+ All Categories
Home > Documents > Park Japan Presentation Final

Park Japan Presentation Final

Date post: 05-Apr-2018
Category:
Upload: mr-bing-bing
View: 218 times
Download: 0 times
Share this document with a friend

of 25

Transcript
  • 7/31/2019 Park Japan Presentation Final

    1/25

    Analytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study onAnalytical and Experimental Study on

    R/C Exterior BeamR/C Exterior BeamR/C Exterior BeamR/C Exterior BeamR/C Exterior BeamR/C Exterior BeamR/C Exterior BeamR/C Exterior Beam--------Column JointsColumn JointsColumn JointsColumn JointsColumn JointsColumn JointsColumn JointsColumn Joints

    without Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcementwithout Transverse Reinforcement

    Sangjoon Park, Ph.D Candidate

    Khalid Mosalam, Prof. & Vice Chair

    UC Berkeley

    5th ICEE, Tokyo, Japan, March 3-5, 2010

  • 7/31/2019 Park Japan Presentation Final

    2/25

    MotivationMotivation

    Seismic performance of old existing RC building joints

    - No seismic design code prior to 1970s

    - No transverse reinforcement in the joint region

    Brittle failure and collapse

    Lateral displacement

    Lateralf

    orce

    Beam flexural failure

    Joint shear failure

  • 7/31/2019 Park Japan Presentation Final

    3/25

    MotivationMotivation

    Existing joint strength models and suggestions

    - Inappropriate application from reinforcedjoints to unreinforcedjoints

    - Overly simplified failure mechanism

    - Underestimation of shear strength (ASCE41)

    '

    c

    proposed,j

    f

    v

    '

    c

    test,j

    f

    v

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 2 4 6 8 10 12 14 16

    )psi('

    ccjjj fhbVv ==

    joint

    geometry

    4

    6

    8

  • 7/31/2019 Park Japan Presentation Final

    4/25

    Unreinforced exterior joint tests w/o or w/ one lateral beam

    Anchorage details of selected specimens

    Column width (bc) beam width (b

    b)

    62 test data are collected

    Failure mode: J (joint shear failure without beam yielding)

    BJ (joint shear failure with beam yielding)

    Database of Previous TestsDatabase of Previous Tests

    Type A Type B Type C Type D

    (a) (b) (c)

    or

  • 7/31/2019 Park Japan Presentation Final

    5/25

    Developed SemiDeveloped Semi--Empirical ModelEmpirical Model

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0.8 1 1.2 1.4 1.6 1.8 2 2.2

    H

    h

    f

    f

    hb

    A b

    c

    y

    cj

    s 85.01'

    low aspect ratio,

    high aspect ratio,

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    Joint aspect ratio, hb/hc

    c

    b'

    ccj

    jh

    h

    h

    a

    fhbV

    085.031.1

    cos2+

    =

    Beam reinforcement index

    H

    h

    fhb

    fAb

    ccj

    ys85.01

    '

    =

    H

    hfA

    fhb

    Vb

    ys

    ccj

    jh85.01

    '

    25.11.0factorthoverstreng:

    '

    ccj

    jh

    fhb

    V

    Ymax=X2

    Ymin=1.25X1

    X1

    X2

    Proposed

    Model

  • 7/31/2019 Park Japan Presentation Final

    6/25

    Developed Analytical ModelDeveloped Analytical Model

    21 STjh,STjh,jh VVV += ( )==h

    l

    ssjhjh,ST1 dxfnfAVV0

    bs

    ( )c

    l

    sjhjh,ST2 VdxfnVVh

    == 0b)1(

    )( sf

    ST1ST2

    Asfs

    1jh,STV

    fy fpfs : tensile stress of beam reinforcement

    : Bond strength

    E

    Y

    R

    Lehman & Moehle (2000)

    CEB-FIP (1990)

    ]psi[12'

    cf

    ]psi[6'

    cf

    ]psi[8.1'

    cf

    Vc

    ( )

    =

    s

    l

    s

    b f

    df

    h.H

    Hh

    0

    b

    x41

    850

  • 7/31/2019 Park Japan Presentation Final

    7/25

    Developed Analytical ModelDeveloped Analytical Model

    No

    Input:

    hsbc

    cbbyc

    lAHh

    bhbff

    ,,,,

    ,,,,,'

    Calculate: fo ,fp ,fr,

    1 , 2 , Vjh,ST1,max

    Assume:fs,i

    Determine: i

    Calculate: Vjh,i , Vjh,ST1,i

    Check: Vjh,ST1,iVjh,ST1,maxCheck: fs,i < foYes

    Define: Vjh,i =Asfo(1-0.85hb/H)

    Yes

    NoDefine: Vjh = Vjh,i

    End

  • 7/31/2019 Park Japan Presentation Final

    8/25

    Predictions by Proposed ModelsPredictions by Proposed Models

    0

    50

    100

    150

    200

    250

    300

    0 50 100 150 200 250 300

    (a) Semi-Empirical

    Vjh,test

    [kip]

    MEAN = 0.98

    COV = 0.15

    0

    50

    100

    150

    200

    250

    300

    0 50 100 150 200 250 300

    (b) Analytical

    Vjh,test

    [kip]

    MEAN = 0.97

    COV = 0.16

  • 7/31/2019 Park Japan Presentation Final

    9/25

    For More DetailsFor More Details

    PEER Report 2009/106

    http://peer.berkeley.edu/publications/peer_reports/reports_2009/web_PEER9106_PARK_Mosalam.pdf

  • 7/31/2019 Park Japan Presentation Final

    10/25

    Experimental ProgramExperimental Program

    For All Specimens:

    Target concrete strength: f'c = 24 MPa (3.5 ksi)

    Reinforcing bars nominal yield strength: fy = 414 MPa (Grade 60)

    1. Test matrix Beam Section (A-A)

    Column Section (B-B)

    SP1&2 SP3&4

    18"

    18"

    8-#8

    hoop #3@3''

    8-D25

    D10@76mm457

    457

    18"

    18"

    8-#8

    hoop #3@3''

    8-D32

    D10@76mm457

    457

    AspectRatio

    SP1 SP2

    SP3

    18"

    16"

    4-#8

    4-#7

    stirrup

    #3@3''

    18"

    16"

    4-#6

    4-#6

    stirrup

    #3@3''

    4-D19

    4-D19D10@76mm

    4-D25

    4-D22D10@76mm

    457 457

    406 406

    Reinforcement Ratio

    30"

    16"

    4-#6

    4-#6#3

    stirrup

    #3@3''30"

    16"

    4-#8

    4-#7#3

    stirrup

    #3@3''

    4-D19

    4-D19

    D10@76mm

    4-D25

    4-D22

    D10@76mm762

    406 406

    762

    top and bottom slab reinforcement : D10@305mm

    B B

    A

    A

    L=2.44m

    H=3.6

    8m

    SP4 (in progress)

  • 7/31/2019 Park Japan Presentation Final

    11/25

    Experimental ProgramExperimental Program

    2. Construction

    EW direction

    76.2mm

    38.1mm

    NS direction

    50.8mm

    63.5mm

  • 7/31/2019 Park Japan Presentation Final

    12/25

    Experimental ProgramExperimental Program

    3. Loading Control beam tip displacementControl beam tip displacement

    +

    -EW

    +

    -NS

    +

    -

    +

    -

    40

    y=

    y

    y 5.1

    y 25.2

    Papplied

    SP1&2 : Papplied=-95 + 4Vb,x + 4Vb,y

    SP3&4 : Papplied=-95 + 2Vb,x + 2Vb,y

    - Simulate variation of column axial loading

    previouse3

    1

    Group 1

    Group 2

    Group 3

    Group 4

    Group 5

    Group 6Group 7

    P/(f'cA

    g)

    Testing time (sec)0 0.5 1 1.5 2 2.5 3 3.5

    x 104

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    SP1SP2

  • 7/31/2019 Park Japan Presentation Final

    13/25

  • 7/31/2019 Park Japan Presentation Final

    14/25

    Test ResultsTest Results

    -8 -6 -4 -2 0 2 4 6 8-150

    -100

    -50

    0

    50

    100

    150

    Drift (%)

    -8 -6 -4 -2 0 2 4 6 8-150

    -100

    -50

    0

    50

    100

    150

    Drift (%)

    Beam

    shear(kN) EW direction NS direction

    Yielding

    Peak

    Yielding

    Peak

    SP1

    SP1- Load vs. Drift

    8

    7

    6 54

    4

    56

    7

    84

    5 6

    7

    7

    65

    4

  • 7/31/2019 Park Japan Presentation Final

    15/25

    Test ResultsTest Results

    Drift (%)-8 -6 -4 -2 0 2 4 6 8

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    -8 -6 -4 -2 0 2 4 6 8-200

    -150

    -100

    -50

    0

    50

    100

    150

    Drift (%)

    Yielding

    Peak

    Yielding

    Peak

    Beam

    shear(kN) EW direction NS direction

    SP2

    SP2- Load vs. Drift

    8

    7

    65

    4

    8

    7

    65 4

    4

    56

    7

    84

    5 6

    7

    8

  • 7/31/2019 Park Japan Presentation Final

    16/25

    Test ResultsTest Results

    -8 -6 -4 -2 0 2 4 6 8-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    -8 -6 -4 -2 0 2 4 6 8-200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    Drift (%) Drift (%)

    Yielding

    Peak

    Beam

    shear(kN) EW direction NS direction

    Beam

    shear(kN)

    SP3- Load vs. Drift

    Yielding

    Peak

    8

    7

    65

    4

    4

    56

    7

    8

    4

    56

    7

    8

    8

    7

    6

    54

  • 7/31/2019 Park Japan Presentation Final

    17/25

    -0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.02

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    Test ResultsTest Results

    Normalized joint shear vs. Joint distortion

    -0.01 -0.005 0 0.005 0.01

    -1

    -0.8

    -0.6

    -0.4-0.2

    0

    0.2

    0.4

    0.6

    0.8

    Joint shear strain

    (

    MPa)

    -0.01 -0.005 0 0.005 0.01

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    Joint shear strain

    EW direction

    NS direction

    Joint distortion (rad)

    Joint distortion (rad)

    -0.01 -0.005 0 0.005 0.01

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.60.8

    Joint shear strain

    -0.01 -0.005 0 0.005 0.01

    -1

    -0.8

    -0.6

    -0.4-0.2

    0

    0.2

    0.4

    0.6

    0.8

    Joint shear strain

    (

    MPa)

    EW direction

    NS direction

    Joint distortion (rad)

    Joint distortion (rad)

    EW direction

    NS direction

    Joint distortion (rad)

    Joint distortion (rad)

    ASCE 41

    ASCE 41

    SP1 SP2 SP3

    - Normalized joint shear stress ASCE41

    - Joint distortion: upward loading, i.e. slab in compression > downward loading, i.e. slab in tension

  • 7/31/2019 Park Japan Presentation Final

    18/25

    Test ResultsTest Results

    Joint Shear Strength

    Joint aspect ratio, hb/hc

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0.8 1 1.2 1.4 1.6 1.8 2 2.2

    SP2

    SP1

    SP3

    LoadingTest

    [MPa0.5]

    Semi-

    empirical

    [MPa0.5]

    SP1

    EWUp 0.71 0.64 (0.90)*

    Down 0.71 0.71 (1.00)

    NSUp 0.67 0.64 (0.96)

    Down 0.66 0.71 (1.08)

    SP2

    EWUp 0.80 0.79 (0.99)

    Down 1.09 0.97 (0.89)

    NS

    Up 0.81 0.79 (0.98)

    Down 1.10 0.97 (0.88)

    SP3

    EWUp 0.52 0.57(1.10)

    Down 0.59 0.61(1.03)

    NSUp 0.47 0.57(1.21)

    Down 0.51 0.61(1.20)

    ( )*: vj_model/ vj_test

  • 7/31/2019 Park Japan Presentation Final

    19/25

    Intermediate Column Bar

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    -5 -4 -3 -2 -1 0 1 2 3 4

    Drift (%)

    Strain(10-3)

    top

    middle

    bottom

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    -5 -4 -3 -2 -1 0 1 2 3 4

    Drift (%)

    top

    middle

    bottom

    topmiddle

    bottom

    topmiddle

    bottom

    (a) EW direction (b) NS direction

    Test ResultsTest Results

    Tension Tie ?

    Not likely

    SP2

  • 7/31/2019 Park Japan Presentation Final

    20/25

    Test ResultsTest Results

    Effect of Slab

    Loading group

    6543

    1 2 3 41

    2

    3

    4

    1 2 3 4

    Bottom gages only @1,2

    Top gages @1 to 4

    Stra

    in(

    )y

    /

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    Bar number

    0

    1

    2

    3

    4

    5

    1 2 3 4

    Bar number

    457

    152 top

    bot

    slip

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    S

    tra

    in(

    )y

    /

    Bar numberBar number

    EW-Top EW-Bottom

    slip

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    Bar number Bar number

    SP1

    NS-Top NS-Bottomslip

    Stra

    in

    (

    )y

    /

    SP2

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    Bar number Bar number

    Strain

    (

    )y

    /

    NS-Bottomslip

    EW-Top

    NS-Top

    EW-Bottom

    Beam reinforcement

    low high

  • 7/31/2019 Park Japan Presentation Final

    21/25

    Test ResultsTest ResultsEffect of Slab

    Loading group

    6543

    1 2 3 41

    2

    3

    4

    1 2 3 4

    Bottom gages only @1,2

    Top gages @1 to 4

    457(SP1)

    152

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    S

    tra

    in(

    )y

    /

    Bar numberBar number

    EW-Top EW-Bottom

    slip

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    Bar number Bar number

    SP1

    NS-Top NS-Bottomslip

    762(SP3)

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    1

    2

    3

    4

    5

    1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 2

    EW-TopEW-Bottom

    slip

    NS-Top NS-Bottom

    slip

    SP3

    S

    tra

    in(

    )y

    /

    Strain(

    )y

    /

    Strain

    (

    )y

    /

    Beam depth

    small large

  • 7/31/2019 Park Japan Presentation Final

    22/25

  • 7/31/2019 Park Japan Presentation Final

    23/25

    SummarySummary

    Joint aspect ratio (hb/ h

    c)

    Beam reinforcement index

    1. Main parameters

    = 0.5~1.1 from tests vs. = 0.5 from ASCE 41

    Accurate prediction by proposed models

    2. Shear strength of unreinforced exterior joints

    3. Intermediate column bars

    Contribution of slab reinforcement

    Torsional effect

    Different joint shear distortion when slab in tension or in compression

    4. Effect of slab

    No function as a tension tie

  • 7/31/2019 Park Japan Presentation Final

    24/25

    Further verification of proposed models

    Extension to unreinforced interior joints

    Progressive collapse analysis using developed joint element

    Collapse fragility curve of old existing R/C prototype buildings

    Future ResearchFuture Research

    Pro

    ba

    bilityo

    fco

    llapse

    Hazard level (PGA)

    Complete collapse

    Partial collapse by column axial failure

    Partial collapse by joint shear failure

  • 7/31/2019 Park Japan Presentation Final

    25/25

    Thank You!

    Test results are uploaded at

    http://research.eerc.berkeley.edu/projects/cornerbeamcolumnjoints/

    Thomas(Oct.,2009) Gordon(Dec.,2009) James(Jan.,2010) Percy(Next week)


Recommended