+ All Categories
Home > Documents > Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Date post: 16-Nov-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
18
MIT 2.717J wk1-b p-1 Welcome to ... 2.717J/MAS.857J Optical Engineering
Transcript
Page 1: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

MIT 2.717Jwk1-b p-1

Welcome to ...

2.717J/MAS.857J Optical Engineering

Page 2: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

This class is about• Statistical Optics

– models of random optical fields, their propagation and statistical properties (i.e. coherence)

– imaging methods based on statistical properties of light: coherence imaging, coherence tomography

• Inverse Problems – to what degree can a light source be determined by measurements

of the light fields that the source generates? – how much information is “transmitted” through an imaging

system? (related issues: what does _resolution_ really mean? what is the space-bandwidth product?)

MIT 2.717Jwk1-b p-2

Page 3: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

The van Cittert-Zernike theoremImage credits:

Very Large Array (VLA) hubble.nasa.gov

radio www.nrao.edu

waves

+ Fourier

Cross-Correlation

transform

image

Galaxy, ~100 millionlight-years away

optical image MIT 2.717J wk1-b p-3

Page 4: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Optical coherence tomography

Coronary artery

Image credits: www.lightlabimaging.com

Intestinal polyps

MIT 2.717J Esophagus wk1-b p-4

Page 5: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Inverse Radon transform(aka Filtered Backprojection)

The hardware

The principle

Magnetic Resonance Imaging (MRI) Image credits: www.cis.rit.edu/htbooks/mri/www.ge.com

MIT 2.717J The image wk1-b p-5

Page 6: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

You can take this class if• You took one of the following classes at MIT

– 2.996/2.997 during the academic years 97-98 and 99-00 – 2.717 during fall ’00 – 2.710 during fall ’01

OR

• You have taken a class elsewhere that covered Geometrical Optics, Diffraction, and Fourier Optics

• Some background in probability & statistics is helpful but not necessary

MIT 2.717Jwk1-b p-6

Page 7: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Syllabus (summary)• Review of Fourier Optics, probability & statistics 4 weeks • Light statistics and theory of coherence 2 weeks • The van Cittert-Zernicke theorem and applications of statistical optics

to imaging 3 weeks • Basic concepts of inverse problems (ill-posedness, regularization) and

examples (Radon transform and its inversion) 2 weeks • Information-theoretic characterization of imaging channels 2 weeks

Textbooks: • J. W. Goodman, Statistical Optics, Wiley. • M. Bertero and P. Boccacci, Introduction to Inverse Problems in

Imaging, IoP publishing.

MIT 2.717Jwk1-b p-7

Page 8: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

What you have to do

• 4 homeworks (1/week for the first 4 weeks) • 3 Projects:

– Project 1: a simple calculation of intensity statistics from a model in Goodman (~2 weeks, 1-page report)

– Project 2: study one out of several topics in the application of coherence theory and the van Cittert-Zernicke theorem from Goodman (~4 weeks, lecture-style presentation)

– Project 3: a more elaborate calculation of information capacity of imaging channels based on prior work by Barbastathis & Neifeld (~4 weeks, conference-style presentation)

• Alternative projects ok • No quizzes or final exam

MIT 2.717Jwk1-b p-8

Page 9: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Administrative• Broadcast list will be setup soon • Instructor’s coordinates

George Barbastathis • Please do not phone-call • Office hours TBA • Class meets

– Mondays 1-3pm (main coverage of the material) – Wednesdays 2-3pm (examples and discussion) – presentations only: Wednesdays 7pm-??, pizza served

MIT 2.717Jwk1-b p-9

Page 10: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

The 4F system

1f 1f 2f 2f

f 1 ′′ ′′ ′ − ff 1 y ′

x y( , ) G 1 −

g1 xg 1 yx λf 1

, λf 1

,f 2 2object plane

Fourier plane Image plane MIT 2.717Jwk1-b p-10

Page 11: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

The 4F system

1f 1f 2f 2f

f 1

( )vuG ,1

θx

λ

θ λ θ

y

x

v

u

sin

sin

=

=

′′ ′′ ′ − ff 1 y ′

x y( , ) G 1 −

g1 xg 1 yx λf 1

, λf 1

,f 2 2object plane

Fourier plane Image plane MIT 2.717Jwk1-b p-11

Page 12: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

The 4F system with FP aperture

1f 1f 2f 2f

×

ryx circ ff 1

( )G ,1

θx

′′ ′′ ′′

v u

( )1 G 1

f 1 y

2 2

′ ′∗ h − −

, g x( , ) ,λf 1 λf 1 Rg 1 y x f

object plane Fourier plane: aperture-limited Image plane: blurred

MIT 2.717J (i.e. low-pass filtered) wk1-b p-12

Page 13: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

The 4F system with FP aperture

Transfer function: Impulse response:circular aperture Airy function

′′ ′R r circ r

jinc

R λf2

MIT 2.717Jwk1-b p-13

Page 14: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Coherent vs incoherent imaging

field in optical system

Coherent field out

intensity in Incoherent intensity out optical system

MIT 2.717Jwk1-b p-14

Page 15: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Coherent vs incoherent imaging

Coherent impulse response y x h , )(field in ⇒ field out)

(

, ( ,Coherent transfer function H ( v u ) = FT{ y x h )} (FT of field in ⇒ FT of field out)

~ 2Incoherent impulse response y x h ) =( , ( , y x h )(intensity in ⇒ intensity out)

~ ~Incoherent transfer function H ( v u ) = FT{ y x h )}, ( ,

(FT of intensity in ⇒ FT of intensity out) = H ( v u )⊗ H ( v u ), , ~ H ( v u ) (MTF) Function Transfer Modulation : ,

~H ( v u ) (OTF) Function Transfer Optical : , MIT 2.717Jwk1-b p-15

Page 16: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Coherent vs incoherent imaging 1f 1f 2f 2f

2a ~( ) u H ( )u H

1 1

u u a−u −2u 2uc cu = c λf 1

Coherent illumination Incoherent illumination MIT 2.717Jwk1-b p-16

c

Page 17: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Aberrations: geometricalParaxial

Non-paraxial rays “overfocus”

(Gaussian) image point

Spherical aberration

• Origin of aberrations: nonlinearity of Snell’s law (n sinθ=const., whereas linear relationship would have been nθ=const.) • Aberrations cause practical systems to perform worse than diffraction-limited • Aberrations are best dealt with using optical design software (Code V, Oslo, Zemax); optimized systems usually resolve ~3-5λ (~1.5-2.5µm in the visible)

MIT 2.717Jwk1-b p-17

Page 18: Optical Engineering 2.717J/MAS - MIT OpenCourseWare

Aberrations: wave

,Aberration-free impulse response h ndiffractio ( y x ) limited

Aberrations introduce additional phase delay to the impulse response i ϕaberration ( y x ),, ,h aberrated ( y x ) = h ndiffractio ( y x )e

limited

c2u−

( )~

1

c2u u

()

u H unaberrated diffraction limited

aberrated

Effect of aberrations on the MTF

MIT 2.717Jwk1-b p-18


Recommended