+ All Categories
Home > Documents > Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental...

Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental...

Date post: 03-Apr-2018
Category:
Upload: dangkhanh
View: 220 times
Download: 1 times
Share this document with a friend
23
Our description of the fundamental interactions and particles rests on two fundamental structures : Quantum Mech s anic Symmetries
Transcript
Page 1: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Fundamental principles of particle physics

Our description of the fundamental interactions and particles rests on two fundamental structures :

Quantum Mech s anic•

Symme tries•

Page 2: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Symmetries

Central to our description of the fundamental forces :

Relativity - translations and Lorentz transformations

Lie symmetries - (3) (2) (1)SU SU U⊗ ⊗

Copernican principle : “Your system of co-ordinates and units is nothing special”

Physics independent of system choice

Page 3: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Special relativity

( , , , )a ct x y zµ =

( ) ( , , , )a a a a c t x y zµ µ µ+ Δ − = Δ = Δ Δ Δ Δ

Space time point not invariant under translations

Space-time vector

Invariant under translations …but not invariant under rotations or boosts

• Einstein postulate : the real invariant distance is

( ) ( ) ( ) ( ) ( )32 2 2 2 20 1 2 3

, 0a a a a g a a a a aµ ν µ

µν µµ ν =

Δ − Δ − Δ − Δ = Δ Δ = Δ Δ = Δ∑

( 1, 1, 1, 1)g diagµν = + − − −

• Physics invariant under all transformations that leave all such distances invariant :

Translations and Lorentz transformations

Page 4: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Quantum Mechanics

Relativity+ } Quantum Field theory

Fundamental principles of particle physics

Page 5: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Relativistic quantum field theory

Fundamental division of physicist’s world :

slow fast

large

small

Classical Newton

Classical relativity

Classical Quantum mechanics

Quantum Field theory

speed

Ac

t

ion

c

( )S

S = (K .E.− P.E.)dt

tA

tB

Action, S

Page 6: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Action 2

1

t

t

S L dt= ∫

Classical path … minimises action •

Quantum mechanics … sum over all paths with amplitude /iSe∝ •

(Lagrangian invariant under all the symmetries of nature

Lagrangian L T V= − (Nonrelativistic mechanics)

-makes it easy to construct viable theories)

“Principle of Least Action” Feynman Lectures in Physics Vol II Chapter 19

Page 7: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Relativistic quantum field theory

Fundamental division of physicist’s world :

slow fast

large

small

Classical Newton

Classical relativity

Classical Quantum mechanics

Quantum Field theory

speed

Ac

t

ion

c

( )

( amplitude )Si

QM e∝

( )S

1Sie

2Sie

3Sie

Page 8: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Matvei Petrovich Bronshtein (1906-38) Progress in Astronomical Sciences (Gostekhizdat, Moscow, 1933), Vol. 3, p. 3

… also Gamov, Ivanenko & Landau, Zh. Russ. Fiz.-Khim. O-va., Chast Fiz. 60, 13 (1928)

Bronshtein’s ‘cube of theories’

Page 9: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Bronshtein’s ‘cube of theories’

Page 10: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

• No right to assume that any relativistic process can be explained by single particle since E=mc2 allows pair creation

Quantum Mechanics : Quantization of dynamical system of particles

Quantum Field Theory : Application of QM to dynamical system of fields

2 2-m xRelativistic case : U(t) e t−∝ ... nonzero for all , x t

• (Relativistic) QM has physical problems. For example it violates causality

U (t) =< x | e− i( p2 / 2m)t | x0 >= d 3 p∫ d 3 p ' < x |∫ p >< p | e− i( p2 / 2m)t | p ' >< p ' | x0 >

=1

2π 3 d 3 p∫ e− i( p2 / 2m)t eip( x− x0 )

=m

2π it⎛⎝⎜

⎞⎠⎟

3/ 2

eim( x− x0 )2 / 2t ... nonzero for all x, t

Amplitude for free propagation from x0 to x

Why Quantum field theory?

Page 11: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles
Page 12: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Quantum Mechanics

i ∂φ

∂t+

2

2m∇2φ = 0

2

02pEm

− = Classical – non relativistic

Quantum Mechanical : Schrodinger eq

Page 13: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Quantum Mechanics

22 0

2i

t mφ φ∂ + ∇ =∂

2

02pEm

− = Classical – non relativistic

Quantum Mechanical : Schrodinger eq

2 2E m− =2p

2

22

tmφ φ φ∂

∂− +∇ =2

Classical – relativistic

Quantum Mechanical - relativistic :

(Natural units = c = 1)

Klein-Gordon (Schrodinger) equation

(natural units)

Page 14: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Relativistic QM - The Klein Gordon equation (1926)

Scalar particle (field) (J=0) : (x)φ

2

22 2 2

tE m mφ φ φ∂

∂= + ⇒ − +∇ =2 2p

Energy eigenvalues 2 1/ 2( ) ???E m= ± +2p

1934 Pauli and Weisskopf revived KG equation with E<0 solutions as E>0 solutions for particles of opposite charge (antiparticles). Unlike Dirac’s hole theory this interpretation is applicable to bosons (integer spin) as well as to fermions (half integer spin).

1927 Dirac tried to eliminate negative solutions by writing a relativistic equation linear in E (a theory of fermions)

As we shall see the antiparticle states make the field theory causal

(natural units)

Page 15: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Physical interpretation of Quantum Mechanics

Schrödinger equation (S.E.) 21

2 0t mi φ φ∂∂ + ∇ =

* *( . .) ( . .)i S E i S Eφ φ− continuity 0 eq. .tρ∂∂ +∇ =j

2=ρ φ

“probability current”

* *2 ( )im φ φ φ φ= − ∇ − ∇j

“probability density”

Divergence Theorem

∇.M dV= M .n dSΓ∫∫

Ω∫∫∫

Page 16: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Physical interpretation of Quantum Mechanics

Schrödinger equation (S.E.) 21

2 0t mi φ φ∂∂ + ∇ =

2=ρ φ

* *( . .) ( . .)i S E i S Eφ φ− continuity 0 eq. .tρ∂∂ +∇ =j

“probability current”

* *2 ( )im φ φ φ φ= − ∇ − ∇j

“probability density”

**( )t ti φ φρ φ φ∂ ∂∂ ∂= −

2. , 2ip xNe E Nφ ρ−= =3 2

V

dV d x Eρ ρ= =∫ ∫

* *( )( , )

ijµ

φ φ φ φρ

= − ∇ − ∇=

jj

0

. 12

ip xp p Vf e± =

Normalised free particle solutions

Klein Gordon equation 2

22

tmφ φ φ∂

∂− +∇ =2

22E Nρ =

Negative probability?

Page 17: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles
Page 18: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Lorentz transformations :

xµ → Λν

µxν = Λνµxν

ν=0

3

∑ = x 'µ ⇒ gµνx 'µ x 'ν = gµνxµxν ⇒ gµνΛα

µΛβν = gαβ

Solutions :

• 3 rotations R

(Summation assumed)

1 0 0 00 cos sin 00 sin cos 00 0 0 1

θ θθ θ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

( )zR θctxyz

⎛ ⎞⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

ctxyz

⎛ ⎞⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

cos sincos sin

ctx yy x

z

θ θθ θ

⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

gµν = Diagonal 1,−1,−1,−1( )

Page 19: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Lorentz transformations :

xµ → Λν

µxν = Λνµxν

ν=0

3

∑ = x 'µ ⇒ gµνx 'µ x 'ν = gµνxµxν ⇒ gµνΛα

µΛβν = gαβ

Solutions :

• 3 rotations R

1 0 0 00 cos sin 00 sin cos 00 0 0 1

θ θθ θ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠

• 3 boosts B

cosh sinh 0 0sinh cosh 0 00 0 1 00 0 0 1

α αα α

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

• Space reflection – parity P

1 0 0 00 1 0 00 0 1 00 0 0 1

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟−⎝ ⎠

• Time reflection, time reversal T

1 0 0 00 1 0 00 0 1 00 0 0 1

−⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

(Summation assumed)

Page 20: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

The Lorentz transformations form the group, G , SO(3,1) 1 2 1 2( , )g g G if g g G∈ ∈•

Rotations

iJThe are the “generators” of the group. SO(3) (SU(2))

Their commutation relations define a “Lie algebra”†.

Can represent group element in terms of “generators” of an algebra

. /( ) ,iR e θθ −= J

( . . )c f = ×J r p

Angular momentum operator

3

1[ , ]i j ijk k

kJ J i Jε

=

= ∑

123 231 312 213 132 321

totally antisymmetric Levi-Civita symbol,

1; 1ijkε

ε ε ε ε ε ε= = = + = = = −

( )..z y xJ i x y∂ ∂∂ ∂= −

Lie algebra SU(2)

Page 21: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

( ) ( ) ( ) ( )x y x yR R R Rε η ε η− −

1 0 0 1 0 1 0 0 1 00 1 0 1 0 0 1 0 1 00 1 0 1 0 1 0 1

η ηε ε

ε η ε η

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − −⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

≈1 εη 0

−εη 1 00 0 1

⎜⎜⎜

⎟⎟⎟= Rz (εη) ≈ (1− iεηJz )

( ) ( ) ( ) ( )x y x yR R R Rε η ε η− −

(1 )(1 )(1 )(1 ) ( )x y x y x y y xi J i J i J i J J J J Jε ε ε ε εη= − − + + = − −

Equating the two equations implies

[ , ]x y zJ J iJ= QED

Derivation of the commutation relations of SO(3) (SU(2))

, (infinitesimal)smallε η

Page 22: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Demonstration that ( ) ziJZR e θθ −=

cos sin '( ) ( , ) ( ) ( ', ')

sin cos 'Z Z

x x xR x y R x y

y y yθ θ

θ ψ θ ψθ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞≡ = = ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

For small θ ,

x 'y '

⎛⎝⎜

⎞⎠⎟=

x +θ yy −θx

⎛⎝⎜

⎞⎠⎟

RZ (θ)ψ (x, y) =ψ (x +θ y, y −θx) ≈ψ (x, y) +θ( y ∂ψ

∂x− x ∂ψ

∂y)

= (1− iθ(xpy − ypx ))ψ (x, y)

i.e. RZ (θ) ≈ (1− iθ(xpy − ypx )) = 1− iθJz

For large θ RZ (θ = nε) = e− iJzθ

( )..z y xJ i x y∂ ∂∂ ∂= −

Page 23: Our description of the fundamental interactions and ...ross/lecture209b.pdf · Fundamental principles of particle physics Our description of the fundamental interactions and particles

Rotations

R(θ) = e− iJ .θ /

( . . )c f = ×J r p

/ziJ θ− /ziJe θ−= ( )zR θ I= ( ) ( )1 / . / ...

2 z ziJ iJθ θ+ − − +

1 0 0 00 cosθ sinθ 00 − sinθ cosθ 00 0 0 1

⎜⎜⎜⎜

⎟⎟⎟⎟

ctxyz

⎜⎜⎜⎜

⎟⎟⎟⎟

ct 'x 'y 'z '

⎜⎜⎜⎜

⎟⎟⎟⎟

= Rz (θ)

ctxyz

⎜⎜⎜⎜

⎟⎟⎟⎟

=

/ziJ− =

0 0 0 00 0 1 00 −1 0 00 0 0 0

⎜⎜⎜⎜

⎟⎟⎟⎟

−iJz / ( )2

=

0 0 0 00 1 0 00 0 1 00 0 0 0

⎜⎜⎜⎜

⎟⎟⎟⎟

Rz (θ)

=

1

1+θ 2

2+ ... θ + ...

−θ + ... 1+θ 2

2+ ...

1

⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟

= e− iJzθ /

The matrix “representation” of J acting on a four vector

The Lorentz transformations form the group, G , SO(3,1) •


Recommended