+ All Categories
Home > Documents > Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf ·...

Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf ·...

Date post: 20-Jun-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
27
Numerical analysis and computational solution of integro-differential equations Hermann Brunner H ONG KONG B APTIST U NIVERSITY and MEMORIAL U NIVERSITY OF N EWFOUNDLAND University of Strathclyde, 26 June 2013 1
Transcript
Page 1: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Numerical analysis and computational solutionof integro-differential equations

Hermann Brunner

HONG KONG BAPTIST UNIVERSITY

and

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

University of Strathclyde, 26 June 2013

1

Page 2: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Volterra integro-differential equations (VIDEs)

� Ordinary VIDEs (standard forms):

u′(t) + a(t)u(t) = f(t) +∫ t

0Kα(t, s)u(s)ds,

with u(0) = u0 and kernel

Kα(t, s) :=

⎧⎨⎩

(t − s)α−1K(t, s) if 0 < α ≤ 1

log(t − s)K(t, s) if α = 0.

↪→ “Neutral” VIDEs:

u(k)(t) +k−1∑j=0

aj(t)u(j)(t) = f(t) +

k∑j=0

∫ t

0

Kαj(t, s)u(j)(s)(t)ds

(k ≥ 1, 0 ≤ αj ≤ 1), with u(j)(0) = uj (j = 0,1, . . . , k − 1).

↪→ Nonlinear VIDEs (Hammerstein form):

u′(t) = f(t,u(t)) +

∫ t

0

Kα(t, s)G(s,u(s))ds.

2

Page 3: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Non-standard ordinary VIDEs:

In the mathematical modelling of memory effects, VIDEs often occur innon-standard form:

↪→ Predator-prey model (Volterra, 1927):

dN1(t)

dt= N1(t)

(ε1 − γ1N2(t) −

∫ t

t−τ

F1(t − s)N1(s)ds

)dN2(t)

dt= N2(t)

(−ε2 + γ2N1(t) −

∫ t

t−τ

F2(t − s)N2(s)ds

).

↪→ Stretching of polymers (Lodge et al., 1978; Markowich & Renardy, 1983):

εu′(t) = b(t)uβ(t) +

∫ t

−∞k(t − s)G(u(t),u(s))ds,

where 0 < ε � 1 , and β = 2 (filament) or β = 1/2 (sheet).

↪→ Auto-convolution VIDEs (theory of turbulence):

u′(t) + a(t)u(t) = f(t) +

∫ t

0

K(t, s)u(t − s)u(s)ds

(v. Wolfersdorf & Janno, 2009/2011).3

Page 4: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

(Non-standard VIDEs / contd.)

↪→ Neutral VIDEs:

d

dt

(A0u(t) −

∫ 0

−τA1(s)u(t + s)ds

)= B0u(t) + f(t)

(t > 0, τ > 0), with Ai, Bi ∈ Rd (d = 8), detA0 = 0 (typically, the last row of A0

is a row of zeros):

Elastic motions of 3-degree-of-freedom airfoil with flap in 2D incompressible flow

(Burns et al., 1983+).

↪→ Integro-differential algebraic equations:

A(t)u′(t) + B(t)u(t) = f(t) +∫ t

0Kα(t, s)u(s)ds,

with u ∈ Rd (d ≥ 2), A(·), B(·) ∈ Rd×d, Kα(·, ·) ∈ Rd×d, and

detA(t) = 0 on I, with rankA(t) > 0 :

Dolezal, 1960s (Kirchhoff laws for electrical networks); Bulatov & Chistyakov, 1997;

Bulatov & Chistyakova, 2011.4

Page 5: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Partial VIDEs (standard forms)

Parabolic VIDEs:

ut + Au = f +∫ t

0B(t, s)u(s, ·)ds, t ∈ I, x ∈ Ω ⊂ Rd,

with u(0, x) = 0, x ∈ Ω; u(t, x) = 0, (t, x) ∈ I × ∂Ω, and where

A is a linear, uniformly elliptic (spatial) differential operator,

B is a linear spatial differential operator of order ≤ 2.

Hyperbolic VIDEs:

utt + Au = f +∫ t

0B(t, s)u(s, ·)ds, t ∈ I, x ∈ Ω ⊂ Rd,

with u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω); u(t, x) = 0 on I × ∂Ω.

Partial VIDEs with positive memory:

ut +∫ t

0kα(t − s)Au(s, ·)ds = f (0 < α < 1),

with∫ T

0

∫ t

0kα(t − s)ϕ(s)ϕ(t) ds dt ≥ 0 for all ϕ ∈ C(I), and kα(z) = zα−1/Γ(α).

5

Page 6: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Remark: The partial VIDE

ut = f +∫ t

0k(t − s)Δu(s, ·)ds

interpolates between the linear diffusion equation and the linearwave equation:

k(t − s) = δ(t − s) ⇒ ut = f + Δu.k(t − s) = 1 ⇒ utt = ft + Δu.

The partial Volterra integral equation

u = f +∫ t

0

(t − s)α−1

Γ(α)Δu(s, ·)ds (1 < α < 2)

possesses the analogous property (Fujita (1990)).

6

Page 7: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Non-standard partial VIDEs

↪→ Elliptic VIDEs:

Δu +∫ t

0

3∑j=1

aj(t, s)∂2u(s, ·)

∂x2j

ds = f ,

where u = u(t,x), t ≥ 0, x ∈ Ω ⊂ R3 :

Models viscoelastic materials with memory (Volterra, 1908/1912; see also

Shaw & Whiteman, 1996).

↪→ Fractional evolution equations:

ut = f + BαAu (e.g. A = Δ ),where either

(Bαv)(t) =∂

∂t

∫ t

0

(t − s)α

Γ(1 + α)v(s)ds, −1 < α < 0,

or

(Bαv)(t) =

∫ t

0

(t − s)α−1

Γ(α)v(s)ds, 0 < α < 1 :

α ∈ (−1,0) : slow or anomalous diffusion in fractured media;

α ∈ (0,1) : wave propagation in viscolealstic materials.

7

Page 8: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Vito Volterra in his 1909 paper on IDEs:

“The problem of solving integro-differential equations constitutesin general a problem that differs essentially from the problems of solving

differential equations and the usual ones for integral equations”.

(“Il problema della risoluzione delle equazioni integro-differenzialicostituisce in generale un problema essenzialmente distinto dai problemidelle equazioni differenziali e da quelli ordinarii delle equazioni integrali.” )

8

Page 9: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Outline

� Time-stepping for ordinary VIDEs(Runge-Kutta and collocation methods; DG methods; hp versions)

� Time-stepping for partial VIDEs(Runge-Kutta and collocation methods; hp-DG and discretised DG methods)

� Computational aspects(Fractional diffusion and wave equations; unbounded spatial domains; IDEs

of Fredholm type)

� Computational challenges in solving IDEs

� Ongoing and future work

9

Page 10: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Collocation and Galerkin spaces (time-stepping)

Let Ih := {tn : 0 = t0 < t1 · · · < tN = T} be a mesh for the given interval

I := [0,T] , with en := (tn, tn+1), hn := tn+1 − tn, h := max(n){hn}.

• Globally continuous piecewise polynomials (m ≥ 1):

S(0)m (Ih) := {v ∈ C(I) : v|en

∈ Pm (0 ≤ n ≤ N − 1)},where Pm = Pm(en) is the space of polynomials of degree m .

• Discontinuous piecewise polynomials (m ≥ 0):

S(−1)m (Ih) := {v : v|en

∈ Pm (0 ≤ n ≤ N − 1)}.

• hp-spaces: For given degree vector m := (m0,m1, . . . ,mN−1 ), let

S(0)m (Ih) := {v ∈ C(I) : v|en ∈ Pmn

(0 ≤ n ≤ N − 1)}and

S(−1)m (Ih) := {v : v|en

∈ Pmn(0 ≤ n ≤ N − 1)}.

10

Page 11: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Galerkin and collocation methods for

u′(t) + a(t)u(t) = f(t) + (Vαu)(t), t ∈ I = [0, T ],

where (Vαu)(t) =

∫ t

0

kα(t − s)K(t, s)u(s)ds, with K ∈ C(D) and

kα(t − s) :=

{(t − s)α−1 if 0 < α ≤ 1,log(t − s) if α = 0.

• Exact continuous Galerkin method: uh ∈ S(0)m (Ih) so that

〈u′h + auh, φ〉 = 〈f , φ〉 + 〈Vαuh, φ〉 for all φ ∈ S(0)

m (Ih) ,

with uh(0) = u(0) .• Exact discontinuous Galerkin method: uh ∈ S(−1)

m (Ih) so that

〈u′h + auh, φ〉 = 〈f , φ〉 + 〈Vαuh, φ〉 for all φ ∈ S(−1)

m (Ih) .

(↪→ Note: The inner products 〈·, ·〉 (integrals) are assumed to be known exactly.)

• Continuous collocation method: uh ∈ S(0)m (Ih) so that

u′h(t) + a(t)uh(t) = f(t) + (Vαuh)(t), t ∈ Xh ,

with uh(0) = g(0) and Xh := {tn + cihn : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)}.

11

Page 12: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

DG equation based on the variational form of

u′(t) + a(t)u(t) = f(t) + (Vαu)(t),

with a(t) ≥ a0> 0 and

(Vαu)(t) =

∫ t

0

(t − s)α−1K(t, s)︸ ︷︷ ︸=:Kα(t,s)

u(s)ds (0 < α ≤ 1) :

BDG(uh,v) = FDG(v) for all v ∈ S(−1)m (Ih),

where

BDG(uh,v) :=N−1∑j=0

∫ej

[u′h(t) + a(t)uh(t)]v(t)dt

−N−1∑j=0

∫ej

(∫ t

0

Kα(t, s)uh(s)ds

)v(t)dt +

N−1∑j=0

[uh]jv+j + uh(0

+)v(0+),

FDG(v) := u0v(0+) +N−1∑j=0

∫ej

f(t)v(t)dt,

with [uh]j := uh(t+j ) − uh(t

−j ) .

12

Page 13: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Ordinary VIDEs:

u′(t) + a(t)u(t) = f(t) + (Vαu)(t),

with a(t) ≥ a0> 0 and (Vαu)(t) =

∫ t

0

Kα(t, s)u(s)ds (0 < α ≤ 1) :

Time-stepping form of the (exact) DG equation:

For known uh on ej (j ≤ n − 1), find uh|en∈ Pm, with initial value U−

n−1, so that∫en

[u′h(t) + a(t)uh(t)]φ(t)dt + U+

n φ+n −

∫en

(∫ t

tn

Kα(t, s)uh(s)ds

)φ(t)dt

= U−n φ+

n +

∫en

f(t)φ(t)dt+

∫en

(∫ tn

0

Kα(t, s)uh(s)ds

)︸ ︷︷ ︸

history of uh on (0,tn)

φ(t)dt

for all φ ∈ Pm and n = 0,1, . . . , N − 1. Here, U+n := uh(t+n ) and U−

n := uh(t−n ) .

13

Page 14: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Attainable orders of convergence

� Collocation in S(0)m (Ih) (0 < c1 < · · · < cm ≤ 1)

↪→ Smooth solutions (u ∈ Cd(I), d ≥ m + 1):

‖u − uh‖∞ ≤ Chm+1 (if∫ 1

0

m∏i=1

(s − ci)ds = 0).

↪→ Non-smooth solutions (u ∈ Cm+1(0,T], u′′(t) ∼ γt−α as t → 0+):

On uniform meshes: ‖u − uh‖∞ ≤ Ch2−α (for all m ≥ 1) .

On graded meshes (tn = (n/N)rT, n = 0, . . . , N ; r > 1) :

‖u − uh‖∞ ≤ CN−(m+1−α) if r ≥ (m + 1 − α)/(2 − α)

(Tang, 1992; B., Pedas & Vainikko, 2001).� hp-DG in S(−1)

m (Ih) (mi = m for all ):

‖u − uh‖∞ ≤ C

{m−shmin{s,m}+1 ‖u‖Ws+1,∞ if u ∈ Ws+1,∞(I),e−βm if u is analytic on I,

with C > 0, β > 0 independent of m (Brunner & Schotzau, 2006).

14

Page 15: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� hp-DG / non-smooth solutions:

u′(t) + a(t)u(t) = f(t) + (Vαu)(t) (0 < α < 1)

with f(t) = f0(t) + tβf1(t) (β > 0, β �∈ N).

↪→ Geometric local mesh refinement (Extension of Schotzau & Schwab, 2000):(i) Choose a (uniform) hp-discretisation Ih of I = [0,T];(ii) choose a geometric submesh on e0 = (0, t1): for given grading factorσ = σ(α, β) ∈ (0,1), let

t0,0 := 0, t0,μ := σr+1−μt1 (1 ≤ μ ≤ r + 1).

The locally refined hp-discretisation of I is denoted by Ih(r, σ), and thecorresponding hp-DG space is S(−1)

m (Ih(r, σ)).

↪→ (B. & Schotzau, 2006) There exists a (linear) degree vector for Ih(r, σ),

m := (m0,1, . . . ,m0,r+1︸ ︷︷ ︸on e0

; m1, . . . , mN−1︸ ︷︷ ︸on e1,...,eN−1

),

and a grading factor σ so that the hp-DG solution uh ∈ S(−1)m (Ih(r, σ)) satisfies

‖u − uh‖∞ ≤ Ce−bM1/2,

with positive constants C, b and M := dim S(−1)m (Ih(r, σ)).

15

Page 16: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� h- and hp-DG time-stepping for parabolic VIDEs:

ut − Δu = f +∫ t

0Kα(t, s)Bu(s, ·)ds (0 < α < 1).

↪→ Larsson, Thomee & Wahlbin (1998): h-version for S(−1)m (Ih) with m = 0,1.

↪→ Mustapha, B., Mustapha & Schotzau (2011): hp-version with arbitrary m ≥ 0:continuous Galerkin in space; DG time-stepping using initial local geometricmesh refinement and linearly increasing polynomial degree vectors.

⇒ Error estimates that are explicit in the time-steps hn, the polynomial degrees mi,and the regularity parameters of the exact solution u.

If u has start-up singularities but is analytic for t > 0 ⇒ exponential convergence

rates.

Open problem: hp-DG convergence analysis if u has singularitiescaused by non-smooth initial data ?

16

Page 17: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Exact versus discretised DG methods

• Exact DG equation: uh ∈ S(−1)m (Ih) so that

〈u′h + auh, φ〉 = 〈f , φ〉 + 〈Vαuh, φ〉 for all φ ∈ S(−1)

m (Ih) .

↪→ Approximation of inner products, e.g.

〈auh, φ〉en=

∫en

a(s)uh(s)φ(s)ds = hn

∫ 1

0

a(tn + shn)uh(tn + shn)φ(tn + shn)ds,

by (interpolatory) numerical quadrature (with 0 ≤ d0 < · · · < dq ≤ 1 ):

〈auh, φ〉en≈ hn

q∑j=0

wja(tn + djhn)uh(tn + djhn)φ(tn + djhn) .

• Discretised DG for ODE (Vα = 0). If q = m :Collocation-based (m + 1)-stage implicit Runge-Kutta method with jump discontinuity

terms (Lasaint & Raviart, 1974; Delfour et al., 1981; see also Estep & Stuart (2001) for

dissipativity-preserving discretisations).• Discretised CG for ODE (using abscissas 0 ≤ d1 < · · · < dm ≤ 1 ):

Collocation-based m-stage continuous implicit Runge-Kutta method, with collocation

points ci = di (i = 1, . . . , m) given by the quadrature abscissas (Hulme, 1972).

17

Page 18: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Discretised DG equation for VIDE: Assume uh ∈ S(−1)m−1(Ih)

• Time-stepping form of the exact DG equation: Find uh on en so that∫en

(u′

h(t) + a(t)uh(t))φ(t)dt + U+

n φ+n −

∫en

(∫ t

tn

Kα(t, s)uh(s)ds

)φ(t)dt

= U−n φ+

n +

∫en

f(t)φ(t)dt+

∫en

(∫ tn

0

Kα(t, s)uh(s)ds

)︸ ︷︷ ︸

history of uh on (0,tn)

φ(t)dt

for all φ ∈ Pm−1 and n = 0,1, . . . , N − 1.

↪→ Approximation of inner products over en: if 0 ≤ d1 < · · · < dm ≤ 1 are given,∫en

F(t)φn,i(t)dt ≈ hn

m∑j=1

bjF(tn + djhn)φn,i(tn + djhn) = hnbiF(tn + dihn)

for all local Lagrange basis functions {φn,i} with respect to the {dj}.

18

Page 19: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

⇒ Discretised DG equation for uh ∈ S(−1)m−1(Ih):

u′h(t) + a(t)uh(t) + b−1

i U+n φ+

n,i−∫ t

tn

Kα(t, s)uh(s)ds

= b−1i U−

n φ+n,i + f(t)+

n−1∑ =0

∫ t +1

t

Kα(t, s)uh(s)ds︸ ︷︷ ︸history of uh on (0,tn)

,

i = 1, . . . ,m, with t = tn + dihn (n = 0, . . . , N − 1).

• Comparison: Collocation solution wh ∈ S(0)m (Ih) on en :

w′h(t) + a(t)wh(t) − hn

∫ ci

0

Kα(t, tn + shn)wh(tn + shn)ds

= f(t) +n−1∑ =0

∫ t +1

t

Kα(t, s)wh(s)ds︸ ︷︷ ︸history of wh on [0,tn]

for t = tn + cihn (i = 1, . . . , m; n = 0, . . . , N − 1), with uh(0) = u0 .

19

Page 20: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Discretised CG time-stepping for VIDEs:

Approximation of inner products (on en) by interpolatory m-point quadrature

formula using the abscissas {tn + djhn} with 0 ≤ d1 < · · · < dm ≤ 1 :

↪→ m-point collocation solution in S(0)m (Ih) with ci = di (≡ m-stage continuous

implicit Volterra-Runge-Kutta method, with ci = di as Runge-Kutta abscissas).

↪→ Ordinary VIDEs: Brunner (2004: Ch. 3/Ch. 6)

↪→ Parabolic VIDEs (implicit Volterra-Runge-Kutta-methods): Brunner, Kauthen

& Ostermann (1995).

20

Page 21: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Computational aspects� Fractional diffusion and wave equations:

ut = f + BαAu (e.g. A = Δ),

where either

(Bαv)(t) =∂

∂t

∫ t

0

(t − s)α

Γ(1 + α)v(s)ds, −1 < α < 0,

or

(Bαv)(t) =

∫ t

0

(t − s)α−1

Γ(α)v(s)ds, 0 < α < 1 .

↪→ Convolution quadrature and Laplace transform techniques:

Lubich, Sloan & Thomee (1996), Cuesta, Lubich & Palencia (2006), Lopez-Fernandez,

Lubich & Schadle (2008), Xu (2003,2008), McLean & Thomee (2010).

↪→ DG time-stepping:

Mustapha & McLean (2009,2011), McLean (2012); Mustapha & McLean (2013)

(superconvergence); Mustapha & Ryan (2013) (postprocessing of DG solutions).↪→ DG with adaptive time-stepping:

Adolfsson, Enelund & Larsson (2003), Brunner, Ling & Yamamoto (2010).

21

Page 22: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

(Computational aspects / contd.)

Elliptic partial VIDEs

� The elliptic partial VIDE for u = u(t,x),

Δu +

∫ t

0

3∑j=1

aj(t, s)∂2u(s, ·)

∂x2j

ds = f

(t ≥ 0, x ∈ Ω ⊂ R3 ), was introduced and studied by Volterra in 1908/1912.

General form:

Au +∫ t

0B(t, s)u(s, ·)ds = f (t ∈ [0, T ], x ∈ Ω ⊂ Rd),

with A self-adjoint and strongly elliptic.

↪→ Computational solution:

Use of CG in space ( S(0)1 (Ωh)) and DG in time ( S(−1)

0 (Iτ)); a posteriori error

estimation: Shaw & Whiteman (1996).

22

Page 23: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

(Computational aspects / contd.)

� Unbounded spatial domains Ω ⊂ Rd :

ut − Δu = f +∫ t

0K(t − s, ·)u(s, ·)ds, x ∈ Ω, t ≥ 0,

where Ω ⊂ R2 is an infinite strip: Construction of artificial boundary conditions

for bounded computational domain (Han, Zhu, B. & Ma, 2006).

ut − Δu =∫ t

0k(t − s)up(s, ·)ds, x ∈ Ω, t ≥ 0, (1)

with Ω = R2 or Ω = cone in R2 , and p > 1: solution blows up in finite time.↪→ For k(t − s) = δ(t − s) ( ⇒ PDE: ut − Δu = up ):Artificial (nonlinear) boundary conditions; adaptive time-stepping based on

one-point collocation (Zhang, Han & Brunner, 2011).↪→ For general k(t − s) > 0 ( ⇒ partial VIDE (1)):Computational solution (e.g. collocation or DG time-stepping on the bounded

computational domain with artifical boundary conditions): Open problem.

(� PDEs: ↪→ 2013 book, Artificial Boundary Method by Han & Wu.)

23

Page 24: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

(Computational aspects / contd.)

Parabolic IDEs of Fredholm-type

� The linear Fredholm IDE

ut + Au = 0 on I × Ω

(I = [0, T ], Ω ⊂ Rd bounded), where the non-local operator A is the sum of a

second-order (elliptic) differential operator and a Fredholm-type integral operator,

arises in option pricing under Levy processes (Jacob, 2005).

↪→ Computational solution: Wavelet discretisation in space (+ wavelet compression

techniques for densely populated matrices) and DG time-stepping: Matache, Schwab

& Wihler (2006).

But: For many classes of (semilinear) Fredholm IDEs the design and the

analysis of computational methods remain to be studied (see next slide).

24

Page 25: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

� Computational challenges:Numerical detection of blow-up / computation of blow-up time for semilinear

Fredholm IDEs arising in

• Chemical reaction processes:

ut − Δu =∫Ω

F(u(·,y))dy,

(with t ∈ [0, T ], x ∈ Ω � Rd (where Ω = Rd or Ω � Rd is bounded)), describes

chemical reaction processes where solutions may blow up in finite time.

↪→ Chadam & Yin (1989/1993), Chadam, Peirce & Yin (1992); Souplet (1998).

• Reactive-diffusive ignition models:

ut − Δu = F(u) + [vol (Ω)]−1∫Ω

ut(·,y)dy.

↪→ Bebernes et al. (1982+).• Non-local reaction-diffusion equations:

ut − Δu =∫ t

0

∫Ωk(t − s)H(·,y)G(u(s,y))dy ds,

with (e.g.) G(u) = up, p > 1. ↪→ Souplet (1998).

25

Page 26: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

Ongoing / future work:

• Extension of a posteriori error estimation for hp-DG solutions forparabolic PDEs (Schotzau & Wihler, 2010) to discretised hp-DGtime-stepping for ordinary VIDEs and parabolic partial VIDEs.

• hp-collocation (CC) time-stepping for ordinary VIDEs and parabolic VIDEs,including problems with non-smooth solutions.

• A priori and a posteriori error estimation for hp-collocation (CC) time-stepping for ordinary and parabolic VIDEs.

• hp-collocation time-stepping for fractional diffusion and wave equations ?

• Analysis of time-stepping methods (DG / collocation) for parabolic VIDEs onunbounded spatial domains ?

• Semilinear partial Volterra and Fredholm IDEs with blow-up solutions:numerical detection of blow-up (using, e.g., moving mesh methods); a posteriorierror estimates for blow-up time ?

• Computational methods for VIDEs with highly oscillatory kernels ?

(↪→ Slides / References: www.math.hkbu.edu.hk/∼hbrunner/)

26

Page 27: Numerical analysis and computational solution of integro ...hbrunner/biennial13/HBStrath13sl.pdf · Numerical analysis and computational solution of integro-differential equations

↪→ With thanks to Arieh for the ‘colours’ . . . !

27


Recommended