Bell, Holan, and McElroy published by CRC press, 2012
Transcript
Page 1: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Normally Distributed Seasonal Unit Root Tests

D. A. Dickey

North Carolina State University

Note: this presentation is based on the paper“Normally Distributed Seasonal Unit Root Tests”

authored by D. A. Dickey in the bookEconomic Time Series: Modeling and Seasonality

edited by Bell, Holan, and McElroypublished by CRC press, 2012

Page 2: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Model: Seasonal AR(1)

Yt = r Yt-s + et, et is White Noise

Goal: Test H0: r=1

2ˆ /t s t t sY e Yr r

Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6 Y1,7 Y1,8 Y1,9 Y1,11 Y1,11 Y1,12=Y1,s Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7 Y2,8 Y2,9 Y2,21 Y2,11 Y2,12=Y2,s

|

Ym,1 Ym,2 Ym,3 Ym,4 Ym,5 Ym,6 Ym,7 Ym,8 Ym,9 Ym,21 Ym,11 Ym,12=Ym,s

Yt Yi,j=Ymonth, year

Yt = r Yt-s + et Yt – Yt-s = (r-1) Yt-s + ei,j Yi,j - Yi,j-1 = (r-1) Yi,j-1 + ei,j

J F M A M J J A S O N D (s=12)Yr. 1Yr. 2 |

Yr. m

Page 3: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

21,

11, ,

1 121 1

ˆ: 1 / /m

j

s m

j i

s s s

i ij i i

ji i

j i i

OL Y NS De Yr

22

2 ( 1)( 2) / 3( 1)( 2) / 3( 1) / 2 ( 1)( 1) / 3

0 ( 1~

/,

) / 2/i

i

m m m m m mDm m m

m m mm mN

Yt = r Yt-s + et Yi,j = r Yi,j-1 + ei,j Yi,j - Yi,j-1 = (r-1) Yi,j-1 + ei,j

Dickey & Zhang (2011, J. Korean Stat. Soc.)Under H0:

(1) S large CLT t stat NORMAL (0,1) (O(s-1/2) mean adjustment helpful )(2) Known O(s-1/2) adjustments to mean (same) for k periodic regressors added (k<<s)(3) MSEs2

n.b.: Does not apply to seasonal dummy variables

Previous work:

Page 4: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

2, 1

1, 1 ,

21 1 1 1

ˆ: / /m

i

s s s s

i i ij i

j

m

ii j i j i

j

Y e NOL YS Dr r

22

2 0 1/ ( 2) / 3(( 1) / 2

~( 1) / 32) / 3

, 1//

2i

i

mm m m

Nm

mDm

m

2, 1 ,11 1 1

,2 1

, 1 ,( )ˆ: / /m m

i j i ij

i j i i

s s s s

i i ii

j ij YY Y e NS DL YO r r

*****Add seasonal dummy variables:*****

2

2 2

6

6

~( 2)/ (2 4 9)6 9

6( 2)/ 122

0

, 2i

i

m m

mm mD mN

m m

m

m

Known mean 0

0 0,N D

0 0,N D

Page 5: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Notation: E{Ni}=N0 E{Di}=D0 (different for mean 0 versus seasonal means)

MSE=Mean Square Error = (Total SSq – Model SSq)/df

MSE in seasonal means case is (regressing deseasonalized differences on deseasonalized lag levels)

2 2,

1 2

2 2

/ ( 2)(

ˆ2)

s m

i j ii j

Ns mmD

e NeD

s

2

222

20

0

ˆ 0( 2) 2

ps

NN only for mean casem D m D

w.o.l.o.g. Assume 2 = 1

2, 1 ,11 1 1

,2 1

, 1 ,( )ˆ: / /m m

i j i ij

i j i i

s s s s

i i ii

j ij YY Y e NS DL YO r r

!!!

Page 6: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

t statistic, seasonal means model:

Standard error [(X’X)-1(MSE)]1/2 = / ( )MSE sD

2

2/ ( )ˆ

2

sND N

MSE sD NDm D

322 2

0 02

2

1 3( 2)ˆ( , , ) , , ( 1)2 2 3

ˆ2

ps

N mf N D f N DmND

m D

No Mean Seasonal Means

0

0

22

( 2)6

mN

m mD

2ˆ( , , ) 0psf N D

Page 7: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Taylor Series, seasonal means :2

20

0/~

0,

/N NDi

ND Di

V VND V V

ND

20

222 0

00

ˆ, ,

1ˆ( 2)2

sNNs g N D RNN DD

m Dm D

(N0=(m-2)/2<0)

22

1/2

21 3 ( 2) 1ˆ, ,2 2 3

ˆ ps ms g Nm sN

Om

D D

202

2

32

00

0

ˆ(1)

ˆ, ,

1 12 2

1

g N

A s N NND

B s sm

D D

D

C

Page 8: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

020

2

32

00

1 12

ˆ(1 12

) DB s

mCDN

NsA s N D

2

2

22 4 9

90

16 ( 2)

ˆ, , ( 2)6 6( 2)1

( 2)

6

6( 2)22

12

i i

mm

m mCov N D mm

m

m m

m

mm

m

m

0

230

2 8(1)3 2

D mAN m

220

1 4(1)2

BN m

020

23 2

D mCN m

3 3 212 13

21 23 3

31 32 3

1

2

3

2

1

0

02

64 168 108 )1 14 2 80 1.(1)

5

V Vm m m

V Vm mV V

D B V BV A

NC

VA

C

Approximate variance of in seasonal means case

Page 9: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

3 2

3

64 168 108 ){ } 0.8

80 1.5 m

m m mVar

m

COMPARISONNo Mean Model Seasonal Means Model

2 2{ }3 ( 1)

Es

mm m

3 2

{ }2 3s m

Em

{ } 1Var

Page 10: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

3 2

3

64 168 108 ){ }

80 1.5

m m mVar

m

Calculation “recipe” for Seasonal Means Model

(1) Regress Yt-Yt-s on seasonal dummies and Yt-s. Get = t test for Yt-s

(2) Compute

(3) Compute

(4) Compare to N(0,1) to get p-value.

3 2

{ }2 3s m

Em

( )

EZ

Var

Page 11: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Alternative approach: Expand around (N, D) only, run large (1/2 million) simulation fixup for small m.

Result for variance:

2

3 3/2

0.8777 464 48 .4705 1 2.2215 0.08531.

108

80 1.5 5 1.51.5m msm

m m m

m

Similar empirical adjustments to mean:

1 0.2118 0.05050.37041.5

3 22 3s mm m ss

Page 12: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Compare limit (sinfinity) variance formulas: Taylor 3 variable versus Taylor 2 variable with and without adjustments

Unadjusted (N,D) only1 million replicates s=12, m=6 (10 seconds run time)Reference normal variance from empirical adjustment

from 3 variable Taylor:

Page 13: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Notes:

Graphs use sample means (both expansions give same mean approximation)

3 variable Taylor variance 1.1556 closer to simulated statistics’ variance 1.2310 than is empirical adjusted if no s adjustment used. With the finite s part in the empirically adjusted formula, that formula gives 1.2024

The choice m=6 gave the biggest vertical gap between the limit (s) variance formulas. In previous graph.

NEXT: Sequence with m=6, s =4, 6, 12, 24

THEN: Sequence with s=4, m=6, 8, 10, 20, 100

Page 14: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 15: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 16: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 17: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 18: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 19: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 20: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 21: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 22: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 23: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 24: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Histogram Stats (reps = 1,000,000)

2 2

4 6 0.34 0.65 2.59 2.51 1.39 1.296 6 0.26 0.35 3.06 2.99 1.31 1.2512 6 0.18 0.15 4.16 4.12 1.23 1.2024 6 0.13 0.07 5.77 5.74 1.19 1.1752 6 0.09 0.03 8.40 8.38 1.17 1.14

formula formulas m skew kurt

2 2

4 6 0.34 0.65 2.59 2.51 1.39 1.294 8 0.19 0.33 2.60 2.54 1.16 1.114 10 0.11 0.22 2.60 2.56 1.05 1.034 20 0.02 0.08 2.61 2.59 0.90 0.894 100 0.10 0.04 2.62 2.62 0.80 0.79

formula formulas m skew kurt

4 1000 0.12 0.04 2.62 2.62 0.78 0.76

(formulas from book)

Page 25: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Higher order models (seasonal multiplicative form)

(1 )( )( ( )) ( ( ))

st t

t t

B Y ZB Z e AR pr

(1) (under H0:r=1) Regress Dt = Yt-Yt-s on p lags of D AR(p) and residual rt

(2) Filter Y using AR(p) model for D. Ft = filtered Yt (3) Regress rt on Ft-s & p lags of D (t test on Ft-s is

Suggested estimation (Dickey, Hasza, Fuller (1984))

Dickey, D. A., D. P. Hasza, and W. A. Fuller (1984). “Testing for Unit Roots in Seasonal Time Series”, Journal of the American Statistical Association, 79, 355-367.

( ( ))(1 )( )st tB B Y e r

Page 26: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Example 1: Oil Imports (from book, s=12, m=36)

Levels

First Differences& Seasonal Means

Page 27: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Parameter Variable DF Estimate t Value Pr > |t|

Intercept 1 -163.62422 -0.20 0.8442filter12 1 -0.81594 -16.19 <.0001 D1 1 0.01853 0.48 0.6349D2 1 -0.00511 -0.11 0.9128D3 1 0.00016148 0.00 0.9974D4 1 0.02891 0.58 0.5617D5 1 0.02369 0.48 0.6344D6 1 0.00623 0.13 0.8998D7 1 -0.01025 -0.22 0.8268D8 1 -0.04440 -1.13 0.2604

+--------------------------------------------------------------+ | Formulas from Economic Time Series Modeling and Seasonality | | pg. 398 (Bell, Holan McElroy eds.) | | | | s = 12 m = 36 | | Tau = -16.19 Mean = -4.2118 variance = 0.8377 | | | | Tau ~ N(-4.2118,0.8377) | | | | Z=(-16.19-(-4.2118))/sqrt(0.8377) | | | | Pr{Z <-13.09 } = 0.0000 | | | +--------------------------------------------------------------+

Ft-12

Page 28: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University
Page 29: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Maximum Likelihood Estimation

Standard Approx Parameter Estimate Error t Value Pr > |t| Lag Variable Shift MU 515.88809 4154.0 0.12 0.9012 0 amt 0

AR1,1 0.17664 0.05113 3.45 0.0006 12 amt 0

AR2,1 -0.67807 0.04966 -13.65 <.0001 1 amt 0 AR2,2 -0.40409 0.05916 -6.83 <.0001 2 amt 0 AR2,3 -0.19310 0.06194 -3.12 0.0018 3 amt 0 AR2,4 -0.23710 0.06232 -3.80 0.0001 4 amt 0 AR2,5 -0.20400 0.06233 -3.27 0.0011 5 amt 0 AR2,6 -0.17344 0.06259 -2.77 0.0056 6 amt 0 AR2,7 -0.18688 0.06021 -3.10 0.0019 7 amt 0 AR2,8 -0.07802 0.05122 -1.52 0.1277 8 amt 0

NUM1 6522.6 7137.8 0.91 0.3608 0 month1 0 NUM2 -25856.9 5920.4 -4.37 <.0001 0 month2 0 NUM3 16307.1 5505.8 2.96 0.0031 0 month3 0 NUM4 6196.3 6060.5 1.02 0.3066 0 month4 0 NUM5 5578.6 6051.0 0.92 0.3566 0 month5 0 NUM6 2777.3 5744.2 0.48 0.6287 0 month6 0 NUM7 3490.6 6036.5 0.58 0.5631 0 month7 0 NUM8 3538.0 6079.1 0.58 0.5606 0 month8 0 NUM9 -13966.8 5499.4 -2.54 0.0111 0 month9 0 NUM10 5738.4 5910.3 0.97 0.3316 0 month10 0 NUM11 -11305.0 7131.6 -1.59 0.1129 0 month11 0

Autocorrelation Check of Residuals To Chi- Pr > Lag Square DF ChiSq --------------------Autocorrelations-------------------- 6 . 0 . 0.001 -0.003 -0.007 0.004 -0.001 -0.010 12 0.94 3 0.8169 0.016 0.006 -0.009 -0.009 0.038 0.002 18 7.50 9 0.5851 -0.048 0.076 0.016 -0.054 -0.052 -0.029 24 12.23 15 0.6615 0.017 0.059 -0.048 -0.022 0.059 -0.019 30 15.66 21 0.7883 0.014 0.022 0.023 -0.002 0.079 0.000 36 24.97 27 0.5761 -0.002 0.061 -0.007 0.097 0.018 0.080 42 31.62 33 0.5358 -0.019 0.024 -0.033 -0.074 -0.075 -0.030 48 40.27 39 0.4140 0.002 -0.008 -0.097 0.051 0.024 0.072

Page 30: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Example 2: Airline Series from Box & Jenkins

Original Scale

Logarithmic Scale

Page 31: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Log Passengers (1,12) with lags at 1, 12, 23

Standard Approx Parameter Estimate Error t Value Pr > |t| Lag

MU 0.0002871 0.0022107 0.13 0.8967 0 AR1,1 -0.28601 0.06862 -4.17 <.0001 1 AR1,2 -0.43072 0.07154 -6.02 <.0001 12 AR1,3 0.30157 0.07270 4.15 <.0001 23

Autocorrelation Check of Residuals

To Chi- Pr >Lag Square DF ChiSq --------------Autocorrelations---------------- 6 6.22 3 0.1016 -0.050 -0.066 -0.096 -0.105 0.112 0.075 12 10.23 9 0.3319 -0.009 -0.045 0.137 -0.044 0.037 -0.063 18 15.87 15 0.3909 -0.110 0.022 0.063 -0.094 0.100 0.045 24 24.25 21 0.2809 -0.154 0.002 0.007 -0.014 0.015 -0.169

Page 32: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Parameter Estimates

Parameter Standard Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.00095084 0.00309 -0.31 0.7587 filter12 1 -0.42340 0.13897 -3.05 0.0029 D1 1 0.11925 0.08262 1.44 0.1517 D12 1 0.24740 0.14225 1.74 0.0847 D23 1 0.09924 0.07566 1.31 0.1923

+--------------------------------------------------------------+ | Formulas from Economic Time Series Modeling and Seasonality | | pg. 398 (Bell, Holan McElroy eds.) | | | | s = 12 m = 12 | | Tau = -3.05 Mean = -4.1404 variance = 0.9550 | | | | Tau ~ N(-4.1404,0.9550) | | | | Z = (-3.05-(-4.1404))/sqrt(0.9550) | | Pr{Z <1.1158 } = 0.8677 | | | +--------------------------------------------------------------+

Page 33: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Example 3: Weekly Natural Gas Supplies (Energy Information Agency)

Weekly Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet)

April

November

Page 34: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Lag 1 model fits well for Natural Gas Series First and Span 52 Differences

Conditional Least Squares Estimation

Standard Approx Parameter Estimate Error t Value Pr > |t| Lag

MU 0.23692 2.51525 0.09 0.9250 0 AR1,1 0.39305 0.03101 12.68 <.0001 1

Autocorrelation Check of Residuals

To Chi- Pr > Lag Square DF ChiSq ------------------Autocorrelations-----------------

6 1.61 5 0.8997 0.007 -0.026 0.029 -0.013 -0.006 -0.003 12 12.55 11 0.3237 -0.051 0.000 0.034 0.042 0.008 0.081 18 18.20 17 0.3764 0.018 0.059 0.020 0.027 0.005 0.036 24 19.60 23 0.6656 0.003 -0.033 -0.009 -0.013 -0.010 -0.011 30 20.56 29 0.8747 0.013 0.008 0.014 0.008 -0.019 0.012 36 25.35 35 0.8847 0.023 0.016 -0.011 -0.051 0.011 -0.040 42 34.76 41 0.7432 -0.031 -0.082 -0.007 -0.042 0.009 -0.024 48 40.70 47 0.7295 0.034 0.054 -0.030 0.005 0.036 0.008

Page 35: Normally Distributed Seasonal Unit Root Tests D. A. Dickey  North Carolina State University

Natural Gas Example – OLS Regression Parameter Estimates

Parameter Standard Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -0.27635 1.05426 -0.26 0.7933 filter52 1 -1.04170 0.03343 -31.16 <.0001 D1 1 0.00313 0.02138 0.15 0.8838+----------------------------------------------------------+| || s = 52 m = 18 || Tau = -31.16 Mean = -8.6969 variance = 0.8877 || || Tau ~ N(-8.6969,0.8877) || || Z = (-31.16 - (-8.6969))/sqrt(0.8877) = -23.84 || || Pr{Z <-23.84 } = 0.0000 || |+----------------------------------------------------------+


Recommended