+ All Categories
Home > Documents > Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies...

Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies...

Date post: 30-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
51
1 Clean Water for Nepal, Inc Our Group Put group photo here
Transcript
Page 1: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

1

Clean Water for Nepal, Inc

Our Group

• Put group photo here

Page 2: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

2

Group Members

• Melanie Pincus• Rob Dies• Hillary Green• Georges Tabbal

• Xanat Flores• Saik-Choon Poh • Mandy Richards

Project Supervisor: Susan MurcottProject Advisors: Heather Lukacs

Tommy Ngai

MEng Group

Sloan School• Laura Ann Jones • Bobby Wilson• Steve Perreault

• Ralph Coffman• Tetsuji Arata• Sophie Walewijk

Friends

Outline

• Nepal Introduction• History of MIT Nepal Projects• Drinking Water Group• Wastewater Group• Questions

Page 3: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

3

Nepal

KathmanduAnnapurna

Lumbini

Terrai

Butwal

Nepal Statistics• Population: ~25.8 million (2002)• Growth rate: 2.4%• Life expectancy: 59 years• Children < 5 mortality: 101/1000• Children under height for their age: 54%• Literacy: 27.5% total population• GDP ($PPP) per capita: $1,224/capita

(USD $239/capita)

Page 4: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

4

MIT Nepal Project1999-2003

• Previous work: – Methodological Evaluation– Site Investigation (water quality testing and monitoring)– Technology Evaluation: (household scale drinking water

treatment system design and evaluation)– Implementation programs (Biosand, chlorination pilot study

based on CDC Safe Water System)

• This year:– Product Development and Marketing (Ceramic Filters/SLOAN)– Development and Evaluation of Novel Technology (Biosand

Pitcher Filter, SC-SODIS)– Social Evaluation (Arsenic)– Wastewater (Carpet dye, Detergents, Wetlands)

Group Projects

• Drinking Water – Ceramic Water Filter– Biosand Filter– Semi-Continuous SODIS– Arsenic

• Wastewater– Carpet Dyes– Detergents– Constructed Wetlands

Page 5: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

5

Motivation for Clean Drinking Water

• 1.1 billion people (5 million Nepalis) lack access to improved water supply (WHO, 2000)

• Millennium Development Goal

• Human Right to Water• Household Water

Treatment

Development of A Ceramic Water Filter for Nepal

Final Presentation

Rob Dies

Page 6: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

6

Ceramic Water Filters

Disk Candle Pot

Filter Media/ElementFilter System

Examples of Ceramic Filters

Page 7: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

7

Prior MIT Ceramic Filter Work in Nepal & Nicaragua

Junko Sagara, 2000– Study of Filtration for Point-of-Use Drinking Water Treatment in

NepalDaniele Lantagne, 2001

– Investigation of thePotters for Peace Colloidal Silver Impregnated Ceramic Filter

Jason Low, 2002– Appropriate Microbial Indicator Tests for Drinking Water in

Developing Countries and Assessment of Ceramic Water FiltersRebeca Hwang, 2003

– Six Month Field Monitoring of Point-of-Use Ceramic Water Filter by Using H2S Paper Strip Most Probable Number Method in San Francisco Libre, Nicaragua

2003 Nepal Ceramic Filter Research Objectives

• Continued Laboratory Research (Dies)

Page 8: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

8

• Continued Laboratory Research (Dies)

• Documentation of Production Process (Dies)

2003 Nepal Ceramic Filter Research Objectives

Courtesy of Lily Cheung

2003 Nepal Ceramic Filter Research Objectives

• Continued Laboratory Research (Dies)

• Documentation of Production Process (Dies)

• Prototype Development (Cheung)

Page 9: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

9

2003 Nepal Ceramic Filter Research Objectives

• Continued Laboratory Research (Dies)

• Documentation of Production Process (Dies)

• Prototype Development (Cheung)

• Preliminary Market/Consumer Analysis (Sloan Team)

Laboratory Research

• Tested 5 candle filters:– Ceradyn (Katadyn), Gravidyn (Katadyn), Hari White

Clay Candle (w/ & w/out colloidal silver), Hong Phuc• Tested 3 Disks

– Hari White Clay Disk (2 w/ colloidal silver; 2 w/out)– Reid Harvey Red Clay disk (2 w/ CS; 2 w/out)– Reid Harvey Black Clay disk (2 w/ CS; 2 w/out)

• Tested for: – Flow rate– Removal of total coliform and E. coli

Page 10: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

10

Reid Disk Filters Average Hourly Flowrate

430 394

846 853

265

416

752 760

0

250

500

750

1000

R1-A R1-B R2-A R2-B R1-A(CS)

R1-B(CS)

R2-A(CS)

R2-B(CS)

Disk Filter

Ave

rage

Flo

wra

te

(mL/

hr)

Averaged over 5 hours

R1 = Black ClayR2 = Red Clay

Reid Disk Filters Microbial Removal

2500

14 4

419575

4 42 5 7

1561

5 1279 360

0 21 0 40

500

1000

1500

2000

2500

3000

RawWater

R1-A R1-B R2-A R2-B R1-A(CS)

R1-B(CS)

R2-A(CS)

R2-B(CS)

Disk Filter

Col

iform

Con

cent

ratio

n (c

fu/1

00 m

L)

TotalColiformE Coli99

.4%

99.7

%

99.8

%

99.9

%

83.3

%

82.1

%

77.0

%76

.9%

99.8

%

98.3

%

98.7

%

99.8

%

99.7

%99

.7%

R1 = Black ClayR2 = Red Clay

Page 11: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

11

Lab Test Results

• The results from these tests support the hypothesis that colloidal silver helps to inactivate coliform bacteria – in the short term.

• A lot more lab and field testing is required– Long term testing– Challenge testing– Colloidal Silver effectiveness over time

Product Marketing

• Partner with educators• Develop a strong brand name• Emphasize superior performance• Marketing targeted towards women• Seed product in schools and with persons of

status• Can a presence/absence test be used as a

sales tool?

Page 12: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

12

3. Laboratory & Field Testing

(technical & customer feedback)

4. Prototype

Refinement

5. Production,

Distribution & Marketing

1. Evaluate Need/ Potential Market

6. Continual Product

Improvement through Monitoring & Evaluation

2. Prototype

Development

Development of a Ceramic Water

Filter

Safe Household Drinking Water via BioSand FiltrationPilot Project Evaluation &

Feasibility Study of a BioSand Pitcher FilterMelanie Pincus

Page 13: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

13

BioSand Filter Overview

- Designed by Dr. David Manzat the University of Calgary, Alberta, Canada

- Specifically for use by poorpeople in developing countries.

- Relies on natural biological,chemical and physicalmechanisms to purify water.

Pilot Project Evaluation

- Evaluate performance of recently installed concrete BioSand filters.

Page 14: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

14

Pilot Project Potential

- Communities interested in and accepting of BioSand technology.- All filters had high turbidity removal.- Flow rates varied from 1.0 – 37.5 L/hr.- Results from microbial analyses mixed (n = 9).

- 2 filters at 99% E. coli removal from highly contaminated - raw water.- 3 filters contaminating relatively clean source water.

- One day of testing insufficient to adequately characterize BioSand-filter performance. Regular, repeated samplings of source water, -filtered water and water in collection buckets should be performed on these household units.

Feasibility Study of a BioSand Pitcher Filter

- Conceptualized as a smaller,cheaper alternative to the concrete BioSand filters.

- A potential interim measureas households mobilize fundsfor a larger capacity water filter.

- Field and laboratory experimentsto evaluate pitcher filter viability by cross-checking performancewith concurrent performance ofcommercially available filters.

Page 15: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

15

Pitcher Filter Potential- Microbial (E. coli) removal of pitcher filters comparable to existing BioSand filtration technology.Nepal MITPitcher 80% 97% filters 86% 97%

BioSand 81% 95%filters 87%

Ripening 8-10 30-40 period (d)

- Strong correlation between biofilm maturation periods & source water quality.

Page 16: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

16

Technical and Social Evaluation of Three Arsenic Removal Technologies in

Nepal

3 Field Districts

Page 17: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

17

Research Objectives

• Technical Evaluation: Arsenic removal and flow rate.

• Social Evaluation: Survey Questionnaire to evaluate arsenic awareness and social acceptability of each filter

• Economic Evaluation: willingness-to-pay

Three-Kolshi Filter

• First studied in Nepal by Jessica Hurd in 2001

Page 18: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

18

2-Kolshi

First studied in Nepal

by Jeff Hwang in 2002

Arsenic-Biosand Filter

• Invented by Tommy Ngai (M.Eng.2002)

• Won LemelsonInternational Technology Award (2002)

• Pilot Scale implementation in Fall 2002

Page 19: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

19

TECHNICAL EVALUATION

• All filters have good arsenic removal rates (>90%)

• Flow rates differ:- Arsenic-Biosand: 10 to 20 L/hr- 3-Kolshi: 0.5 to 3L/hr

• Confirmation of previous studies

SOCIAL EVALUATION

• Surveyed 54 families• 3 Districts• 3 Different Technologies• Used a survey questionnaire of 10-20

questions depending on technologies

Page 20: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

20

What is Arsenic?

POISON32%

DIRTY THING2%

HIGH IRON CONTENT

2%

DANGER2%

DON'T KNOW31%

CHEMICAL ELEMENT

2%

DISEASE29%

Are you aware of any arsenic contamination in your water?

NO20%

YES80%

Page 21: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

21

Do you think that using the filter will protect your health?

NO6%

NOT SURE31%

YES63%

How often do you skip filtration?

11%TWO-KOLSHI

25%THREE-KOLSHI

0%ARSENIC-BIOSAND

SKIP FILTRATIONTYPE OF FILTER

Page 22: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

22

CONCLUSIONS

• Good level of arsenic awareness• Good social acceptability of each filter• Arsenic-Biosand Filter is most appropriate.• However, cost is above willingness-to-pay

– If filters distributed for free or subsidized: Arsenic-Biosand is best option

– If filters sold: 3-Kolshi for small families and Arsenic-Biosand for big families.

Semi- Continuous Solar Disinfection System

Massachusetts Institute of TechnologyXanat Flores

Page 23: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

23

What is Solar Disinfection?

• Inactivation of microorganisms present in water due to:– UV-A radiation (λ from 315 to 400 ηm) – Synergistic effect with temperature

• Variations:– Exposure time – Clear, black or reflective surface

SODIS

1. Small amounts of water treated

2. Difficulty in getting bottles (problem in Lumbini)

3. Waste management of empty bottles

4. Social acceptability (hard work for housekeepers)

1. Simple2. Very cheap (almost

free)3. Easy to understand4. Simple to maintain

CONSPROS

Page 24: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

24

CONTINUOUS SOLAR DISINFECTION SYSTEMS

1. More difficult to maintain and operate.

2. More expensive.3. Requires more

sophisticated operator

1. Larger quantities of water purified in a given time.

CONSPROS

SEMI-CONTINUOUS SODIS

1. Mechanism needs to be very well understood.

2. Flow rates have to be established for different weather conditions.

1. Larger amounts of water treated.

2. Inexpensive3. PET bottles are not

replaced as often as in SODIS.

4. Relatively simple to maintain and operate

CONSPROS

Page 25: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

25

SEMI-CONTINUOUS SODISPolluted water container

Roof of House with solar disinfection system

Inside housecollectionof purified Water

SEMI-CONTINUOUS SODIS

PET BOTTLES,GLUED TOGETHER

VALVE TO ASSURE RESIDENCE TIME OF TWO DAYS

Page 26: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

26

OBJECTIVES OF MY RESEARCH

• Technical feasibility of SC-SODIS system– Construction– Performance– Use of local materials.

• Social acceptability• Economic feasibility

Constructed System

Page 27: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

27

RESULTS

SC-SODIS

Solar Radiation Results

0

100

200

300

400

500

600

700

800

8 9 10 11 12 13 14 15 16 17 18Hour

Inci

dent

Rad

iatio

n (W

/m2 )

1/7/20031/8/20031/9/20031/10/20031/11/20031/12/20031/13/20031/14/20031/15/20031/16/20031/17/20031/18/2003Threshold

Page 28: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

28

SC-SODIS Removal Efficiencies

95

96

97

98

99

100

101

0 1 2 3 4 5 6 7 8 9 10

Equivalent days of Exposure

%R

emov

al

DIFFICULTIES FOUND• Lack of E. coli due to extreme cold.• Finding the “right” materials.• Three week study -- limited data set and

many variables:– Solar radiation– Flow rate– Concentration of pollutants

Page 29: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

29

CONCLUSIONS

• Technical: SC-SODIS is technically feasible in region studied based on data collected.

• Construction: Found local materials (Butwal and Lumbini).

• Social: Preliminary feedback showed local people preferred SC-SODIS to SODIS.

• Economic: Construction costs below $0.50 (NRs 300).

RECOMMENDATIONS

• Find a local manufacturer of SC-SODIS system to reduce construction time.

• Further study of flow rates.• Study during monsoon season.

Page 30: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

30

Nepali Wastewater Nepali Wastewater SolutionsSolutions

The Effects of Carpet Dye on the Bagmati RiverThe Effects of Carpet Dye on the Bagmati RiverHillary Green

Effects of Detergent Use on Water Quality in Kathmandu, Effects of Detergent Use on Water Quality in Kathmandu, NepalNepal

Amanda Richards

Assessment of Constructed Wetland System in NepalAssessment of Constructed Wetland System in NepalSaik-Choon Poh

Wastewater Situation In Wastewater Situation In NepalNepal

Introduction

• Surface water pollution is one of the most serious environmental problems in Nepal

• Wastewater treatment plants almost non-existent

• Hardly any action taken towards WW treatment by the Nepalese government

Page 31: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

31

Wastewater from Wastewater from KathmanduKathmandu

• Domestic WastewaterPopulation (year 2000) : 1.43 millionWastewater Generated: 124 MLDSewerage System Coverage: 38%Wastewater Collected: 47 MLD

• 5 municipal wastewater treatment plantsTotal Treatment Capacity (year 2000) : 19.9 MLDCapacity Deficit : -27.1 MLD(ADB TA Number 2998-NEP, Feb. 2000)

Page 32: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

32

Overview of Wastewater Treatment PlantsOverview of Wastewater Treatment Plants

(Arata, 2003)

MIT Nepal Team Jan. 2003

ADB Feb.2000 Report

Not operatingNot operating15.4Dhobighat

Partially operatingPartially operating1.1Kodku

Not operatingPartially operating2.0Sallaghari

Not operatingPartially operating0.5Hanumanghat

OperatingUnder Construction17.3Guheshwori

StatusReported Capacity

MLD Plant

Guheshwori WWTP

Page 33: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

33

Hanumanghat WWTP

Sallaghari WWTP

Page 34: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

34

Kodku WWTP

Dhobighat WWTP

Page 35: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

35

Carpet Dye in Nepali Surface Water

Hillary Green

Carpet Industry in Nepal

• One of Kathmandu Valley’s largest industries (50 carpet manufacturers)

• Dye wastewater often sent directly to rivers

• Synthetic dyes are usually preferred over natural dyes

• Most synthetic carpet dyes contain chromium, copper or cobalt

Page 36: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

36

Do Carpet Dyes Cause Significant Water Quality Deterioration of the

Bagmati River ?

• Identify sites of carpet manufacturers along the Bagmati

• Test and collect relevant water quality data– absorbance– chromium– COD– DO

Sampling Points Along the Bagmati

Page 37: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

37

Chromium Results - Water Samples

• Out of 12 water samples, 8 had chromium levels <0.01 mg/L

• The other levels were as follows

• WHO guideline for chromium in drinking water is 0.05mg/L

0.03Chovar0.02Sundarighat0.03Tilganga0.01PashupatinathCr Concentration (mg/L)Sample Location

Chromium Results - Dye Samples

• Dye samples acquired from Mount Everest Dying Company

• Chromium levels in dyes as follows

• An increase in dye waste to the river could increase the Cr levels in the river

2,400Black2,400Navy1,270Red55.3IndigoCr Concentration (ppm)Dye Color

Page 38: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

38

COD in the Bagmati River

0

50

100

150

200

250

300

Sundarijal Pashupatinath Tilganga Sundarighat Chovar

Sampling Sites

CO

D (m

g/L)

Conclusion

• Decreasing dye waste to the Bagmatiriver will help decrease COD levels in the river

• Presence of color does not necessarily mean presence of chromium and vice versa

• Further studies needed to determine possible chromium problems

Page 39: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

39

Effects of Detergent Use on Water Quality in Kathmandu, Nepal

Amanda Richards

Overview of Guheshwori WWTP• Only operating municipal WWTP in Nepal• Activated sludge process with 17.3 MLD

capacity• Foaming problem in aeration tanks, location

of oxygen supply• Possible culprits:

- Filamentous bacteria- Anionic surfactants

in synthetic detergents (Shah, 2002)

Page 40: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

40

Surfactant Analysis• Two classifications of anionic surfactants:

– Very slowly degraded, causes foaming problems (ABS)

– Easily biodegraded, no foaming problems (LAS)

• Surfactant Analysis– 19 laundry detergents collected from Nepal– Test for total anionic surfactants– Monitor surfactant degradation with time– Remaining surfactant considered to be ABS

Surf

acta

nts

(wt%

in d

eter

gent

s)

Degraded and Non-degraded Fractions of Anionic Surfactants in Powder Detergents

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12

Ani

onic

Sur

fact

ants

(wei

ght %

in d

eter

gent

s)

Henko

Jimnao

Tide

GoGo

SurfSuper

Current

Ariel

Fighter

Mr. White

Diyo with

Lemon

Wheel

Wheel with

Lemon

Detergent Brand Name

Degraded Anionic Surfactant

Non-Degraded Surfactant

Page 41: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

41

Degraded and Non-degraded Fractions of Anionic Surfactants in Bar Detergents

0

2

4

6

8

10

12

14

1 2 3 4 5 6

Ani

onic

Sur

fact

ants

(wei

ght %

in d

eter

gent

s)

Detergent Brand Name

Diyo

Vim

Diyo with Lemon

Super Chek

Wheel with Lemon

Ariel

Degraded Anionic Surfactant

Non-Degraded Surfactant

Surfactant Analysis, Continued• Estimate detergent effects:

• Instructions suggest 1 handful detergent/half-bucket water

• Approximately 25 g detergent/4 L water (6.25 g/L)

• With persistent surfactant levels of 5 mg/g detergent, estimate 32 mg ABS/L wash water

• ABS foaming limit is ~0.5 mg ABS/L water• Difficult to estimate the frequency of household

laundry washing (# loads/family-wk)• Analysis done assuming 1 load/family-wk, 5

loads/family-wk and 10 loads/family-wk

Page 42: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

42

Surfactant Conclusions• Laundry detergent not a likely major contributor to

foaming at Guheshwori WWTP– Probable dilution to concentrations below foaming limit– Detergent biodegradability meets standards set by

United States and European Governments• Other possible causes of foaming for future study:

– Surfactants used in industrial detergents (textile and carpet industries)

– Filamentous bacteria

Phosphates Analysis• Detergents analyzed for phosphates

– Evaluate contribution to eutrophication in the Bagmati River

• Average concentration of 402 mg PO4/kg detergent, or 2.5 mg PO4/L wash water

• PO4 levels from washing laundry are insignificant compared to Bagmati River concentrations (reach as high as 1.6 mg/L)– Analyzed at 1, 5 and 10 loads/family-wk

Page 43: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

43

Assessment of Constructed Assessment of Constructed Wetland Systems in NepalWetland Systems in Nepal

Saik-Choon Poh

Constructed Wetland Constructed Wetland Systems in NepalSystems in Nepal

• Reasons for failure of large treatment plants:– High Cost– Inefficient gov’t water/ WW bureaucracy– Inappropriate transfer of 1st World technology

to 3rd World conditions

• Small and decentralized treatment plants are high in demand

• Constructed Wetlands introduced in Nepal in 1997 by a local NGO research institute, ENPHO, as a cheap alternative (Laber, Haberl, Shrestha1999)

Page 44: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

44

Constructed Wetlands (CW)Constructed Wetlands (CW)Types (CW):• Free Water Surface

• Vegetated Submerged Bed

In Kathmandu, Nepal:• 5 existing CW

• Sub-surface

• Combination of HorizontalVertical Flow Bed

Existing CW Systems in Existing CW Systems in NepalNepal

No Project Types of Constructed Wetlands

1 Dhulikhel Hospital Horizontal & Vertical Flow Bed

2 Grey Water Recycling Vertical Flow Bed

3 Septage Treatment for Kathmandu Municipal Corporation

Vertical Flow Bed

4 Malpi International School Horizontal & Vertical Flow Bed

5 Sushma Koirala Memorial & Reconstructive Surgery Hospital

Horizontal & Vertical Flow Bed

Page 45: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

45

Project ObjectiveProject Objective• Investigate the treatment efficiency through hydraulic

studies• Determine the water retention time in the wetland bed

(Bromide as Tracer)

SKM Hospital (HFB)SKM Hospital (HFB)[Br - ] Detected Vs. Time for Horizontal Flow Bed

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.00 5.00 10.00 15.00 20.00 25.00

Time (hrs)

[Br -

] D

etec

ted

(mol

/L)

Page 46: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

46

Dhulikhel Hospital (HFB)Dhulikhel Hospital (HFB)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.00 5.00 10.00 15.00 20.00 25.00

Time Interval (hrs)

[Br -

] D

etec

ted

(mol

/L)

[Br - ] Detected Vs. Time for Horizontal Flow Bed

Theoretical BackgroundTheoretical BackgroundResidence Time Distribution Function:

∫∞

=0

det dt)t(tRTDT

∫∞=

0dt)t(QC

)t(QC)t(RTD

Detention Time:

Page 47: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

47

Detention TimeDetention Time

Sushma Koirala Memorial Plastic & Reconstructive Surgery Hospital

Detention Time For Horizontal Flow Bed Detention Time For Vertical Flow Bed

Constant Q T-Rule 8.6 hrs Constant Q T-Rule 10.1 hrs

With Q facor 6.7 hrs With Q factor 7.8 hrs

Dhulikhel Hospital

Detention Time For Horizontal Flow Bed Detention Time For Vertical Flow Bed

Constant Q T-Rule 6.3 hrs Constant Q T-Rule 11.0 hrs

With Q facor 5.6 hrs With Q factor 12.2 hrs

Theoretical BackgroundTheoretical BackgroundReaction in CW modeled as 1st Order reaction:

∫∞

=0

t)dt(kexpRTD(t)CC

ro

e

( )tkexpC

)t(Cr

o−=

Average Concentration of Pollutant Remainedin CW:

Page 48: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

48

KKrr Value vs. %Removal Value vs. %Removal EfficiencyEfficiency

K r For Horizontal Flow Bed

kr (1/day) 10.0 12.2 15.0 17.5 22.5 35.0 50.0R.E (%) 80.0 84.8 88.3 90.7 94.0 97.6 99.0

K r For Vertical Flow Bed

kr (1/day) 5.0 7.0 9.0 11.0 13.0 20.0 25.0R.E (%) 84.0 89.5 92.5 94.5 95.8 98.1 98.9

K r For Horizontal Flow Bed

kr (1/day) 9.0 11.0 14.0 17.0 20.0 28.0 45.0R.E (%) 81.5 86.0 90.5 93.2 95.0 97.4 98.9

K r For Vertical Flow Bed

kr (1/day) 7.0 8.0 10.0 12.0 17.0 22.0 25.0R.E (%) 80.5 83.8 88.7 92.0 96.4 98.3 98.9

Dhulikhel Hospital

Sushma Koirala Memorial Plastic & Reconstructive Surgery Hospital

Summary of CW’s PerformanceSummary of CW’s Performance

Dhulikhel Hospital

Date

In Out%

Removal In Out%

Removal In Out%

Removal In Out%

Removal12-Jul-02 62 2 98 122 20 84 66 3 95 3 4 -24-Sep-02 84 5 94 131 23 82 106 5 95 4 1 7515-Nov-02 72 2 97 98 22 78 46 5 89 3 2 4514-Jan-03 349 14 96 680 50 93 380 25 94 9 5 43

96 84 93 54

Parameters

Average Removal %

BOD(mg/l) COD(mg/l) TSS(mg/l) PO4(mg/l)

(ENPHO, 2003)

Page 49: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

49

Summary of CW’s PerformanceSummary of CW’s Performance

(ENPHO, 2003)

SKM Hospital

DateIn Out % R In Out % R In Out % R In Out % R

37043 436 18 96 1746 71 96 225 8 96 148 26 8237159 737 5 99 1416 71 95 520 5 99 131 1 9937445 212 2 99 433 20 95 160 3 98 111 2 9837512 475 23 95 1110 83 93 655 6 99 26 1 9737577 279 3 99 766 40 95 146 10 93 45 3 94

98 95 97 94

NH3(mg/l)Parameters

Elimination Rates %

BOD5 (mg/l) COD (mg/l) TSS (mg/l)

Conclusions

• Treatment performance of CW is good

• More accurate determination of Kr value and detention time will enable even better performance and improved design in future

• CW has a high potential to address wastewater treatment needs in Nepal

Page 50: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

50

Acknowledgments• ENPHO• IBS• IDE• RWSSSP/FINNIDA• Dr. Eric Adams• Reid Harvey• Simon Johnson/Global E-lab• Hari Govinda Pajapati• Mt. Everest Dyeing Company• Ram Deep Shah

Page 51: Our Group - MITweb.mit.edu/watsan/Docs/Student Reports/Nepal... · • Melanie Pincus • Rob Dies • Hillary Green • Georges Tabbal • Xanat Flores • Saik-Choon Poh • Mandy

51

ReferencesArata, Tetsuji. Wastewater in the Greater Kathmandu. Japan Association of

Environment and Society for the 21st Century 2003

Laber, Johannes; Haberl, Raimund; Shrestha, Roshan R. Two-Stage Constructed Wetland for Treating Hospital Wastewater in Nepal. Wat. Sci. Tech, Vol. 40, No.3, pp. 317-324, 1999. Elsevier Science Ltd: Great Britain. 1999.

Metcalf & Eddy, Inc. with CEMAT Consultants, Ltd; ADB TA Number 2998 – NEP, “Urban Water Supply Reforms in the Kathmandu Valley”, Volume 1, February 18, 2000.

Shah, Ram Deep and Das Sunil Kumar. “Performance of Deep Oxidation Ditch”, 28th WEDC Conference, 2002.

Shrestha, Roshan R.. A New Step Towards Wastewater Treatment in Nepal. A Journal of the Environment, Vol. 6, No.7, 2001. Ministry of Population and Environment, Nepal. 2001

WHO, 2000.


Recommended