+ All Categories
Home > Documents > Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace...

Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace...

Date post: 19-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
46
Laplace Transform Ordinary Differential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019 Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7
Transcript
Page 1: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace Transform

Ordinary Differential Equations. Session 7

Dr. Marco A Roque Sol

10/08/2019

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 2: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Laplace Transform

Among the tools that are very useful for solving linear differentialequations are integral transforms. An integral transform is arelation of the form

F (s) =

∫ β

αK (s, t)f (t)dt

where K (s, t) is a given function, called the kernel of thetransformation, and the limits of integration α and β are alsogiven. It is possible that α = −∞ or β =∞ or both. The relation,introduced above, transforms the function f into another functionF , which is called the transform of f .

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 3: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

There are several integral transforms that are useful in appliedmathematics, but we consider only the Laplace Transform (https://en.wikipedia.org/wiki/Pierre-Simon_Laplace )

Laplace Transform

Let f (t) be given for t ≥ 0. Then the Laplace transform of f ,which we will denote by L {f (t)} = F (s), is defined by theequation

L {f (t)} = F (s) =

∫ ∞0

e−st f (t)dt

whenever this improper integral converges.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 4: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

The Laplace transform makes use of the kernel K (s, t) = e−st . Inparticular for linear second order differential equations withconstant coeficients is particular useful, since the solutions arebased on the exponential function.

The general idea in using the Laplace transform to solve adifferential equation is as follows:

1. Use the relation L {f (t)} = F (s) to transform an initial valueproblem for an unknown function f in the t-domain (time domain)into an algebraic problem for F in the s-domain (frequencydomain).

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 5: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

2. Solve this algebraic problem to find F .

3. Recover the desired function f from its transform F . This laststep is known as inverting the transform (which in general involvecomplex integration) and denoted by L −1{F (s)}(= limω→∞

12πi

∫ σ+iωσ−iω F (s)estds).

OBS The full power of Laplace Transform becomes available onlywhen we regard F (s) as a function of a complex variable. However,for our purposes it will be enough to consider only real values for s.

The Laplace transform F of a function f exists if f satisfies certainconditions:

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 6: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Theorem

Suppose that

1. f is piecewise continuous on the interval 0 ≤ t ≤ A for anypositive A.

2. |f (t)| ≤ Keat when t ≥ M. In this inequality, K , a, and M arereal constants, K and M necessarily positive.

Then the Laplace transform L {f (t)} = F (s), defined by

L {f (t)} = F (s) =

∫ ∞0

e−st f (t)dt

exists for s > a.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 7: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Remember that a function, f (t), is piecewise continuous on theinterval α ≤ t ≤ β if the interval can be partitioned by a finitenumber of points α = t0 < t1 < . . . < tn = β so that

1. f is continuous on each open subinterval ti−1 < t < ti .

2. f approaches a finite limit as the endpoints of each subintervalare approached from within the subinterval.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 8: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Example 62

Find the Laplace transform for f (t) = 1, t ≥ 0

Solution

L {f (t)} = F (s) =

∫ ∞0

e−st f (t)dt

L {1} = F (s) =

∫ ∞0

e−stdt = − limA→∞

e−st

s

∣∣∣A0

=1

s; s > 0

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 9: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Example 63

Find the Laplace transform for f (t) = eat , t ≥ 0

Solution

L {f (t)} = F (s) =

∫ ∞0

e−st f (t)dt

L {eat} = F (s) =

∫ ∞0

eate−stdt =

∫ ∞0

e−(s−a)tdt =

− limA→∞

e−(s−a)t

s − a

∣∣∣A0

=1

s − a; s > a

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 10: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Example 64

Find the Laplace transform for

f (t) =

1 0 ≤ t < 1k t = 10 t > 1

where k is a constant. In engineering contexts f (t) oftenrepresents a unit pulse, perhaps of force or voltage.

Solution

L {f (t)} = F (s) =

∫ ∞0

f (t)e−stdt =

∫ 1

0e−stdt =

−e−st

s

∣∣∣10

=1− e−s

s

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 11: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Example 65

Find the Laplace transform for f (t) = sin(at), t ≥ 0

Solution

L {f (t)} = F (s) =

∫ ∞0

e−st f (t)dt =

∫ ∞0

sin(at)e−stdt = Int by Parts

F (s) = limA→∞

[−e−stcos(at)

a

∣∣∣A0− s

a

∫ A

0e−stcos(at)dt

]= Int by Parts

F (s) =1

a− s2

a2

∫ ∞0

sin(at)e−stdt =1

a− s2

a2F (s)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 12: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

Hence, solving for F(s), we have

F (s) =a

s2 + a2

Now, the Laplace transform is a linear operator, that is, supposethat f1 and f2 are two functions whose Laplace transforms exist fors > a1 and s > a2, respectively. Then, for s > max{a1, a2}

L {c1f1 + c2f2} =

∫ ∞0

e−st{c1f1 + c2f2}dt =

c1

∫ ∞0

e−st f1dt + c2

∫ ∞0

e−st f2dt = c1L {f1}+ c2L {f2}

Thus, we have

L {c1f1 + c2f2} = c1L {f1}+ c2L {f2}Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 13: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Definition of The Laplace Transform

OBS

L −1{d1F1 + d2F2} = d1L−1{F1}+ d2L

−1{F2}Example 66

Find the Laplace transform for f (t) = 5e−2t − 3sin(4t), t ≥ 0

Solution

L {5e−2t − 3sin(4t)} = 5L {e−2t} − 3L {sin(4t)} =

L {5e−2t − 3sin(4t)} =5

s + 2− 12

s2 + 16; s > 0

L −1{ 5

s + 2− 12

s2 + 16} = 5L −1{ 1

s + 2} − 3L −1{ 4

s2 + 42} =

5e−2t − 3sin(4t)Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 14: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

To see how we can apply the method of Transform Laplace tosolve linear differential equations with constant coefficients. Weestablish the following results.

Theorem

Suppose that f is continuous and f ′ is piecewise continuous on anyinterval 0 ≤ t ≤ A. Suppose further that there exist constantsK , a, and M such that |f (t)| ≤ Keat for t ≥ M. Then

L {f ′} = sL {f } − f (0)

proof

L {f , (t)} =

∫ ∞0

e−st f ′(t)dt = limA→∞

∫ A

0e−st f ′(t)dt =

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 15: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

limA→∞

[∫ t1

0e−st f ′(t)dt +

∫ t2

t1

e−st f ′(t)dt +

∫ t3

t2

e−st f ′(t)dt + ...+

∫tn−1

tn = Ae−st f ′(t)dt

]=

and integrating by parts, we have

limA→∞

{e−st f (t)

∣∣∣t10

+ e−st f (t)∣∣∣t2t1

+ ...+ e−st f (t)∣∣∣tn=A

tn−1

+

s

[∫ t1

0e−st f ′(t)dt +

∫ t2

t1

e−st f ′(t)dt + ...+

∫ tn=A

tn−1

e−st f ′(t)dt

]}=

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 16: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

limA→∞

[e−sAf (A)− f (0) + s

∫ A

0e−st f (t)dt

]= s

∫ A

0e−st f (t)dt − f (0)

In his way we obtain

L {f ′} = sL {f } − f (0)

As a corollary, we have the following

Corollary

Suppose that the functions f , f ′, ..., f (n−1) are continuous and thatf (n) is piecewise continuous on any interval 0 ≤ t ≤ A.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 17: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Suppose further that there exist constants K , a, and M such that|f (t)| ≤ Keat , |f ′(t)| ≤ Keat , ..., |f (n−1)(t)|Keat for t ≥ M. ThenL {f (n)(t)} exists for s > a and is given by

L {f (n)(t)} = snL {f (t)} − sn−1f (0)

−sn−2f ′(0) . . .− sf (n−2)(0)− f (n−1)(0)

We use the previous results to solve IVP’s using LaplaceTransform. It is most useful for problems involvingnonhomogeneous differential equations. However, just to illustratethe method we will start with a homogeneus case

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 18: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Example 67

Consider the IVP

y ′′ − y ′ − 2y = 0; y(0) = 1, y ′(0) = 0

Solution

Using the traditional method we find that the general solution is

y(x) = c1e−t + c2e

2t

and applying initial conditions we get c1 = 2/3 and c2 = 1/3.Hence, the particular solution is

y(x) =2

3e−t +

1

3e2t

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 19: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Now, let us solve the same problem by using the Laplacetransform. We start off with the differential equation

y ′′ − y ′ − 2y = 0

Applying the Laplace Transform

L {y ′′ − y ′ − 2y = 0}because of linearity

L {y ′′} −L {y ′} − 2L {y} = 0

and using corollary 6.2.1

s2L {y} − sy(0)− y ′(0)− [sL {y} − y(0)]− 2L {y} = 0

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 20: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Taking Y (s) = L {y} and applying initial coditions(y(0) = 1, y ′(0) = 0), we obtain

s2Y (s)− sy(0)− y ′(0)− [sY (s)− y(0)]− 2Y (s) = 0 =⇒

Y (s) =s − 1

s2 − s − 2=

s − 1

(s − 2)(s + 1)

The above can be written, using partial fractions, as

Y (s) =1/3

s − 2+

2/3

s + 1

Now, applying the inverse Laplace transform

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 21: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

y(t) = L −1{Y (s)} = L −1{

1/3

s − 2+

2/3

s + 1

}

y(t) = L −1{Y (s)} =1

3L −1

{1

s − 2

}+

2

3L −1

{1

s + 1

}but we know that L {eat} = 1

s−a or equivalently L −1{ 1s−a} = eat

y(t) =1

3e2t +

2

3e−t

The same procedure can be applied to the general second orderlinear equation with constant coefficients

ay ′′ + by ′ + cy = f (t)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 22: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

obtaining

Y (s) =(as + b)y(0) + ay ′(0)

as2 + bs + c+

F (s)

as2 + bs + c; F (s) = L {f (t)}

The main difficulty that occurs in solving initial value problems bythe transform method lies in the problem of determining thefunction y = y(t), corresponding to the inverse transform of Y (s).

Since we will not deal with the formula for the inverse transform,because it requires complex integration, we will use a table ofcommon Laplace Transform for basic functions (http://www.math.tamu.edu/~roquesol/Laplace_Table.pdf)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 23: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Example 68

Consider the IVP

y ′′ + y = sin(2t); y(0) = 2, y ′(0) = 1

Solution

Let us solve the problem by using the Laplace transform. We startoff with the differential equation

y ′′ + y = sin(2t)

Applying the Laplace Transform

L {y ′′ + y = sin(2t)}

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 24: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

because of linearity

L {y ′′}+ L {y} = L {sin(2t)}

and using a previous corollary

s2L {y} − sy(0)− y ′(0) + L {y} =2

s2 + 4

taking Y (s) = L {y} and applying initial coditions(y(0) = 2, y ′(0) = 1), we obtain

s2Y (s)− 2s − 1 + Y (s) =2

s2 + 4=⇒

Y (s) =2s3 + s2 + 8s + 6

(s2 + 1)(s2 + 4)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 25: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

The above can be written, using partial fractions, as

Y (s) =as + b

s2 + 1+

cs + d

s2 + 4=

(as + b)(s2 + 4) + (cs + d)(s2 + 1)

(s2 + 1)(s2 + 4)=

(a + c)s3 + (b + d)s2 + (4a + c)s + (4b + d)

(s2 + 1)(s2 + 4)=

2s3 + s2 + 8s + 6

(s2 + 1)(s2 + 4)

Then, comparing coefficients of like powers of s, we have

a + c = 2; b + d = 1;

4a + c = 0; 4b + d = 6;

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 26: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Therefore, a = 2, b = 5/3, c = 0, d = −2/3 and

Y (s) =2s

s2 + 1+

5/3

s2 + 1− 2/3

s2 + 4

Now, taking the inverse, we have

y(t) = 2cos(t) +5

3sin(t)− 1

3sin(2t)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 27: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Example 69

Consider the IVP

y (4) − y = 0; y(0) = 0, y ′(0) = 1, y ′′(0) = 0, y ′′′(0) = 0

Solution

Let us solve the problem by using the Laplace transform. We startoff with the differential equation

y (4) − y = 0

Applying the Laplace Transform

L {y (4) − y = 0}

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 28: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

because of linearity

L {y (4)} −L {y} = 0

and using corollary 6.2.1

s4L {y} − s3y(0)− s2y ′(0)− sy ′′(0)− y ′′′(0)− Y (s) = 0

taking Y (s) = L {y} and applying initial coditions(y(0) = 0, y ′(0) = 1, y ′′(0) = 0, y ′′′(0) = 0), we obtain

s4L {y} − s2y ′(0)− Y (s) = 0 =⇒

Y (s) =s2

s4 − 1=

s2

(s2 − 1)(s2 + 1)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 29: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

The above can be written, using partial fractions, as

Y (s) =as + b

s2 − 1+

cs + d

s2 + 1=

(as + b)(s2 + 1) + (cs + d)(s2 − 1)

(s2 − 1)(s2 + 1)=

(a + c)s3 + (b + d)s2 + (a− c)s + (b − d)

(s2 − 1)(s2 + 1)=

s2

(s2 − 1)(s2 + s)

Then, comparing coefficients of like powers of s, we have

a + c = 0; b + d = 1;

a− c = 0; b − d = 0;

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 30: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

therefore, a = 0, b = 1/2, c = 0, and d = 1/2, and

Y (s) =1/2

s2 − 1+

1/2

s2 + 1

and take the inverse, we have

y(t) =sinh(t) + sin(t)

2=

(et − e−t)/2 + sin(t)

2=

et

4− e−t

4+

sin(t)

2

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 31: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Example 70

The Laplace transforms of certain functions can be foundconveniently from their Taylor series expansion. Using the Taylorseries for sin(t)

sin(t) =∞∑n=0

(−1)nt2n+1

(2n + 1)!

Let

f (t) =

{sin(t)

t t 6= 01 t = 0

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 32: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

Find the Taylor series for f about t = 0. Assuming that theLaplace transform of this function can be computed term by term,determine L {f (t)}

Solution

For t 6= 0 we have that f can written as

f (t) =sin(t)

t=∞∑n=0

(−1)nt2n+1

(2n + 1)!t=∞∑n=0

(−1)nt2n

(2n + 1)!

Applying the Laplace Transform

L {f (t)} = L

{ ∞∑n=0

(−1)nt2n

(2n + 1)!

}

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 33: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

because of linearity

L {f (t)} =∞∑n=0

(−1)n

(2n + 1)!L {t2n}

and using the table of Laplace Transforms, L {tm} = m!sm+1

L {f (t)} =∞∑n=0

(−1)n

(2n + 1)!

(2n)!

s2n+1

L {f (t)} =∞∑n=0

(−1)n(2n)!

(2n + 1)!s2n+1=∞∑n=0

(−1)n(2n)!

(2n + 1)(2n)!s2n+1

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 34: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Solution of Initial Value Problems

L {f (t)} =∞∑n=0

(−1)n

(2n + 1)s2n+1=∞∑n=0

(−1)n(1/s)2n+1

(2n + 1)

but, if we remember

tan−1(x) =∞∑n=0

(−1)nx2n+1

(2n + 1)

Therefore, we have

L {f (t)} = tan−1(1/s)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 35: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

To deal effectively with functions having jump discontinuities, it isvery helpful to introduce a function known as the unit stepfunction or Heaviside function. This function will be denoted byuc and is defined by

uc(t) =

{0 t < c1 t ≥ c

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 36: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

The step can also be negative. For instance

u(t) = (1− uc(t)) =

{1 t < c0 t ≥ c

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 37: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

In fact, any piecewise-defined function can be written as a linearcombination of uc(t)’s functions. For instance consider thefunction

f (t) =

2 0 ≤ t < 11 1 ≤ t < 22 2 ≤ t < 30 3 ≤ t

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 38: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

We start with the function f1(t) = 2u0, which agrees with f (t) on[0, 1). To produce the jump down of one unit at t = 1, we add−u1(t) to f1(t), obtaining f2(t) = 2u0 − u1(t), which agrees withf (t) on [1, 2). The jump of one unit at t = 2 corresponds toadding u2(t), which gives f3(t) = 2u0 − u1(t) + u2(t). Thus weobtain

f (t) = f3(t) = 2u0 − u1(t) + u2(t)

The Laplace transform of uc for c ≥ 0 is easily determined:

L {uc} =

∫ ∞0

e−stucdt =

∫ ∞c

e−stdt =e−cs

s, s > 0

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 39: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

For a given function f defined for t ≥ 0, we will often want toconsider the related function g defined by

g(t) = uc f (t − c)

which represents a translation of f a distance c in the positive tdirection.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 40: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Theorem

If F (s) = L {f (t)} exists for 0 ≤ a < s, and if c is a positiveconstant, then

L {uc f (t − c)} = e−csL {f (t)} = e−csF (s),

Conversely, if f (t) = L −1{F (s)}, then

L −1{e−csF (s)} = uc f (t − c)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 41: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Example 71

If the function f is defined

f (t) =

{sin(t) 0 ≤ t < π/4sin(t) + cos(t − π/4) π/4 ≤ t

find L {f (t)}.

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 42: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Solution

Note that f (t) = sint + g(t), where

g(t) =

{0 0 ≤ t < π/4cos(t − π/4) π/4 ≤ t

Thus

g(t) = uπ/4cos(t − π/4)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 43: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

and

L {f (t)} = L {sin(t)}+ L {uπ/4cos(t − π/4)} =

L {sin(t)}+ e−πs/4L {cos(t)}

and using the table of Laplace Transforms

L {f (t)} =1

s2 + 1+ e−πs/4

s

s2 + 1=

1 + se−πs/4

s2 + 1

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 44: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Let’s consider the following theorem

Theorem

If F (s) = L {f (t)} exists for 0 ≤ a < s, and if c is a constant, then

L {ect f (t)} = F (s − c), s > a + c

Conversely, if f (t) = L −1{F (s)}, then

L −1{F (s − c)} = ect f (t)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 45: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Example 72

Find the inverse transform of

H(s) =1

s2 − 4s + 5Solution

First of all the polynomial s2 − 4s + 5, has complex roots. Bycompleting the square in the denominator, we can write

H(s) =1

(s − 2)2 + 1= F (s − 2)

where F (s) = (s2 + 1)−1. L −1{F (s)} = sin(t). It follows fromthe previous theorem that

h(t) = L −1{H(s)} = L −1{F (s − 2)} = e2tsin(t)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7

Page 46: Ordinary Di erential Equations. Session 7roquesol/Math_308_Fall_2019_Session_7_Print.pdfLaplace Transform Ordinary Di erential Equations. Session 7 Dr. Marco A Roque Sol 10/08/2019

Laplace TransformDefinition of The Laplace TransformSolution of Initial Value ProblemsStep Functions

Step Functions

Shift in the time − domain (t − domain)

If F (s) = L {f (t)} exists for 0 ≤ a < s, and if c is a positiveconstant, then

L {uc f (t − c)} = e−csF (s) L −1{e−csF (s)} = uc f (t − c)

Shift in the frequency − domain (s − domain)

If F (s) = L {f (t)} exists for 0 ≤ a < s, and if c is a constant, then

L {ect f (t)} = F (s − c), s > a + c L −1{F (s − c)} = ect f (t)

Dr. Marco A Roque Sol Ordinary Differential Equations. Session 7


Recommended