+ All Categories
Home > Documents > Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline...

Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline...

Date post: 15-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
17
6/8/2020 1 Electromagnetics: Microwave Engineering Numerical Analysis of Transmission Lines Outline Governing equations Numerical representation Finitedifference approximations Matrix solution of electric potential , Calculating the transmission line parameters 2
Transcript
Page 1: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

1

Electromagnetics:

Microwave Engineering

Numerical Analysis of Transmission Lines

Outline

•Governing equations•Numerical representation

• Finite‐difference approximations

•Matrix solution of electric potential 𝑉 𝑥, 𝑦•Calculating the transmission line parameters

2

Page 2: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

2

Governing Equations

Slide 3

Maxwell’s Equations

4

0

0

B

D

H J D t

E B t

Start with Maxwell’s equations.

Page 3: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

3

Electrostatic Approximation

5

The dimensions of a transmission line are typically much smaller than the operating wavelength so the wave nature of electromagnetics is less important to consider.  Therefore, Maxwell’s equations are essential be solved in the limit as 𝑑 𝑑𝑡⁄ → 0.

0

0

B

D

H J D t

E B t

Electrostatics & Magnetostatics

6

0

0

0

D

B

H J

E

Maxwell’s equations have decoupled into two sets of equations.  One describes electrostatics while the other describes magnetostatics.

Electrostatics

0

0

D

E

Magnetostatics

0B

H J

Page 4: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

4

Governing Equations

7

Maxwell’s equations:

0 Eq. (1)

0 Eq. (2)

D

E

In addition, there is the constitutive relation

r Eq. (3)D E

It is not preferred to solve vector equations if there is a way to avoid it.  Electrostatic fields are completely characterized by the electric potential 𝑉 𝑥,𝑦 .

Eq. (4)E V

Differential Equation to Solve

8

2.  Substitute Eq. (4) into Eq. (5) to eliminate 𝐸.

r

0 Eq. (1)

0 Eq. (2)

Eq. (3)

Eq. (4)

D

E

D E

E V

r 0 Eq. (5)E

r 0 Eq. (6)V

1. Substitute Eq. (3) into Eq. (1) to eliminate 𝐷.

Inhomogeneous Laplace’s Equation

Page 5: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

5

0V r 0V

Differential Equation in a Homogeneous Medium

9

When the dielectric is homogeneous, our differential equation simplifies to

In Cartesian coordinates, this expands to

2 2 2

2 2 20

V V V

x y z

2 0V

Transmission lines are uniform in the z direction so                     and Laplace’s equation reduces to

2 2 0z

2 2

2 20

V V

x y

Numerical Representations

Slide 10

Page 6: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

6

Discrete Function for Electric Potential 𝑉 𝑥,𝑦

11

Analytical functions contain an infinite amount of information.  

In order to store 𝑉 𝑥,𝑦 on a computer, it is stored in an array where function values are only known at discrete points.

x

y

Start with the analytical function 𝑉 𝑥, 𝑦 .

,V x y

Discrete Function for Electric Potential 𝑉 𝑥,𝑦

12x

y

Divide space into a grid.

,V x y

x

y

Analytical functions contain an infinite amount of information.  

In order to store 𝑉 𝑥,𝑦 on a computer, it is stored in an array where function values are only known at discrete points.

Page 7: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

7

Discrete Function for Electric Potential 𝑉 𝑥,𝑦

13i

j

Store the analytical function only at a discrete points inside of each cell on the grid.

,V i j

Analytical functions contain an infinite amount of information.  

In order to store 𝑉 𝑥,𝑦 on a computer, it is stored in an array where function values are only known at discrete points.

Discrete Function for Electric Potential 𝑉 𝑥,𝑦

14i

j

The discrete function tends to be thought of as being uniform throughout the cell, but this is technically incorrect.

,V i j

Analytical functions contain an infinite amount of information.  

In order to store 𝑉 𝑥,𝑦 on a computer, it is stored in an array where function values are only known at discrete points.

Page 8: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

8

Discrete Function for Electric Potential 𝑉 𝑥,𝑦

15x

y

The discrete function 𝑉 𝑖, 𝑗 is usually visualized this way.

, ,V i j V x y

Analytical functions contain an infinite amount of information.  

In order to store 𝑉 𝑥,𝑦 on a computer, it is stored in an array where function values are only known at discrete points.

A Fundamental Tradeoff for Discrete Functions

16

There is always a fundamental trade‐off between accuracy and speed of simulation.  The purpose of almost all work in computational methods is to get improved accuracy with fewer points.

Fewer pointsLess memory

Faster simulationsPoorer accuracy

More pointsMore memorySlower simulationsBetter accuracy“Sweet spot”

Best compromise between accuracy, memory, and speed of simulation.

Page 9: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

9

Finite‐Difference Approximations

Slide 17

Finite‐Difference Approximations (1 of 2)

Slide 18

Suppose the first‐order derivative of 𝑓 𝑥 is to be numerically calculated at 𝑥 𝑥 .

The first‐order derivative is slope.  The slope can be estimated as riserun using information from surrounding points.

3 12

rise

run 2

f ff x

x

1x 2x 3x

1f

2f3f

x

run = 2x

rise

= f 3

–f 1

Page 10: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

10

Finite‐Difference Approximations (2 of 2)

Slide 19

The derivative at the midpoints between data points can be estimated.

1x 2x 3x

1f

2f3f

2 11.5

f ff x

x

3 22.5

f ff x

x

1.5f

2.5f

The second‐order derivative is the slope of the slope.

2.5 1.52

3 2 2 1

3 2 12

2

f x f xf x

xf f f f

x xx

f f f

x

Finite‐Difference Approximation of Laplace’s Equation

20

2 2

2 20

V V

x y

2 2

1, 2 , 1, , 1 2 , , 10

V i j V i j V i j V i j V i j V i j

x y

2

22

1, 2 , 1,V i j V i j V i jV

x x

2

22

, 1 2 , , 1V i j V i j V i jV

y y

Page 11: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

11

Rearrange Terms in the Finite‐Difference Equation

21

2 2

1, 2 , 1, , 1 2 , , 10

V i j V i j V i j V i j V i j V i j

x y

2 2 2 2 2 2

1, 2 , 1, , 1 2 , , 10

V i j V i j V i j V i j V i j V i j

x x x y y y

2 2 2 2 2 2

1 1 2 2 1 11, 1, , , 1 , 1 0V i j V i j V i j V i j V i j

x x x y y y

Matrix Solution of Electric Potential 

Slide 22

Page 12: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

12

Write Large Set of Equations

23

This equation is written once for every point on the grid.

2 2 2 2 2 2

1 1 2 2 1 11, 1, , , 1 , 1 0V i j V i j V i j V i j V i j

x x x y y y

The final form of the finite‐difference equation is

4

4x

y

N

N

0.5

0.5

x

y

Consider Boundary Conditions

24

4

4x

y

N

N

0.5

0.5

x

y

All of the highlighted terms will be set to zero. 

Dirichlet Boundary Conditions

Page 13: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

13

Build Matrix Equation  𝐿 𝑣 0

25

16 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0

4 16 4 0 0 4 0 0 0 0 0 0 0 0 0 0

0 4 16 4 0 0 4 0 0 0 0 0 0 0 0 0

0 0 4 16 0 0 0 4 0 0 0 0 0 0 0 0

4 0 0 0 16 4 0 0 4 0 0 0 0 0 0 0

0 4 0 0 4 16 4 0 0 4 0 0 0 0 0 0

0 0 4 0 0 4 16 4 0 0 4 0 0 0 0 0

0 0 0 4 0 0 4 16 0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0 16 4 0 0 4 0 0 0

0 0 0 0 0 4 0 0 4 16 4 0 0 4 0 0

0 0 0 0 0 0 4 0 0 4 16 4 0 0 4 0

0 0

1,1

2,1

3,1

4,1

1,2

2, 2

3, 2

4, 2

1,3

2,3

3,3

4,30 0 0 0 0 4 0 0 4 16 0 0 0 4

1,40 0 0 0 0 0 0 0 4 0 0 0 16 4 0 0

2, 40 0 0 0 0 0 0 0 0 4 0 0 4 16 4 0

3, 40 0 0 0 0 0 0 0 0 0 4 0 0 4 16 4

40 0 0 0 0 0 0 0 0 0 0 4 0 0 4 16

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

, 4 0

Is the Matrix Equation Solvable?

26

16 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0

4 16 4 0 0 4 0 0 0 0 0 0 0 0 0 0

0 4 16 4 0 0 4 0 0 0 0 0 0 0 0 0

0 0 4 16 0 0 0 4 0 0 0 0 0 0 0 0

4 0 0 0 16 4 0 0 4 0 0 0 0 0 0 0

0 4 0 0 4 16 4 0 0 4 0 0 0 0 0 0

0 0 4 0 0 4 16 4 0 0 4 0 0 0 0 0

0 0 0 4 0 0 4 16 0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0 16 4 0 0 4 0 0 0

0 0 0 0 0 4 0 0 4 16 4 0 0 4 0 0

0 0 0 0 0 0 4 0 0 4 16 4 0 0 4 0

0 0

1,1

2,1

3,1

4

0 0 0 0 0 4 0 0 4 16 0 0 0 4

0 0 0 0 0 0 0 0 4 0 0 0 16 4 0 0

0 0 0 0 0 0 0 0 0 4 0 0 4 16 4 0

0 0 0 0 0 0 0 0 0 0 4 0 0 4 16 4

0 0 0 0 0 0 0 0 0 0 0 4 0 0 4 16

L

V

V

V

V

0

0

0

0

,1 0

1, 2 0

2, 2 0

3, 2 0

4, 2 0

1,3 0

2,3 0

3,3 0

4,3 0

1, 4 0

2, 4 0

3, 4 0

4, 4 0

v

V

V

V

V

V

V

V

V

V

V

V

V

2 0 0V L v 1 0 0v L

Trivial Solution

Page 14: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

14

Force Known Potentials

27

16 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0

4 16 4 0 0 4 0 0 0 0 0 0 0 0 0 0

0 4 16 4 0 0 4 0 0 0 0 0 0 0 0 0

0 0 4 16 0 0 0 4 0 0 0 0 0 0 0 0

4 0 0 0 16 4 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 4 0 0 4 16 0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0 16 4 0 0 4 0 0 0

0 0 0 0 0 4 0 0 4 16 4 0 0 4 0 0

0 0 0 0 0 0 4 0 0 4 16 4 0 0 4 0

0 0

1,1

2,1

3,1

4,1

1,2

2, 2

3, 2

4, 2

1,3

2,3

3,3

4,30 0 0 0 0 4 0 0 4 16 0 0 0 4

1,40 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

2, 40 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

3, 40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

0

0

0

0

0

5

5

0

0

0

0

0

2

2

2

, 4 2

Force values here to 2.0

Force values here to 5.0

1,4 2

2,4 2

3,4 2

4,4 2

V

V

V

V

2,2 5

3,2 5

V

V

Solve for Electric Potential  𝑣

28

16 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0

4 16 4 0 0 4 0 0 0 0 0 0 0 0 0 0

0 4 16 4 0 0 4 0 0 0 0 0 0 0 0 0

0 0 4 16 0 0 0 4 0 0 0 0 0 0 0 0

4 0 0 0 16 4 0 0 4 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 4 0 0 4 16 0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0 16 4 0 0 4 0 0 0

0 0 0 0 0 4 0 0 4 16 4 0 0 4 0 0

0 0 0 0 0 0 4 0 0 4 16 4 0 0 4 0

0 0

1,1

2,1

3,1

4,1

0 0 0 0 0 4 0 0 4 16 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

L

V

V

V

V

0

0

0

0

1,2 0

2, 2 5

3,2 5

4, 2 0

1,3 0

2,3 0

3,3 0

4,3 0

1,4 2

2, 4 2

3,4 2

4, 4 2

v b

V

V

V

V

V

V

V

V

V

V

V

V

1 L v b v L b

Page 15: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

15

Calculating the TransmissionLine Parameters

Slide 29

Calculating the Electric Fields

30

, ,E x y V x y

Once the scalar potential 𝑉 𝑥,𝑦 is found, the electric field intensity 𝐸 𝑥,𝑦 is

It follows that the electric flux density 𝐷 𝑥,𝑦 is

r, , ,D x y x y E x y

Page 16: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

16

Distributed Capacitance 𝐶

31

In the electrostatic approximation, the transmission line is a capacitor.  The total energy U stored in a capacitor is

12

A

U D E dA

The capacitance C is related to the total stored energy U through

20

2

CVU V0 is the voltage across the capacitor.

If the above equations are set equal and solved for C, the answer is

20

1

A

C D E dAV

Distributed Inductance 𝐿

32

The voltage signal 𝑣 along the transmission line travels at the same velocity as the electromagnetic field 𝑣 .  This means

Solving this for L gives

r r20

1 1 V Ev v LC

cLC

r r20

Lc C

This means the distributed inductance 𝐿 can be calculated 

directly from the distributed capacitance 𝐶.

Dielectric materials should not alter the inductance.  However if the value of C calculated on the previous slide is used, it will.  This is incorrect.  The solution is to calculate the distributed capacitance Ch with a homogeneous dielectric and then calculate the distributed inductance 𝐿 from this.

20 h

1L

c C

Page 17: Numerical Analysis Transmission · 2020-06-08 · Numerical Analysis of Transmission Lines Outline •Governing equations •Numerical representation •Finite‐difference approximations

6/8/2020

17

Calculating the Transmission Line Parameters

Slide 33

The characteristic impedance Zc is calculated from the distributed inductance L and distributed capacitance C through

c

LZ

C

It follows that the phase constant is

0 effLC k n Recall, both Zc and  are needed to analyze transmission line circuits.

Note: This simple model did not consider loss, so 𝑅 𝐺 0 (lossless transmission line)

00

2k


Recommended