+ All Categories
Home > Documents > Numerical Simulation of Newtonian and Non-Newtonian Flows in...

Numerical Simulation of Newtonian and Non-Newtonian Flows in...

Date post: 04-Jul-2020
Category:
Upload: others
View: 12 times
Download: 0 times
Share this document with a friend
33
Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Vladim´ ır Prokop, Karel Kozel Czech Technical University Faculty of Mechanical Engineering Department of Technical Mathematics Vladim´ ır Prokop, Karel Kozel (CTU) Bypass Flows 1 / 33
Transcript
Page 1: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Numerical Simulation of Newtonian and Non-Newtonian

Flows in Bypass

Vladimır Prokop, Karel Kozel

Czech Technical UniversityFaculty of Mechanical Engineering

Department of Technical Mathematics

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 1 / 33

Page 2: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Outline

1 MotivationNon-Newtonian behaviorBlood flowPower-law fluids

2 Mathematical modelGoverning equations for incompressible laminar flows in 2DGoverning equations for incompressible laminar flows in 3DBoundary conditions

3 Numerical modelNumerical solution by Finite volume method

4 Results

5 Conclusion

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 2 / 33

Page 3: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Motivation

Non-Newtonian Fluids

Many common fluids are non-Newtonian:

paintssolutions of various polymersfood products

Applications:

biomedicinefood industrychemistryglaciology

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 3 / 33

Page 4: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Non-Newtonian behavior

Main points of non-Newtonian

behavior:

the ability of the fluid toshear thin or shear thicken inshear flows

the presence of non-zeronormal stress differences inshear flows

the ability of the fluid toyield stress

the ability of the fluid toexhibit relaxation

the ability of the fluid tocreep

Figure: Non-Newtonian fluidbehavior

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 4 / 33

Page 5: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Blood flow

Blood is considered as a continuum

Blood is non-Newtonian suspension of cells in plasma

Experimental tests reveal that blood exhibits non-Newtonianphenomena such as shear thinning, creep and stress relaxation

Only shear thinning is considered in this work

It is reasonable to model it as a Newtonian fluid in greater vessels

Can be described by conservation laws of mass and momentum

The pulsatile character of blood flow is not considered as well as theelasticity of arterial walls

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 5 / 33

Page 6: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Arterial flow phenomena

Arterial flow phenomena in

atherosclerotic vessel

separation

recirculation

secondary flow motion

Figure: Atherosclerotic vessel

Figure: Atherosclerotic vessel

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 6 / 33

Page 7: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Power-law fluids

Power-law fluidsτ(e) = 2ν0|e|

re,

τ is the stress tensor

e = (eij ), i , j = 1, 2 is the strain tensor with componentse11 = ux , e12 = e21 = (vx + uy )/2, e22 = vy

|e| denotes the Euclidean norm of a tensor

ν0 is a positive constant related to the limit of generalized viscosity µg

r is a constant of the model

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 7 / 33

Page 8: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Navier-Stokes equations

The generalized system of 2D Navier-Stokes equations and continuityequation for incompressible laminar flows in conservativedimensionless form

RWt + F ix + G i

y =R

Re(F v

x + G vy ), R = diag‖0, 1, 1‖

Inviscid fluxes

F i =

u

u2 + p

uv

,G i =

v

uv

v2 + p

Reynolds number in 2D defined as Re = dq∞/ν

Quantity q∞ is a characteristic velocity (the speed of upstream flow)

ν = η/ρ is the kinematic viscosity

d is a length scale (the width of the channel)

W = (p, u, v)T is the vector of solution

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 8 / 33

Page 9: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Navier-Stokes equations

The dimensionless quantities

components of the velocity vector u = u∗/q∞, v = v∗/q∞

pressure p = p∗/ρq2∞

Newtonian viscous fluxes

F v =

0ux

vx

, G v =

0uy

vy

Non-Newtonian viscous fluxes

F v =

02|e|rux

2|e|r (vx + uy )

, G v =

02|e|r (uy + vx)

2|e|r vy

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 9 / 33

Page 10: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Navier-Stokes equations

The generalized system of 3D Navier-Stokes equations and continuityequation for incompressible laminar flows in conservativedimensionless form

RWt + F ix + G i

y + H iz =

R

Re(F v

x + G vy + Hv

z ), R = diag‖0, 1, 1‖

Inviscid and viscous fluxes

F i =

u

u2 + p

uv

uw

,G i =

v

uv

v2 + p

vw

H i =

w

uw

vw

w2 + p

Reynolds number in 3D defined as Re = dhq∞/νQuantity q∞ is a characteristic velocity (the speed of upstream flow)ν = η/ρ is the kinematic viscositydh = 4S/O is the hydraulic diameterS is the area section of the ductO is the wetted perimeterW = (p, u, v ,w)T is the vector of solution

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 10 / 33

Page 11: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Navier-Stokes equations

The dimensionless quantities

components of the velocity vectoru = u∗/q∞, v = v∗/q∞,w = w∗/q∞

pressure p = p∗/ρq2∞

Newtonian viscous fluxes

F v =

0ux

vx

wx

, G v =

0uy

vy

wy

, Hv =

0uz

vz

wz

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 11 / 33

Page 12: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Boundary conditions

At the inlet the Dirichlet boundary condition for the velocitycomponents (u, v) = (q∞, 0) is prescribed and the pressure p iscomputed by extrapolation from a domain.

At the outlet the value of the pressure is prescribed by p = p2, wherep2 is the dimensionless value of the pressure, that is lower then theinitial value of the pressure at the inlet to ensure pressure gradient.The velocity components are extrapolated at the outlet.

On the walls one considers the non-permeability and no-slipconditions for the velocity and the value of the pressure is taken frominside of the domain.

p=p2q

u=v=0

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 12 / 33

Page 13: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method

A steady state solution is considered

Use of the artificial compressibility methodThe continuity equation is completed with the term pt/a2, where a2 > 0.

The pressure satisfies the artificial equation of state: p = ρ/δ, in which ρ is

the artificial density, δ is the artificial compressibility, that is connected to

the artificial speed of sound by relation a = δ−12

Governing equations has the form

Wt + F ix + G i

y =R

Re

(

F vx + G v

y

)

, where W = (p/a2, u, v)T

After rewriting the previous equation

Wt = −(Fx + Gy), where F = F i −1

ReF v , G = G i −

1

ReG v

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 13 / 33

Page 14: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method 2D

The system of equations is integrated over a finite volume Dij

∫∫

Dij

Wtdxdy = −

∫∫

Dij

(

Fx + Gy

)

dxdy .

Mean value and Green’s theorem are applied

Wt |ij= −1

µij

∂Dij

Fdy − Gdx , µij =

∫∫

Dij

dxdy .

Velocity derivatives are computed using dual volume cells

The integral on the right hand side is numerically approximated by

Wt |ij= −1

µij

4∑

k=1

Fij ,k∆yk − Gij ,k∆xk .

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 14 / 33

Page 15: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method 3D

Governing equations has the form

Wt+F ix+G i

y+H iz =

R

Re

(

F vx + G v

y + Hvz

)

, where W = (p/a2, u, v ,w)T

After rewriting the previous equation

Wt = −(Fx + Gy + Hz), where F = F i −1

ReF v , G = G i −

1

ReG v ,

H = G i −1

ReHv

The system of equations is integrated over a finite volume Dij

∫∫∫

Dijk

Wtdxdy = −

∫∫∫

Dij

(

Fx + Gy + Hz

)

dV .

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 15 / 33

Page 16: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method 3D

Mean value and Green’s theorem are applied

Wt |ijk = −1

µijk

∂Dijk

(F , G , H)l~n0l ∆Sl =

1

µijk

∂Dijk

(F , G , H)l ~nl ,

µijk =

∫∫∫

Dijk

dV .

nl = n0l ∆Sl , where n0

l is unit normal vector and ∆Sl is a volume of a side of

finite volume cell

Velocity derivatives are computed using dual volume cells

The integral on the right hand side is numerically approximated by

Wt |ijk=1

µijk

6∑

l=1

(

Fijk,ln1l + Gijk,ln2l + Hijk,ln3l

)

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 16 / 33

Page 17: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method

geometry of basic finite volumecell (2D)

��������

���

���

��������

���

���

����

����

��������

��������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

���������������

���������������

���������������

���������������

Dij

A1

A2

A3A4

Di−1,j

Di,j+1

Di+1,j

Dij−1

k1

k2

k3

k4

m1 m2

m3m4

Figure: Basic finite volume cell

numerical approximation ofspatial part

Wt |ij= −1

µij

4∑

k=1

Fk∆yk−Gk∆xk

numerical approximation ofderivativesin viscous fluxes

ux =1

µd

∂d

udy ≈

4∑

m=1

um∆ym

uy = −1

µd

∂d

udx ≈ −4

m=1

um∆xm

. . .Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 17 / 33

Page 18: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Finite volume method

Three-stage Runge-Kutta method

W ni ,j = W

(0)i ,j

W(r)i ,j = W

(0)i ,j − αr∆tRW

(r−1)i ,j , r = 1, . . . ,m

W n+1i ,j = W

(m)i ,j ,m = 3,

RW(r−1)i ,j = RW

(r−1)i ,j − DW n

i ,j

α1 = 0.5, α2 = 0.5, α3 = 1.0

DW nij is the artificial viscosity term of Jameson’s type

Form of residual (2D and 3D)

RWij =1

µij

4∑

k=1

(

Fij ,k∆yk − Gij ,k∆xk

)

,

RWijk =1

µijk

6∑

l=1

(

Fijk,ln1l + Gijk,ln2l + Hijk,ln3l

)

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 18 / 33

Page 19: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Artificial viscosity

artificial viscosity term (Jameson’s type, 2D)

D(2)Wij = Eγi (Wi+1,j − 2Wi ,j + Wi−1,j)

+ Eγj (Wi ,j+1 − 2Wi ,j + Wi ,j−1)

E = diag‖ǫ1, ǫ2, ǫ3‖, ǫ1ǫ2, ǫ3 ∈ ℜ, γi = max(γi1, γi2), γj = max(γj1, γj2)

γi1 =| pi+1,j − 2pi ,j + pi−1,j |

| pi+1,j + 2pi ,j + pi−1,j |, γi2 =

| pi ,j − 2pi−1,j + pi−2,j |

| pi ,j + 2pi−1,j + pi−2,j |,

γj1 =| pi ,j+1 − 2pi ,j + pi ,j−1 |

| pi ,j+1 + 2pi ,j + pi ,j−1 |, γj2 =

| pi ,j − 2pi ,j−1 + pi ,j−2 |

| pi ,j + 2pi ,j−1 + pi ,j−2 |.

time step

∆t = mini ,j ,k

CFLµi ,j

ρA∆yk + ρB∆xk + 2Re

(

∆x2k+∆y2

k

µi,j

) ,

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 19 / 33

Page 20: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Comparison of isolines of velocity, Re = 500

0.1

0.1

0.2

0.20.2

0.30.3

0.4

0.40.4

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

11

1.1

1.1

1.2

1.2

1.3

1.3 1.41.4

1.4 1.5

1.5

1.6

1.7

0.1

0.1

0.2

0.2

0.30.40.5

0.5

0.6

0.6

0.7

0.7

X2 4 6 8

-0.5

0

0.5

1

1.5

2

Q: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Re=500, Non-Newtonian

0.10.1

0.2

0.30.3 0.3

0.3

0.4

0.4

0.5

0.5

0.60.6

0.6

0.7

0.70.8

0.9

0.9

0.9

1

1

1.1

1.1

1.2

1.2

1.31.3

1.4

1.4

1.5

0.1

0.2

0.2 0.3

0.3

0.4

0.4

0.5

0.50.6

0.6

0.7

X2 4 6 8 10

-0.5

0

0.5

1

1.5

2

Q: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Re=500, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 20 / 33

Page 21: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Comparison of vector field of velocity, Re = 500

X2 4 6 8

-0.5

0

0.5

1

1.5

2

Q: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Re=500, Non-Newtonian

X2 4 6 8 10

-0.5

0

0.5

1

1.5

2

Q: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Re=500, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 21 / 33

Page 22: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Velocity magnitude profiles, Re=500

Y

Q

-0.4 -0.2 0 0.2 0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

non-NewtonianNewtonian

Re=500

velocity magnitude, x=5bypass, channel

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 22 / 33

Page 23: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Convergence, Re=500

steps

rez

u

0 10000 20000 30000 40000

-14

-12

-10

-8

-6

-4

-2

rez u, channel, Re=500, Newtonian

steps

rez

u

0 50000 100000 150000 200000 250000-14

-12

-10

-8

-6

-4

-2

rez u, channel, Re=500 , non-Newtonian

steps

rez

u

0 50000 100000 150000 200000 250000

-12

-10

-8

-6

-4

-2

rez u, bypass, Re-500, non-Newtonian

steps

rez

u

0 10000 20000 30000 40000

-12

-10

-8

-6

-4

-2

rez u, bypass, Re=500, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 23 / 33

Page 24: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Comparison of isolines of velocity, Re = 200

0.2

0.2

0.4

0.4

0.4

0.60.6

0.8 0.8

0.8

0.8

1

1

1

1

1

1.2

1.2

1.21.2

1.41.4

1.6

0.2

0.2

0.2 0.40.4

0.4

0.6

0.6

0.60.8

0.80.8

1

1

11 1.2

1.2

1.2

1.2

1.4

1.4

1.4

X2 4 6 8 10

0

1

Q: 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6Re=200, Non-Newtonian

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.80.8

0.8

11

1

1

1.2

1.2

1.4

1.4

1.41.6

1.8

2

0.2

0.2

0.2

0.20.2

0.40.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1 1

1

1.2

1.2

1.2

1.2

1.41.4

1.4

1.4

X2 4 6 8

0

1

Q: 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6Re=200, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 24 / 33

Page 25: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Comparison of vector field of velocity, Re = 200

X2 4 6 8 10

0

1

Q: 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6Re=200, Non-Newtonian

X2 4 6 8

0

1

Q: 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6Re=200, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 25 / 33

Page 26: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Velocity magnitude profiles, Re=200

Y

Q

-0.8 -0.6 -0.4 -0.2 0 0.20

0.5

1

1.5

2

2.5non_newtonianNewtonian

velocity magnitude, x=5bypass, channelRe=200

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 26 / 33

Page 27: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Convergence, Re=200

steps

rez

u

0 200000 400000 600000-5

-4

-3

-2

-1

0

rez u, channel, Re=200, non-Newtonian

steps

rez

u

0 200000 400000 600000

-4

-3

-2 rez u, bypass, Re=200, non-Newtonian

steps

rez

u

0 100000 200000 300000 400000

-7

-6

-5

-4

-3

-2

-1

rez u, channel, Re=200, Newtonian

steps

rez

u

0 100000 200000 300000 400000

-7

-6

-5

-4

-3

-2

rez u, bypass, Re=200, Newtonian

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 27 / 33

Page 28: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

3D angular bypass, Re=500

Q

1.811.611.411.211.010.810.610.410.210.01

Re=500, main channel

Q0.460.410.360.310.260.210.160.110.060.01Re=500

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 28 / 33

Page 29: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Unsteady flow in bypass, Re=1000

The outlet pressure is prescribed by sinus function in form:

p2 = p20(1 + α sin 2πωt),

where ω is a frequency and α is an amplitude

Re=1000, t=100,0,s=4

Re = 1000,t=101.6,p=4

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 29 / 33

Page 30: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Unsteady flow in bypass, Re=1000

Re=1000,t=103.2,p=4

Re=1000,t=104.8,p=4

Re=1000,t=106.4,p=4

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 30 / 33

Page 31: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Unsteady flow in bypass, Re=500

Re=500, s=40,t=100.2per=4

Re=500, s=40,t=100.8per=4

Re=500, s=40, t=101.4per=4

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 31 / 33

Page 32: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Unsteady flow in bypass, Re=500

Re=500, s=40, t=102.0per=4

Re=500, s=40, t=102.6per=4

Re=500,s=40, t=103.2per=4

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 32 / 33

Page 33: Numerical Simulation of Newtonian and Non-Newtonian Flows in …marian.fsik.cvut.cz/~matmod/doc_web/prez_Prokop.pdf · 2008-12-01 · Numerical Simulation of Newtonian and Non-Newtonian

Conclusion

Numerical model of Newtonian and non-Newtonian flow wasimplemented

The model was tested on diffrent geometries and for differentReynolds numbers

Next steps

Use of different non-Newtonian models

Increasing mesh quality

Extension of the model to 3D

Unsteady computation

Vladimır Prokop, Karel Kozel (CTU) Bypass Flows 33 / 33


Recommended