+ All Categories
Home > Documents > Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The...

Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The...

Date post: 21-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
12
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIE-ISOLDE-PROJECT-Note-0013 Notes on the HIE-ISOLDE HEBT M.A. Fraser Abstract The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental stations over a wide range of energies from 0.45 MeV/u to 10 MeV/u, which equates to a maximum beam rigidity of 2 Tm for A/q =4.5. As the linac will be installed in stages, so too will the HEBT, with the first two experimental stations being installed before a larger U-bend that will take the beam to a third experimental station and a spectrometer. The beam parameters at output from the linac are presented along with a preliminary scheme for the HEBT, which is consistent with the experiments’ footprints. The first beam optics calculations were carried out using TRACE3D. Supporting documentation can be found on the CERN EDMS under the ‘HEBT Lines Optics & Layout Working Group’ in the ‘HIE- ISOLDE’ Structure. Geneva, Switzerland October 2011 This is an internal CERN publication and does not necessarily reflect the views of the CERN management.
Transcript
Page 1: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

HIE-ISOLDE-PROJECT-Note-0013

Notes on the HIE-ISOLDE HEBT

M.A. Fraser

Abstract

The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to fourexperimental stations over a wide range of energies from 0.45 MeV/u to 10 MeV/u, whichequates to a maximum beam rigidity of 2 Tm forA/q = 4.5. As the linac will be installed instages, so too will the HEBT, with the first two experimental stations being installed beforea larger U-bend that will take the beam to a third experimental station and a spectrometer.The beam parameters at output from the linac are presented along with a preliminary schemefor the HEBT, which is consistent with the experiments’ footprints. The first beam opticscalculations were carried out using TRACE3D. Supporting documentation can be found onthe CERN EDMS under the ‘HEBT Lines Optics & Layout Working Group’ in the ‘HIE-ISOLDE’ Structure.

Geneva, Switzerland

October 2011

This is an internal CERN publication and does not necessarily reflect the views of the CERN management.

Page 2: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

1 Beam Parameters

The energy of the beams at output from the linac is a function of A/q and will range from 0.45 to17 MeV/u. There also exists the possiblity to transport the RFQ beam at 0.3 MeV/u. The heaviestbeams will be accelerated up to a maximum energy of 10 MeV/u and have a rigidity of 2 Tm. The twomain stages of the upgrade are shown in Figure 1. In addition, if a chopper line is installed the linacwill be extended in Stage 2b by the length of one high energy cryomodule, i.e. 2.62 m, which can beseen in Figure 5. The beam parameters are given in Tables 2, 3 and 4 at the exit to the linac, i.e. atoutput from the final cryomodule, in each stage. The particle phase space distributions are shown inFigures 2, 3 and 4 from which the above mentioned beam parameters were extracted. The simulationtracked the realistic particle distribution from the RFQ exit through the realistic field maps of the linac’selements. The beam parameters vary with energy, although in all cases the beam exits the solenoidfocusing channel of the linac at a waist and with reasonable symmetry in the vertical and horizontalphase space planes.

Figure 1: REX linac with the HIE-ISOLDE upgrade in Stages 1 and 2b.

The transverse beam parameters damp adiabatically with increasing energy and the longitudinalbeam emittance reduces significantly on completion of the upgrade and installation of the low energysuperconducting section. The requested beam parameters are summarised in Table 1. The exact specifi-cation is given in the minutes of the 3rd HIE-ISOLDE Physics Co-ordination Meeting.

2

Page 3: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

Table 1: Requested beam characteristics at HIE-ISOLDE

Beam Parameter Description or Value

Energy continuous from < 0.7 to 10 MeV/uBeam spot diameter < 1− 3 mm FWHMBeam divergence < 1− 3 mrad FWHMMicro-bunch structurea no requirement of micro-bunching to

bunched at < 1 ns with ∼100 ns bunch spacingEnergy spread < 0.1 %Absolute energy resolution no specific details givena The macro-bunch structure of the beam is determined by the charge breeder

and the rf duty cycle of the REX front-end.

3

Page 4: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

Tabl

e2:

Sum

mar

yof

the

sim

ulat

edho

rizo

ntal

HIE

beam

para

met

ers

Stag

eSi

mul

atio

nE

nerg

xεge

omx

rms

εgeom

x95%

εnor

mx

rms

εnor

mx95%

Cod

e(M

eV/u

)(m

m/m

rad)

(πm

mm

rad)

(πm

mm

rad)

(πm

mm

rad)

(πm

mm

rad)

Stag

e1

TRACK

5.9

0.27

1.00

0.81

3.95

0.09

0.45

Stag

e2b

TRACK

10.2

0.30

1.55

0.60

3.14

0.09

0.46

Stag

e2b

TRACK

0.45

-0.3

20.

513.

4020

.20.

110.

62

Tabl

e3:

Sum

mar

yof

the

sim

ulat

edve

rtic

alH

IEbe

ampa

ram

eter

s

Stag

eSi

mul

atio

nE

nerg

yεge

omy

rms

εgeom

y95%

εnor

my

rms

εnor

my95%

Cod

e(M

eV/u

)(m

m/m

rad)

(πm

mm

rad)

(πm

mm

rad)

(πm

mm

rad)

(πm

mm

rad)

Stag

e1

TRACK

5.9

-0.0

41.

030.

803.

680.

090.

42

Stag

e2b

TRACK

10.2

0.00

1.21

0.60

3.16

0.09

0.47

Stag

e2b

TRACK

0.45

-0.3

70.

803.

5619

.60.

110.

61

Tabl

e4:

Sum

mar

yof

the

sim

ulat

edlo

ngitu

dina

lHIE

beam

para

met

ers

Stag

eSi

mul

atio

nE

nerg

zε z

rms

ε z95%

ε zrm

sε z

95%

Cod

e(M

eV/u

)(n

s/ke

V/u

)(◦

/%)*

(πns

keV

/u)

(πns

keV

/u)

(π◦

%)*

(π◦

%)*

Stag

e1

TRACK

5.9

-0.4

90.

004

8.7

0.58

3.8

0.36

2.34

Stag

e2b

TRACK

10.2

0.88

0.00

312

.00.

302.

120.

110.

76

Stag

e2b

TRACK

0.45

11.9

14.9

2450

0.35

2.60

2.84

21.1

*A

t101

.28

MH

z.

4

Page 5: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

∆x (mm)

∆x’ (m

rad

)

−5 0 5−6

−4

−2

0

2

4

6

50

100

150

200

250εg

x (rms) = 0.81 π mm mrad

εg

x (95 %) = 3.95 π mm mrad

αx = 0.27

βx = 1.00 mm/mrad

(a) horizontal phase space

∆y (mm)

∆y’ (m

rad

)

−5 0 5−6

−4

−2

0

2

4

6

50

100

150

200

250εg

y (rms) = 0.80 π mm mrad

εg

y (95 %) = 3.68 π mm mrad

αy = −0.04

βy = 1.03 mm/mrad

(b) vertical phase space

∆φ (ns)

∆W

/A (

keV

/u)

−0.4 −0.2 0 0.2 0.4−80

−60

−40

−20

0

20

40

60

80

100

120

50

100

150

200

250

αz = −0.49

βz = 0.004 ns/keV/u

εz (rms)

= 0.58 π ns keV/u

εz (95 %)

= 3.8 π ns keV/u

(c) longitudinal phase space

Figure 2: Beam phase space distribution at exit to the second high energy cryomodule in Stage 1 at5.9 MeV/u, simulated with TRACK.

5

Page 6: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

∆x (mm)

∆x’ (m

rad

)

−5 0 5−6

−4

−2

0

2

4

6

50

100

150

200

250εg

x (rms) = 0.60 π mm mrad

εg

x (95 %) = 3.14 π mm mrad

αx = 0.30

βx = 1.55 mm/mrad

(a) horizontal phase space

∆y (mm)

∆y’ (m

rad

)

−5 0 5−6

−4

−2

0

2

4

6

50

100

150

200

250εg

y (rms) = 0.60 π mm mrad

εg

y (95 %) = 3.16 π mm mrad

αy = 0.00

βy = 1.21 mm/mrad

(b) vertical phase space

∆φ (ns)

∆W

/A (

keV

/u)

−0.1 −0.05 0 0.05 0.1 0.15−80

−60

−40

−20

0

20

40

60

80

50

100

150

200

250εz (rms)

= 0.30 π ns keV/u

εz (95 %)

= 2.1 π ns keV/u

αz = 0.88

βz = 0.003 ns/keV/u

(c) longitudinal phase space

Figure 3: Beam phase space distribution at exit to the final high energy cryomodule in Stage 2b at10.2 MeV/u, simulated with TRACK.

6

Page 7: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

∆x (mm)

∆x’ (m

rad)

−10 −5 0 5 10−15

−10

−5

0

5

10

15

50

100

150

200

250

αx = −0.32

βx = 0.51 mm/mrad

εg

x (rms) = 3.4 π mm mrad

εg

x (95 %) = 20.2 π mm mrad

(a) horizontal phase space

∆y (mm)

∆y’ (m

rad)

−10 −5 0 5 10−15

−10

−5

0

5

10

15

50

100

150

200

250εg

y (rms) = 3.6 π mm mrad

εg

y (95 %) = 19.6 π mm mrad

αy = −0.37

βy = 0.80 mm/mrad

(b) vertical phase space

∆φ (ns)

∆W

/A (

ke

V/u

)

−20 −15 −10 −5 0 5−4

−2

0

2

4

6

8

10

12

14

50

100

150

200

250εz (rms)

= 0.35 π ns keV/u

εz (95 %)

= 2.6 π ns keV/u

αz = 11.9

βz = 14.9 ns/keV/u

(c) longitudinal phase space

Figure 4: Beam phase space distribution at exit to the final high energy cryomodule in Stage 2b, withthe low energy section phased to decelerate down to 0.45 MeV/u, simulated with TRACK.

7

Page 8: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

2 Layout

The HEBT design aimed to make the most of the limited space. The position of the experimental areasshould stay fixed and just the transfer line manipulated as more cryomodules are added. Note thatbefore Stage 2b, a third and fourth high energy cryomodule will be installed. The idea was to have aperiodic FODO channel to transport the beam to each double bend achromat, of which periods could beremoved in a modular fashion as cryomodules are added. However, it was not possible to find a FODOchannel with the period the same length as the cryomodules because of the size of the dipole magnetsrequired. Instead, a quasi-FODO channel was chosen (almost a doublet channel) where there are twodrifts of different length per period. The total length of the period is 3.2 m. Inside of the long driftthe dipoles magnets can fit and in the short drift a rebuncher or diagnostics/steerers could be placed.The difference in the lengths of the cryomodule and the transfer line period can be compensated by thematching section. A transverse phase advance of π/2 per period was chosen to match the phase advancein the linac and help any orbit correction routine that is placed periodically. Four quadrupoles wererather arbitrarily chosen to match into the FODO channel from the linac, although in most cases all fourare not needed. The transfer line is sketched in AutoCAD for the two main stages in Figure 5, see the

(a) HEBT for Stage 1.

(b) HEBT for Stage 2b.

Figure 5: HEBT layout in the extension of the ISOLDE experimental hall.

8

Page 9: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

accompanying files or discuss with Didier Voulot. The design aimed to keep elements standardised.There are 8 rectangular dipole magnets each bending the beam through 45◦ and 2 bending the beamthrough 22.5◦, capable of directing beams with 2 Tm of rigidity. The number of quadrupoles vary andthe specifics of the transverse matching to each experiment needs further iteration. Also shown in red isthe possibility of translating the beam vertically by one floor to the proposed TSR storage ring.

3 Beam Optics Calculations

The beam optics calculations were done using TRACE3D, see the figures below and the accompanyingfiles. All the parameters of interest are held in these files. No studies of the stability of the designs or theorbit correction routine have been completed. A phase advance of π/2 results in quadrupole gradientsof 11.1 Tm−1 at 10 MeV/u with a quadrupoles of an effective length of 200 mm. The gradients donot exceed this value at any point in the double bend achromats except for in the matching section.The beam optics calculations show that all beams can be kept inside a radial aperture of 10 mm, andan aperture diameter of 40 mm in the quadrupoles is specified. The energy and time structure of thebeam is very important for the experiments. A rebuncher can be used in most cases to achieve thedesired parameters shown in Table 1. The rebuncher is shown and needs significant voltages (∼ 1 MV)suggesting a superconducting cavity will be needed.

3.1 Stage 1 - Experiment Station 1 at 5.9 MeV/u

5.000 mm X 5.000 mrad

60.000 Deg X 3000.00 keV

5.000 mm X 5.000 mrad

60.000 Deg X 3000.00 keV

NP2= 49

10.00 mm (Horiz) 90.0 Deg (Long.)

10.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 19796.59mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

Q

11

12

13

Q

14

15

Q

16

17

G

18

19

Q

20

21

22

Q

23

24

25

Q

26

27

E

28 29

E

30

31

Q

32

33

34

Q

35

36

E

37 38

E

39

40

Q

41

42

43

Q

44

45

Q

46

47

Q

48

49

H A= 0.27000 B= 1.0000 V A=−4.00000E−02 B= 1.0300

Z A=−0.49000 B= 3.30000E−03

BEAM AT NEL1= 1

H A=−2.70381E−02 B= 1.0304 V A=−3.33314E−02 B= 1.0179

Z A= 14.336 B= 0.54956

BEAM AT NEL2= 49 I= 0.0mA W= 265.5000 265.5000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.950 3.680 6235.00 EMITO= 3.950 3.680 6235.00

N1= 1 N2= 49 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 0.0000 1.0000 y 0.0000 1.0000 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 42 300.00000 1 44 200.00000 1 46 200.00000

CODE: Trace 3−D v70LY FILE: miniball_stage1.t3d DATE: 10/03/2011 TIME: 17:09:40

H A= 0.27000 B= 1.0000 V A=−4.00000E−02 B= 1.0300

Z A=−0.49000 B= 3.30000E−03

BEAM AT NEL1= 1

H A=−0.14953 B= 0.84837 V A= 0.19224 B= 1.1255

Z A=−7.28092E−03 B= 4.96592E−02

BEAM AT NEL2= 49

Figure 6: HEBT to Experimental Station 1 at 5.9 MeV/u with and without rebuncher (6εrms envelopes).

9

Page 10: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

3.2 Stage 1 - Experiment Station 2 at 5.9 MeV/u

5.000 mm X 5.000 mrad

60.000 Deg X 3000.00 keV

5.000 mm X 5.000 mrad

60.000 Deg X 3000.00 keV

NP2= 52

10.00 mm (Horiz) 90.0 Deg (Long.)

10.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 19750.80mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

Q

11

12

13

Q

14

15

Q

16

17

G

18

19

Q

20

21

Q

22

23

24

Q

25

26

Q

27

28

29

Q

30

31

E

32 33

E

34

35

Q

36

37

38

Q

39

40

E

41 42

E

43

44

Q

45

46

47

Q

48

49

Q

50

51

Q

52

H A= 0.27000 B= 1.0000 V A=−4.00000E−02 B= 1.0300

Z A=−0.49000 B= 3.30000E−03

BEAM AT NEL1= 1

H A= 7.14649E−02 B= 0.82086 V A= 2.25837E−02 B= 0.86124

Z A= 14.511 B= 0.56304

BEAM AT NEL2= 52 I= 0.0mA W= 265.5000 265.5000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.950 3.680 6235.00 EMITO= 3.950 3.680 6235.00

N1= 1 N2= 52 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 0.0000 1.0000 y 0.0000 1.0000 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 51 −4.53965 1 49 −2.31166 1 47 12.60484

CODE: Trace 3−D v70LY FILE: helios_stage1.t3d DATE: 10/03/2011 TIME: 18:05:11

H A= 0.27000 B= 1.0000 V A=−4.00000E−02 B= 1.0300

Z A=−0.49000 B= 3.30000E−03

BEAM AT NEL1= 1

H A= 0.21395 B= 1.0867 V A= 6.29574E−02 B= 0.64179

Z A=−3.64220E−02 B= 1.43865E−02

BEAM AT NEL2= 52

Figure 7: HEBT to Experimental Station 2 at 5.9 MeV/u with and without rebuncher (6εrms envelopes).

3.3 Stage 2b - Experiment Station 1 at 10.2 MeV/u

5.000 mm X 5.000 mrad

30.000 Deg X 3000.00 keV

5.000 mm X 5.000 mrad

30.000 Deg X 3000.00 keV

NP2= 38

10.00 mm (Horiz) 30.0 Deg (Long.)

10.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 12036.59mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

Q

11

G

12

13

14

Q

15

16

E

17 18

E

19

20

Q

21

22

23

Q

24

25

E

26 27

E

28

29

Q

30

31

32

Q

33

34

Q

35

36

Q

37

38

H A= 0.30000 B= 1.5500 V A= 0.0000 B= 1.2100

Z A= 0.88000 B= 2.60000E−03

BEAM AT NEL1= 1

H A=−0.21802 B= 1.0108 V A=−0.14321 B= 0.98203

Z A= 8.1953 B= 9.98784E−02

BEAM AT NEL2= 38 I= 0.0mA W= 450.0000 450.0000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.140 3.160 3480.00 EMITO= 3.140 3.160 3480.00

N1= 1 N2= 38 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 0.0000 0.5000 y 0.0000 0.5000 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 28 200.00000 1 31 300.00000 1 33 150.00000 1 35 150.00000

CODE: Trace 3−D v70LY FILE: miniball_stage2b.t3d DATE: 10/04/2011 TIME: 15:14:58

H A= 0.30000 B= 1.5500 V A= 0.0000 B= 1.2100

Z A= 0.88000 B= 2.60000E−03

BEAM AT NEL1= 1

H A=−0.21643 B= 0.95943 V A=−0.14096 B= 0.95438

Z A= 0.86321 B= 1.57154E−02

BEAM AT NEL2= 38

Figure 8: HEBT to Experimental Station 1 at 10 MeV/u with and without rebuncher (6εrms envelopes).

10

Page 11: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

3.4 Stage 2b - Experiment Station 2 at 10.2 MeV/u

5.000 mm X 5.000 mrad

30.000 Deg X 3000.00 keV

5.000 mm X 5.000 mrad

30.000 Deg X 3000.00 keV

NP2= 40

10.00 mm (Horiz) 30.0 Deg (Long.)

10.00 mm (Vert) 1.0000 (Dispersion)

NP1= 1

Length= 11545.80mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

11

Q

12

13

Q

14

15

G

16

17

Q

18

19

E

20 21

E

22

23

Q

24

25

26

Q

27

28

E

29 30

E

31

32

Q

33

34

35

Q

36

37

Q

38

39

Q

40

H A= 0.30000 B= 1.5500 V A= 0.0000 B= 1.2100

Z A= 0.88000 B= 2.60000E−03

BEAM AT NEL1= 1

H A= 4.71543E−03 B= 0.50130 V A= 1.75759E−03 B= 0.50050

Z A= 2.09474E−02 B= 2.04006E−02

BEAM AT NEL2= 40 I= 0.0mA W= 450.0000 450.0000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.140 3.160 3480.00 EMITO= 3.140 3.160 3480.03

N1= 1 N2= 40 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 0.0000 0.5000 y 0.0000 0.5000 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 32 −11.33109 1 35 15.38228 1 37 0.65217 1 39 −7.09960

CODE: Trace 3−D v70LY FILE: helios_stage2b_reb.t3d DATE: 10/04/2011 TIME: 14:16:57

H A= 0.30000 B= 1.5500 V A= 0.0000 B= 1.2100

Z A= 0.88000 B= 2.60000E−03

BEAM AT NEL1= 1

H A= 1.94550E−02 B= 0.47520 V A=−2.35235E−02 B= 0.47946

Z A= 8.0631 B= 9.67281E−02

BEAM AT NEL2= 40

Figure 9: HEBT to Experimental Station 2 at 10 MeV/u (εrms and 6εrms envelopes).

3.5 Stage 2b - Experiment Station 1 at 0.45 MeV/u

10.000 mm X 10.000 mrad

540.000 Deg X 500.00 keV

10.000 mm X 10.000 mrad

540.000 Deg X 500.00 keV

NP2= 37

20.00 mm (Horiz) 540.0 Deg (Long.)

20.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 12036.59mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

Q

11

12

13

Q

14

15

E

16 17

E

18

19

Q

20

21

22

Q

23

24

E

25 26

E

27

28

Q

29

30

31

Q

32

33

Q

34

35

Q

36

37

H A=−0.32000 B= 0.51000 V A=−0.37000 B= 0.80000

Z A= 11.900 B= 12.100

BEAM AT NEL1= 1

H A=−0.22780 B= 0.94499 V A=−0.17702 B= 0.94109

Z A= 25.244 B= 54.152

BEAM AT NEL2= 37 I= 0.0mA W= 20.2500 20.2500 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.400 3.560 575.00 EMITO= 3.400 3.560 575.00

N1= 1 N2= 37 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 0.0000 0.5000 y 0.0000 0.5000 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 28 −1.89318 1 31 3.57503 1 33 −1.49272 1 35 −0.02017

CODE: Trace 3−D v70LY FILE: miniball_stage2b_decel.t3d DATE: 10/04/2011 TIME: 15:43:35

H A=−0.32000 B= 0.51000 V A=−0.37000 B= 0.80000

Z A= 11.900 B= 12.100

BEAM AT NEL1= 1

H A=−0.22780 B= 0.94499 V A=−0.17702 B= 0.94109

Z A= 25.244 B= 54.152

BEAM AT NEL2= 37

Figure 10: HEBT to Experimental Station 1 at 0.45 MeV/u (εrms and 6εrms envelopes).

11

Page 12: Notes on the HIE-ISOLDE HEBT - CERNcds.cern.ch/record/1436078/files/HIE-ISOLDE-PROJECT-Note...The HEBT will need to transfer the beam from the HIE-ISOLDE linac to up to four experimental

3.6 Stage 2b - Experiment Station 3 at 10 MeV/u

10.000 mm X 10.000 mrad

90.000 Deg X 3000.00 keV

10.000 mm X 10.000 mrad

90.000 Deg X 3000.00 keV

NP2= 80

20.00 mm (Horiz) 90.0 Deg (Long.)

20.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 31308.19mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

G

11

12

Q

13

14

Q

15

16

G

17

18

Q

19

20

Q

21

G

22

23

24

Q

25

26

27

Q

28

29

30

Q

31

32

E

33 34

E

35

36

Q

37

38

39

Q

40

41

E

42 43

E

44

45

Q

46

47

48

Q

49

50

51

Q

52

53

54

Q

55

56

E

57 58

E

59

60

Q

61

62

63

Q

64

65

E

66 67

E

68

69

Q

70

71

72

Q

73

74

Q

75

76

77

78

79

80

H A= 0.30000 B= 1.5500 V A= 0.0000 B= 1.2100

Z A= 0.88000 B= 2.60000E−03

BEAM AT NEL1= 1

H A= 3.1431 B= 2.7840 V A= −1.6223 B= 2.0774

Z A= 20.012 B= 0.58830

BEAM AT NEL2= 75 I= 0.0mA W= 450.0000 450.0000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 3.140 3.160 3480.00 EMITO= 3.140 3.160 3480.00

N1= 1 N2= 75 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x −2.5948 2.8283 y 2.5948 2.8283 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 2 6.20378 1 4 3.20502 1 6 −0.60513 1 8 −19.84592

CODE: Trace 3−D v70LY FILE: U.t3d DATE: 10/25/2011 TIME: 14:07:34

Figure 11: HEBT to Experimental Station 3 at 10 MeV/u (εrms and 6εrms envelopes). This solution couldbe better matched.

3.7 Stage 2b - TSR at 10 MeV/u

10.000 mm X 10.000 mrad

30.000 Deg X 3000.00 keV

10.000 mm X 10.000 mrad

30.000 Deg X 3000.00 keV

NP2= 82

20.00 mm (Horiz) 30.0 Deg (Long.)

20.00 mm (Vert) 3.0000 (Dispersion)

NP1= 1

Length= 36088.19mm

1

2

Q

3

4

Q

5

6

Q

7

8

Q

9

10

11

Q

12

13

Q

14

15

16

Q

17

18

Q

19

20

21

Q

22

23

24

Q

25

26

27

Q

28

29

E

30 31

E

32

33

Q

34

35

36

Q

37

38

E

39 40

E

41

42

Q

43

44

45

Q

46

47

Q

48

49

50

Q

51

52

Q

53

54

Q

55

56

E

57

B(v)

58

E

59

60

Q

61

62

Q

63

Q

64

65

Q

66

67

E

68

B(v)

69

E

70

71

Q

72

73

Q

74

75

Q

76

77

78

Q

79

80

Q

81

82

H A= −2.5948 B= 2.8283 V A= 2.5948 B= 2.8283

Z A= 0.0000 B= 2.00000E−03

BEAM AT NEL1= 10

H A= −2.6665 B= 2.8296 V A= 2.6484 B= 2.9240

Z A= 15.572 B= 0.48700

BEAM AT NEL2= 81 I= 0.0mA W= 450.0000 450.0000 MeV

FREQ= 101.28MHz WL=2960.04mm EMITI= 2.500 2.500 14000.00 EMITO= 2.500 2.500 14000.00

N1= 10 N2= 81 PRINTOUT VALUES PP PE VALUEMATCHING TYPE = 8

DESIRED VALUES (BEAMF) alpha beta x 7.5000 28.6250 y 0.5000 6.1200 MATCH VARIABLES (NC=4) MPP MPE VALUE 1 50 −3.02332 1 52 19.32628 1 54 −19.22449 1 62 24.13709

CODE: Trace 3−D v70LY FILE: TSR.t3d DATE: 10/25/2011 TIME: 14:25:10

Figure 12: HEBT to TSR at 10 MeV/u. Further work is needed to match into the ring itself.

12


Recommended