+ All Categories
Home > Documents > Part 6-Chap 6

Part 6-Chap 6

Date post: 13-Apr-2018
Category:
Upload: faruque65
View: 276 times
Download: 1 times
Share this document with a friend

of 111

Transcript
  • 7/27/2019 Part 6-Chap 6

    1/111

    Part6

    StructuralDesign 61

    Chapter 6

    Strength Design of Reinforced ConcreteStructures6.1 AnalysisandDesign- GeneralConsiderations

    6.1.1 ConventionandNotationUnlessotherwiseexplicitlystated,thefollowingunitsshallbeimplicitforthecorresponding quantitiesin

    thedesignandotherexpressionsprovidedinthischapter:

    Lengths m m

    Areas m m2

    Secondmomentsofarea m m 4

    Force(axial,shear) N

    Moment,torsion N m m

    Stress,strength MPa,N/mm2

    6.1.1.1 Notation = Depthofequivalentrectangular stress blockasdefinedin6.3.2.7.1,mm, = Shearspan,equaltodistance from center ofconcentratedloadtoeither:(a)faceofsupportfor continuous or cantilevered members, or (b) center of support for simply supported

    members,mm,Sec6.4,AppendixA = Area of an individual bar or wire, mm2,Sec6.3,Sec8.2

    =Net

    bearing

    area

    of

    the

    head

    of

    stud,

    anchorbolt,

    or

    headed

    deformed

    bar,

    mm

    2

    ,

    Sec8.2,

    AppendixD = Crosssectionalarea of concrete section resisting sheartransfer,mm2,Sec6.4,Sec8.3 = Crosssectional area of a structural member measured to the outside edges of transversereinforcement,mm2,Sec6.3,Sec8.3 = Area enclosed by outside perimeter of concrete cross section, mm2, see 6.4.4.1, Sec 6.4,8.3.8.3 = Crosssectionalareaat one end of a strut inastrutandtiemodel,takenperpendiculartotheaxisofthestrut,mm2,AppendixA = Gross area of concrete section bounded by web thickness and length of section in thedirectionofshearforceconsidered,mm2,Sec8.3 = Area of concrete section of an individual pier, horizontal wall segment, or coupling beamresistingshear,mm2,Sec8.3

    = Area of reinforcement in bracket or corbelresistingfactoredmoment,mm2,see6.4.7,Sec6.4 = Gross areaof concretesection,mm2 For ahollowsection, istheareaoftheconcreteonlyanddoesnotincludetheareaofthevoid(s), see 6.4.4.1, Secs6.2to6.4,6.6,6.7,6.10,8.3, = Total area of shear reinforcement parallel toprimary tension reinforcement ina corbelorbracket,mm2,see6.4.7,Sec6.4 = Effective crosssectional area within a oint in a plane parallel to plane of reinforcementgenerating shear in the joint, mm2, seeSec8.3 = Total area of longitudinal reinforcement toresisttorsion,mm2,Sec6.4,8.3, = Minimumareaoflongitudinalreinforcementtoresisttorsion,mm2,see6.4.4.5.3,Sec6.4

  • 7/27/2019 Part 6-Chap 6

    2/111

    Part6

    StructuralDesign

    62 Vol.2

    = Area of reinforcement in bracket or corbelresisting tensile force, mm2, see 6.4.7,Sec6.4 = Areaofa faceofanodalzoneorasectionthroughanodalzone,mm2,AppendixA = Projected concrete failure area of a singleanchor or group of anchors, forcalculationofstrengthintension,mm2,seeD.5.2.1,AppendixD

    = Projected concrete failure area of a singleanchor, for calculation of strength in tension if

    not limited by edge distance or spacing,mm2,seeD.5.2.1,AppendixD = Gross area enclosed by shear flow path,mm2,Sec6.4 = Areaenclosedbycenterlineoftheoutermostclosedtransversetorsionalreinforcement,mm2,Sec6.4 = Areaofnonprestressed longitudinal tensionreinforcement,mm2,Sec6.3,6.4,6.6,6.8, = Areaof tensionreinforcementcorresponding tomomentofresistance,see6.3.15.1(b) = Areaofadditionaltensionsteel,see6.3.15.1(b) = Area of compression reinforcement, mm2,AppendixA = Areaofprimary tension reinforcement inacorbelorbracket,mm2,see6.4.7.3.5,Sec6.4, = Effective crosssectional area of anchor intension,mm2,AppendixD, = Effective crosssectional area of anchor inshear,mm2,AppendixD

    = Area of reinforcement required to balance the longitudinal compressive force in the

    overhangingportionoftheflangeofaTbeam,see6.3.15.2(b) = Totalcrosssectionalareaof transverse reinforcement(includingcrossties)withinspacingsandperpendicular to dimension,mm2,Sec8.3 = Total area of surface reinforcement atspacing si in the ith layer crossingastrut,withreinforcementatanangle totheaxisofthestrut,mm2,AppendixA, = Minimum area of flexural reinforcement,mm2,see6.3.5,Sec6.3 = Total area of nonprestressed longitudinal reinforcement (bars or steel shapes), mm2,Sec6.3,8.3 = Areaofstructuralsteelshape,pipe,ortubinginacompositesection,mm2,Sec6.3 = Areaofone legofaclosedstirrup resistingtorsionwithinspacings,mm2,Sec6.4 = Area of prestressing steel in a tie, mm2,AppendixA

    =

    Total

    crosssectional

    area

    of

    all transversereinforcement within spacing

    sthat

    crosses

    the

    potential plane of splitting through thereinforcement being developed,mm2,Sec8.2 = Area of nonprestressed reinforcement in atie,mm2,AppendixA = Areaofshearreinforcementspacings,mm2,Sec6.4,6.12 = Projected concrete failure area of a singleanchororgroupofanchors, forcalculationofstrengthinshear,mm2,seeD.6.2.1,AppendixD = Projected concrete failure area of a singleanchor, for calculation of strengthinshear,ifnotlimitedbycorner influences,spacing,ormemberthickness,mm2, seeD.6.2.1,AppendixD = Totalareaof reinforcement ineach group ofdiagonalbarsinadiagonallyreinforcedcouplingbeam,mm2,Sec8.3 = Area of shearfriction reinforcement, mm2,Sec6.4,8.3 = Area of shear reinforcement parallel to flexural tension reinforcement within spacing ,mm2,Sec6.4

    , = Minimum area of shear reinforcement withinspacing s, mm2, see 6.4.3.5.1 and 6.4.3.5.3,Sec6.4 = Loadedarea,mm2,Sec6.3 = Areaof the lowerbaseof the largest frustumof a pyramid, cone, or tapered wedgecontainedwhollywithinthesupportandhavingforitsupperbasetheloadedarea,andhaving

    sideslopesof1verticalto2horizontal,mm2,Sec6.3 = Widthof compression faceofmember, mm,Sec6.3 = Perimeterofcriticalsectionforshear in slabsand footings, mm, see 6.4.10.1.2,Sec6.4 = Widthofstrut,mm,AppendixA = Widthof thatpartof cross section containing theclosedstirrupsresisting torsion,mm,Sec

  • 7/27/2019 Part 6-Chap 6

    3/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 63

    6.4 = Width of cross section at contact surfacebeinginvestigatedforhorizontalshear,mm,Sec6.12 = Web width, or diameter of circular section,mm,Sec6.3,6.4,8.2,8.3 = Dimensionof thecritical section measuredinthedirectionofthespanforwhichmomentsaredetermined,mm,Sec6.5 = Dimensionofthecritical section measuredin the direction perpendicularto,mm,Sec6.5

    = Distance fromextreme compression fiber toneutralaxis,mm,Sec6.2,6.3,6.6,8.3

    = Critical edge distance required to develop the basic concrete breakout strength of a postinstalled anchor in uncracked concrete without supplementary reinforcement to controlsplitting,mm,seeD.8.6,AppendixD, = Maximumdistancefrom center of an anchorshaft to the edge of concrete,mm,Appendix D, = Minimumdistancefrom center of an anchorshaft to the edge of concrete,mm,Appendix D = Distance from the centerofananchor shafttotheedgeofconcreteinonedirection,mm.Ifshear isapplied toanchor, is taken in the direction of the applied shear. If tension isappliedtotheanchor, istheminimumedgedistance,appendixd = Distance from center of an anchor shaft to theedgeofconcrete in thedirectionperpendicularto,mm,AppendixD = Smallerof: (a) thedistance from center of abarorwiretonearestconcretesurface,and(b)onehalfthecentertocenterspacingofbarsorwiresbeingdeveloped,mm,Sec8.2

    = Clear cover of reinforcement, mm, see6.3.6.4,Sec6.3

    = Distancefromtheinterior face of the columnto the slab edge measuredparalleltoc1,butnotexceeding,mm,Sec8.3 = Dimension of rectangular or equivalent rectangular column, capital, or bracketmeasured in the direction of the span forwhichmomentsarebeingdetermined,mm,Sec

    6.4,6.5,8.3 = Dimension of rectangular or equivalent rectangular column, capital, or bracketmeasured in the direction perpendicular to,mm,Sec6.5 = Crosssectional constant to define torsionalpropertiesofslabandbeam,see6.5.6.4.2,Sec6.5 = Factorrelatingactualmoment diagram to anequivalentuniformmomentdiagram,Sec6.3 = Distance fromextreme compression fiber tocentroidoflongitudinal tensionreinforcement,mm,Sec6.26.4,6.6,6.12,8.18.3,

    = Distance from extreme compression fiber to centroid of longitudinal compressionreinforcement,mm,Sec6.2 = Outsidediameterofanchor or shaft diameterof headed stud, headedbolt,orhooked bolt,mm,seeD.8.4,AppendixD = Valuesubstitutedforwhenanoversizedanchorisused,mm,seeD.8.4,AppendixD = Nominal diameter of bar, wire, or prestressing strand, mm, Sec 8.1-8.3 = Distance from extreme compression fiber to centroid of prestressing steel, mm, Sec6.4 = Diameter of pile at footing base, mm, Sec 6.8 = Distance fromextreme compression fiber tocentroidofextremelayeroflongitudinaltensionsteel,mm,Sec6.2,6.3 = Deadloads,orrelated internal moments andforces,Sec6.1,6.2,6.11,8.3

    = Distancefromtheinner surface of the shaft of aJorLbolttotheoutertipoftheJ orLbolt,mm,

    AppendixD = Distance between resultant tension load on a group of anchors loaded in tension andtheCentroid of the group of anchors loaded in tension, mm; is always positive,appendix d = Distance between resultant shear load on a group of anchors loaded in shear in thesameDirection, and the centroid of the group of anchors loaded in shear in the samedirection, mm; is always positive, appendix d = Loadeffectsofearthquake,orrelatedinternalmomentsandforces,Sec6.2,8.3 = Modulusofelasticityofconcrete,mpa,see6.1.7.1,Sec6.16.3,6.6,6.9

  • 7/27/2019 Part 6-Chap 6

    4/111

    Part6

    StructuralDesign

    64 Vol.2

    = Modulusofelasticityofbeamconcrete,mpa,Sec6.5 = Modulusofelasticityofslabconcrete,mpa,Sec6.5 = Flexuralstiffnessofcompressionmember,Nmm2,see6.3.10.6,Sec6.3 = Modulusofelasticityofprestressingsteel,mpa,see6.1.7.3,Sec6.1 = Modulusofelasticityofreinforcement andstructuralsteel,mpa,see6.1.7.2,Sec6.1,6.3,6.6 = Specifiedcompressivestrengthofconcrete,mpa,Sec6.16.4,6.6,6.9,8.2,8.3,AppendixesA,

    D = Squarerootofspecifiedcompressivestrengthofconcrete,mpa,Sec6.1,6.2,6.4,6.9,8.2,8.3,AppendixD = Effective compressive strength of the concrete in a strut or a nodal zone, mpa, Sec 6.8,AppendixA = Averagesplittingtensilestrengthoflightweightconcrete,mpa,See6.1.8.1Sec6.1,6.4,8.2.3.4(d),Sec8.2 = Stressduetounfactoreddeadload,atextremefiberofsectionwheretensilestressiscausedbyexternallyappliedloads,mpa,Sec6.4 = Compressive stress in concrete (afterallowance forallprestress losses)at centroidof crosssectionresistingexternallyapplied loadsoratjunctionofwebandflangewhenthecentroid

    lieswithintheflange,mpa.(Inacompositemember, istheresultantcompressivestressatcentroidofcompositesection,oratjunctionofwebandflangewhenthecentroidlieswithin

    theflange,duetobothprestressandmomentsresistedbyprecastmemberactingalone),Sec

    6.4 = Compressivestress inconcretedue toeffectiveprestress forcesonly (afterallowance forallprestress losses) at extreme fiber of section where tensile stress is caused by externally

    appliedloads,mpa,Sec6.4 = Stressinprestressingsteelatnominalflexuralstrength,mpa,Sec8.2 = Specifiedtensilestrengthofprestressingsteel,mpa,Sec6.4 = Modulusofruptureofconcrete,mpa,see6.2.5.2.3,Sec6.2,6.6 = Calculatedtensilestressinreinforcementatserviceloads,mpa,Sec6.3 = Stressincompressionreinforcementunderfactoredloads,mpa,AppendixA = Effective stress inprestressing steel (after allowance for allprestress losses),mpa, Sec8.2,AppendixA

    =

    Specifiedtensile

    strength

    ofanchor

    steel,

    mpa,

    Appendix

    D = Specifiedyieldstrengthofreinforcement, mpa,Sec6.26.4,6.6,6.9,6.12,8.18.3,AppendixA = Specifiedyieldstrengthofanchorsteel,mpa,AppendixD = Specifiedyieldstrengthoftransversereinforcement,mpa,Sec6.3,6.4,8.28.3 = Loads due to weight and pressures of fluids with welldefined densities and controllable

    maximumheights,orrelatedinternalmomentsandforces,Sec6.2 = Nominalstrengthofastrut,tie,ornodalzone,N,AppendixA = Nominalstrengthatfaceofanodalzone,N,AppendixA = Nominalstrengthofastrut,N,AppendixA = Nominalstrengthofatie,N,AppendixA = Factored forceacting inastrut, tie,bearingarea,ornodalzone inastrutandtiemodel,N,AppendixA

    = Overallthicknessorheightofmember,mm,Sec6.26.4,6.6,6.11,6.12,8.2,8.3,AppendixA

    = Thicknessofmember inwhichananchor is located,measuredparallel toanchoraxis,mm,AppendixD = Crosssectional dimension of member core measured to the outside edges of the transversereinforcementcomposingarea,mm,Sec8.3 = Effectiveembedmentdepthofanchor,mm,seeD.8.5,AppendixD = ThicknessofoverhangingportionoftheflangeofaTbeam,see6.3.15.2(b) = Depthofshearheadcrosssection,mm,Sec6.4 = Heightofentirewallfrombasetotoporheightofthesegmentofwallconsidered,mm,Sec6.4,8.3 = Maximum centertocenter horizontal spacing of crossties or hoop legs on all faces of thecolumn,mm,Sec8.3

  • 7/27/2019 Part 6-Chap 6

    5/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 65

    = Loadsduetoweightandpressureofsoil,waterinsoil,orothermaterials,orrelatedinternalmomentsandforces,Sec6.2 = Momentofinertiaofsectionaboutcentroidalaxis,mm4,Sec6.3,6.4 = Momentofinertiaofgrosssectionofbeamaboutcentroidalaxis,mm4,see6.5.6.1.6,Sec6.5 = Momentofinertiaofcrackedsectiontransformedtoconcrete,mm4,Sec6.2 = Effectivemomentofinertiaforcomputationofdeflection,mm4,see6.2.5.2.3,Sec6.2 = Momentof inertiaofgrossconcretesectionaboutcentroidalaxis,neglectingreinforcement, mm

    4

    ,Sec6.2,

    6.3,

    6.6

    = Momentofinertiaofgrosssectionofslababoutcentroidalaxisdefinedforcalculatingand,mm4,Sec6.5 = Momentofinertiaofreinforcementaboutcentroidalaxisofmembercrosssection,mm4,Sec6.3 = Momentofinertiaofstructuralsteelshape,pipe,ortubingaboutcentroidalaxisofcompositemembercrosssection,mm

    4,Sec6.3 = Effectivelengthfactorforcompressionmembers,Sec6.3,6.6 = Coefficientforbasicconcretebreakoutstrengthintension,AppendixD = Coefficientforpryoutstrength,AppendixD = Transversereinforcementindex,see8.2.3.3,Sec8.2

    = Spanlengthofbeamoronewayslab;clearprojectionofcantilever,mm,Sec6.2

    = Additionalembedmentlengthbeyondcenterlineofsupportorpointofinflection,mm,Sec8.2 = Length of compression member in a frame, measured centertocenter of thejoints in theframe,mm,Sec6.3,6.6 = Development length intensionofdeformedbar,deformedwire,plainanddeformedweldedwirereinforcement, orpretensionedstrand,mm,Sec6.9,8.18.3 = Developmentlengthincompressionofdeformedbarsanddeformedwire,mm,Sec8.2 = Development length in tension of deformed bar or deformed wire with a standard hook,measured fromcriticalsection tooutsideendofhook (straightembedment lengthbetween

    criticalsectionand startofhook [pointof tangency]plus insideradiusofbendandonebar

    diameter),mm,seeSec.8.2and8.3,Sec8.2,8.3 = Developmentlengthintensionofheadeddeformedbar,measuredfromthecriticalsectiontothebearingfaceofthehead,mm,Sec8.2

    = Loadbearinglengthofanchorforshear,mm,seeD.6.2.2,AppendixD

    = Lengthofclearspanmeasuredfacetofaceofsupports,mm,Sec6.16.5,6.10,8.2.9.3, Sec8.2,8.3 = Length, measured from joint face along axis of structural member, over which specialtransversereinforcementmustbeprovided,mm,Sec8.3 = Spanofmemberunder load test, takenas theshorterspan for twowayslab systems,mm.Span is the smaller of: (a) distance between centers of supports, and (b) clear distance

    betweensupportsplusthicknessofmember.Span foracantilevershallbe takenas twicethedistancefromfaceofsupporttocantileverend,Sec6.11 = Unsupportedlengthofcompressionmember,mm,see6.3.10.1.1,Sec6.3 = Lengthofshearheadarmfromcentroidofconcentratedloadorreaction,mm,Sec6.4 = Lengthofentirewallorlengthofsegmentofwallconsideredindirectionofshearforce,mm,Sec6.4,6.6,8.3

    = Lengthofspanindirectionthatmomentsarebeingdetermined,measuredcentertocenterofsupports,mm,Sec6.5 = Lengthofspan indirectionperpendicular to ,measuredcentertocenterofsupports,mm,see6.5.6.2.3and6.5.6.2.4,Sec6.5 = Liveloads,orrelatedinternalmomentsandforces,Sec6.1,6.2,6.11,8.3 = Roofliveload,orrelatedinternalmomentsandforces,Sec6.2 = Maximummoment inmemberdue to service loadsatstagedeflection is computed,Nmm,Sec6.2,6.6 = Factored moment amplified for the effects of member curvature used for design ofcompressionmember,Nmm,see6.3.10.6,Sec6.3 = Crackingmoment,Nmm,see6.2.5.2.3,Sec6.2,6.6

  • 7/27/2019 Part 6-Chap 6

    6/111

    Part6

    StructuralDesign

    66 Vol.2

    = Momentcausingflexuralcrackingatsectiondue toexternallyappliedloads,Nmm,Sec6.4 = Factoredmomentmodified toaccount foreffectofaxialcompression,Nmm,see6.4.2.2.2,Sec6.4 = Maximumfactoredmomentatsectionduetoexternallyappliedloads,Nmm,Sec6.4 = Nominalflexuralstrengthatsection,Nmm,Sec6.4,6.6,8.2,8.3

    = Nominalflexuralstrengthatsectionwithoutcompressionsteel,see6.3.15.1(b),andmoment

    ofresistance developedbycompressionintheoverhangingportionoftheTflange,see6.3.15.2(b) = Additional nominal flexural strength at section due to added compression steel andadditionaltensionsteel,see6.3.15.1(b),andmomentofresistancedevelopedbythewebofaTbeam,see6.3.15.2(b) = Nominal flexural strength of column framing intojoint, calculated for factored axial force,consistentwiththedirectionoflateralforcesconsidered,resultinginlowestflexuralstrength,

    Nmm,Sec8.3 = Totalfactoredstaticmoment,Nmm,Sec6.5 = Requiredplasticmomentstrengthofshearheadcrosssection,Nmm,Sec6.4 = Probable flexural strength of members, with or without axial load, determined using thepropertiesofthememberatthejointfacesassumingatensilestressinthelongitudinalbarsof

    atleast

    1.25andastrengthreductionfactor,

    ,of1.0,N

    mm,Sec8.3

    = Factoredmomentduetoloadscausingappreciablesway,Nmm,Sec6.3 = Portionofslabfactoredmomentbalancedbysupportmoment,Nmm,Sec8.3 = Factoredmomentatsection,Nmm,Sec6.36.6,8.3 = Momentatmidheightofwallduetofactoredlateralandeccentricverticalloads,notincludingeffects,Nmm,Sec6.6 = Momentresistancecontributedbyshearheadreinforcement,Nmm,Sec6.4 = Smallerfactoredendmomentonacompressionmember,tobetakenaspositiveifmemberisbentinsinglecurvature,andnegativeifbentindoublecurvature,Nmm,Sec6.3 = Factoredendmomentonacompressionmemberat theendatwhichM1acts,due to loadsthatcausenoappreciablesidesway,calculatedusingafirstorderelasticframeanalysis,Nmm,Sec6.3

    , = Minimumvalueof

    ,N

    mm,Sec6.3

    =

    Factoredend

    moment

    on

    compression

    member

    atthe

    end

    atwhich

    M2acts,

    due

    toloads

    that

    causenoappreciablesidesway,calculatedusingafirstorderelasticframeanalysis,Nmm,Sec6.3 = Factoredendmomentoncompressionmemberattheendatwhichacts,duetoloadsthatcauseappreciablesidesway,calculatedusingafirstorderelasticframeanalysis,Nmm,Sec6.3 = Numberofitems,suchasstrengthtests,bars,wires,monostrandanchoragedevices,anchors,orshearheadarms,Sec6.4,8.2,AppendixD = Basic concrete breakout strength in tension of a single anchor in cracked concrete, N, seeD.5.2.2,AppendixD = Nominalconcretebreakoutstrengthintensionofasingleanchor,N,seeD.5.2.1,AppendixD = Nominalconcretebreakoutstrengthintensionofagroupofanchors,N,seeD.5.2.1,AppendixD

    = Nominalstrengthintension,N,AppendixD

    = Pulloutstrength intensionofasingleanchorincrackedconcrete,N,seeD.5.3.4andD.5.3.5,AppendixD = Nominalpulloutstrengthintensionofasingleanchor,N,seeD.5.3.1,AppendixD = Nominalstrengthofasingleanchororgroupofanchors intensionasgovernedbythesteelstrength,N,seeD.5.1.1andD.5.1.2,AppendixD = Sidefaceblowoutstrengthofasingleanchor,N,AppendixD = Sidefaceblowoutstrengthofagroupofanchors,N,AppendixD = Factoredaxialforcenormaltocrosssectionoccurringsimultaneouslywith or ;tobetakenaspositiveforcompressionandnegativefortension,N,Sec6.4 = Factoredtensileforceappliedtoanchororgroupofanchors,N,AppendixD = Factoredhorizontaltensileforceappliedattopofbracketorcorbelactingsimultaneously with

  • 7/27/2019 Part 6-Chap 6

    7/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 67

    Vu,tobetakenaspositivefortension,N,Sec6.4 = Outsideperimeterofconcretecrosssection,mm,see6.4.4.1,Sec6.4 = Perimeterofcenterlineofoutermostclosedtransversetorsionalreinforcement, mm,Sec6.4 = Nominalaxialstrengthatbalancedstrainconditions,N,see6.3.3.2,Sec6.2,6.3 = Criticalbucklingload,N,see6.3.10.6,Sec6.3 = Nominalaxialstrengthofcrosssection,N,Sec6.2,6.3,6.6, = Maximumallowablevalueof,N,see6.3.3.6,Sec6.3

    = Nominalaxialstrengthatzeroeccentricity,N,Sec6.3

    = Unfactoredaxial loadatthedesign(midheight)section includingeffectsofselfweight,N,Sec6.6 = Factoredaxialforce;tobetakenaspositiveforcompressionandnegativefortension,N,Sec6.3,6.6,8.3 = Factoreddeadloadperunitarea,Sec6.5 = Factoredliveloadperunitarea,Sec6.5 = Factoredloadperunitarea,Sec6.5 = Stabilityindexforastory,see6.3.10.5.2,Sec6.3 = Radiusofgyrationofcrosssectionofacompressionmember,mm,Sec6.3 = Rainload,orrelatedinternalmomentsandforces,Sec6.2 = Centertocenter spacing of items, such as longitudinal reinforcement, transversereinforcement, prestressingtendons,wires,oranchors,mm,Sec6.3,6.4,6.9,6.11,6.12,8.2,

    8.3,AppendixD

    = Centertocenter spacing of reinforcement in the ith layer adjacent to the surface of themember,mm,AppendixA = Centertocenterspacingoftransversereinforcementwithinthelength,mm,Sec8.3 = Samplestandarddeviation,mpa,AppendixD = Centertocenterspacingoflongitudinalshearortorsionreinforcement, mm,Sec6.4 = Snowload,orrelatedinternalmomentsandforces,Sec6.2,8.3 = Moment, shear, or axial force at connection corresponding to development of probablestrengthat intended yield locations,based on the governingmechanism of inelastic lateral

    deformation, consideringbothgravityandearthquakeloadeffects,Sec8.3 = Nominalflexural,shear,oraxialstrengthofconnection,Sec8.3 = Yieldstrengthofconnection,basedon,formoment,shear,oraxialforce,Sec8.3

    = Wallthicknessofhollowsection,mm,Sec6.4

    = Cumulative effect of temperature, creep, shrinkage, differential settlement, and shrinkagecompensatingconcrete,Sec6.2 = Nominaltorsionalmomentstrength,Nmm,Sec6.4 = Factoredtorsionalmomentatsection,Nmm,Sec6.4 = Requiredstrengthtoresistfactoredloadsorrelatedinternalmomentsandforces,Sec6.2 = Nominalshearstress,mpa,see6.4.10.6.2,Sec6.4,8.3 = Basicconcretebreakoutstrengthinshearofasingleanchorincrackedconcrete,N,seeD.6.2.2andD.6.2.3,AppendixD = Nominalshearstrengthprovidedbyconcrete,N,Sec6.1,6.4,6.5,8.3 = Nominalconcretebreakoutstrengthinshearofasingleanchor,N,seeD.6.2.1,AppendixD = Nominalconcretebreakoutstrengthinshearofagroupofanchors,N,seeD.6.2.1,AppendixD = Nominalshearstrengthprovidedbyconcretewhendiagonalcrackingresultsfromcombinedshearandmoment,N,Sec6.4

    = Nominalconcretepryoutstrengthofasingleanchor,N,seeD.6.3.1,AppendixD = Nominalconcretepryoutstrengthofagroupofanchors,N,seeD.6.3.1,AppendixD = Nominal shear strength provided by concrete when diagonal cracking results from highprincipaltensilestressinweb,N,Sec6.4 = Shearforceatsectionduetounfactoreddeadload,N,Sec6.4 = Designshearforcecorrespondingtothedevelopmentoftheprobablemomentstrengthofthemember,N,Sec8.3 = Factoredshearforceatsectionduetoexternallyappliedloadsoccurringsimultaneously with,N,Sec8.3 = Nominalshearstrength,N,Sec6.1,6.3,6.4,8.3,AppendixD = Nominalhorizontalshearstrength,N,Sec6.12

  • 7/27/2019 Part 6-Chap 6

    8/111

    Part6

    StructuralDesign

    68 Vol.2

    = Verticalcomponentofeffectiveprestressforceatsection,N,Sec6.4 = Nominalshearstrengthprovidedbyshearreinforcement,N,Sec6.4 = Nominal strength in shearofa singleanchoror groupofanchorsas governedby the steelstrength,N,seeD.6.1.1andD.6.1.2,AppendixD = Factoredshearforceatsection, N,Sec6.4,6.5,6.12,8.2,8.3

    = Factoredshearforceappliedtoasingleanchororgroupofanchors,N,AppendixD

    = Factoredshearforceontheslabcriticalsectionfortwowayactionduetogravityloads,N,seeSec.8.3 = Factoredhorizontalshearinastory,N,Sec6.3 = Density(unitweight)ofnormalweightconcreteorequilibriumdensityoflightweightconcrete,kg/m3,Sec6.1,6.2 = Factoredloadperunitlengthofbeamoronewayslab,Sec6.1 = Windload,orrelatedinternalmomentsandforces,Sec6.2 = Shorteroveralldimensionofrectangularpartofcrosssection,mm,Sec6.5 = Longeroveralldimensionofrectangularpartofcrosssection,mm,Sec6.5 = Distancefromcentroidalaxisofgrosssection,neglectingreinforcement, totensionface,mm,Sec6.2,6.4

    = Angledefiningtheorientationofreinforcement, Sec6.4,8.3,AppendixA

    = Coefficient defining the relative contribution of concrete strength to nominal wall shear

    strength,Sec8.3 = Ratio of flexural stiffness of beam section to flexural stiffness of a width of slab boundedlaterallybycenterlinesofadjacentpanels(ifany)oneachsideofthebeam,see6.5.6.1.6,Sec

    6.2,6.5 = Averagevalueofforallbeamsonedgesofapanel,Sec6.2 = indirectionofl1,Sec6.5 = indirectionof,Sec6.5 = Anglebetweentheaxisofastrutandthebarsintheithlayerofreinforcementcrossingthatstrut,AppendixA = Constantusedtocompute inslabsandfootings,Sec6.4 = Ratioofflexuralstiffnessofshearheadarmtothatofthesurroundingcompositeslabsection,see6.4.10.4.5,Sec6.4

    = Ratiooflongtoshortdimensions:clearspansfortwowayslabs,see6.2.5.3.3;sidesofcolumn,concentratedloadorreactionarea,see6.4.10.2.1;orsidesofafooting,see6.8.4.4.2,Sec6.2,6.4,6.8 = Ratioofareaofreinforcementcutofftototalareaoftensionreinforcement atsection,Sec8.2 = Ratioused toaccount forreductionofstiffnessofcolumnsdue tosustainedaxial loads,see6.3.10.6.2,Sec6.3 = Ratiousedtoaccountforreductionofstiffnessofcolumnsduetosustainedlateralloads,see6.3.10.4.2,Sec6.3 = Factortoaccountfortheeffectoftheanchorageoftiesontheeffectivecompressivestrengthofanodalzone,AppendixA = Factorusedtocompute inprestressedslabs,Sec6.4 = Factor to account for the effect of cracking and confining reinforcement on the effectivecompressivestrengthoftheconcreteinastrut,AppendixA

    = Ratiooftorsionalstiffnessofedgebeamsectiontoflexuralstiffnessofawidthofslabequaltospanlengthofbeam,centertocenterofsupports,see6.5.6.4.2,Sec6.5 = Factorrelatingdepthofequivalentrectangularcompressivestressblocktoneutralaxisdepth,see6.3.2.7.3,Sec6.3 = Factor used to determine the unbalanced moment transferred by flexure at slabcolumnconnections,see6.5.5.3.2,Sec6.4,6.5,8.3 = Factorusedtodeterminetheportionofreinforcement located incenterbandoffooting,see6.8.4.4.2,Sec6.8 = Factorusedtodeterminetheunbalancedmomenttransferredbyeccentricityofshearatslabcolumnconnections, see6.4.10.7.1,Sec6.4

  • 7/27/2019 Part 6-Chap 6

    9/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 69

    = Moment magnification factor to reflect effects of member curvature between ends ofcompressionmember,Sec6.3 = Momentmagnification factor for framesnotbracedagainstsidesway, to reflect lateraldriftresultingfromlateralandgravityloads,Sec6.3 = Designdisplacement,mm,Sec8.3 = Computed, outofplane deflection at midheight of wall corresponding to crackingmoment,,mm,Sec6.6

    = Increaseinstressinprestressingsteelduetofactoredloads,mpa,AppendixA

    = Computed, outofplane deflection at midheight of wall corresponding to nominal flexuralstrength,,mm,Sec6.6 = Relative lateral deflection between the top and bottom of a story due to lateral forcescomputedusinga firstorderelastic frameanalysisandstiffnessvalues satisfying6.3.10.5.2,

    mm,Sec6.3 = Differencebetweeninitialandfinal(afterloadremoval)deflectionsforloadtestorrepeatloadtest,mm,Sec6.11 = Computed,outofplanedeflectionatmidheightofwallduetoserviceloads,mm,Sec6.6 = Computeddeflectionatmidheightofwallduetofactoredloads,mm,Sec6.6 = Measuredmaximumdeflectionduringfirstloadtest,mm,see6.11.5.2,Sec6.11 = Maximumdeflectionmeasuredduringsecondloadtestrelativetothepositionofthestructureatthebeginningofsecondloadtest,mm,see6.11.5.2,Sec6.11

    = Nettensilestraininextremelayeroflongitudinaltensionsteelatnominalstrength,excluding

    strainsduetoeffectiveprestress,creep,shrinkage,andtemperature,Sec6.16.3 = Anglebetweenaxisofstrut,compressiondiagonal,orcompressionfieldandthetensionchordofthemember,Sec6.4,AppendixA = Modification factor reflecting the reducedmechanicalpropertiesof lightweightconcrete,allrelative tonormalweight concrete of the same compressive strength, see6.1.8.1,6.4.5.4.3,

    8.2.3.4(d),8.2.6.2,8.2.10.2(b),Sec6.2,6.4,6.9,8.2,8.3andAppendixesA,D = Multiplierforadditionaldeflectionduetolongtermeffects,see6.2.5.2.5,Sec6.2 = Coefficientoffriction,see6.4.5.4.3,Sec6.4,8.3 = Timedependentfactorforsustainedload,see6.2.5.2.5,Sec6.2 = Ratioof to,Sec6.4,6.5,8.3

    = Ratioof

    to

    ,see6.3.15.1(b), Sec6.2

    = Ratioof toproducingbalancedstrainconditions,see6.3.3.2,Sec6.3,6.5,6.6 = Ratioofto,see6.3.15.2(b) = Ratioofareaofdistributedlongitudinal reinforcementtogrossconcreteareaperpendicular tothatreinforcement, Sec6.4,6.6,8.3 = Maximum reinforcement ratio allowed for beams corresponding to 0.004 , see6.3.15.1(a) = Ratio of volume of spiral reinforcement to total volume of core confined by the spiral(measuredouttooutofspirals),Sec6.3,8.3 = Ratio of area distributed transverse reinforcement to gross concrete area perpendicular tothatreinforcement, Sec6.4,6.6,8.3 = Ratiooftiereinforcementareatoareaofcontactsurface,see6.12.5.3.3,Sec6.12 = Ratioof to,see6.3.15.2(b),Sec6.4

    = Strengthreductionfactor,see6.2.3,Sec6.16.6,6.9,6.11,6.12,8.3,AppendixesA&D

    , = Factorusedtomodifytensilestrengthofanchorsbasedonpresenceorabsenceofcracks inconcrete,seeD.5.2.6,AppendixD, = Factorusedtomodifypulloutstrengthofanchorsbasedonpresenceorabsenceofcracksinconcrete,seeD.5.3.6,AppendixD, = Factorused tomodifyshearstrengthofanchorsbasedonpresenceorabsenceofcracks inconcreteandpresenceorabsenceofsupplementaryreinforcement, seeD.6.2.7foranchorsin

    shear,AppendixD, = Factorusedtomodifytensilestrengthofpostinstalledanchors intendedforuse inuncrackedconcretewithoutsupplementaryreinforcement, seeD.5.2.7,AppendixD = Factorusedtomodifydevelopmentlengthbasedonreinforcementcoating,Sec8.2, = Factorusedtomodifytensilestrengthofanchorsbasedoneccentricity ofapplied loads,see

  • 7/27/2019 Part 6-Chap 6

    10/111

    Part6

    StructuralDesign

    610 Vol.2

    D.5.2.4,AppendixD, = Factorused tomodifyshearstrengthofanchorsbasedoneccentricityofapplied loads,seeD.6.2.5,AppendixD, = Factorused tomodify tensile strengthofanchorsbasedon proximity toedgesof concretemember,seeD.5.2.5,AppendixD

    , = Factor used to modify shear strength of anchors based on proximity to edges of concrete

    member,seeD.6.2.6,AppendixD, = Factor used to modify shear strength of anchors located in concrete members with 1.5,seeD.6.2.8,AppendixD = Factorusedtomodifydevelopmentlengthbasedonreinforcementsize,Sec8.2 = Factorusedtomodifydevelopmentlengthbasedonreinforcementlocation,Sec8.2 = Factor used to modify development length for welded deformed wire reinforcement intension,Sec8.2 = Effectivetensionareaofconcretesurroundingtheflexuraltensionreinforcement andhavingthe same centroid as that of the reinforcement, divided by the number of bars. When the

    flexural reinforcement consists ofdifferent bar sizes the numberof bars or wires shallbe

    computedasthetotalareaofreinforcement dividedbytheareaofthelargestbarused = Areaofskinreinforcementperunitheightinasideface = Factorrelatingshearandtorsionalstressproperties= = Thicknessof concrete cover measured fromextreme tension fibre to centreof bar or wire

    locatedclosestthereto = Momentofresistanceofasectionwithoutcompressionsteel = Additionalmomentof resistancedue toadded compressionsteel andadditional tensionsteelas2 = Spacingofshearortorsionreinforcementindirectionparalleltolongitudinal reinforcement = Torsionalmomentstrengthprovidedbyconcrete = Torsionalmomentstrengthprovidedbytorsionreinforcement = Shortercentretocentredimensionofclosedrectangularstirrup = Longercentretocentredimensionofclosedrectangularstirrup

    = Quantitylimitingdistributionofflexuralreinforcement,seeEq(6.2.35)

    = Coefficientequalto2 3 butnotmorethan1.51 = Factordefinedin6.2.3.7 = Timedependentfactorforsustainedload = Minimumratiooftensionreinforcement

    6.1.2 General6.1.2.1 Membersshallbedesignedforadequatestrength inaccordancewiththeprovisions

    ofthischapter,usingloadfactorsspecifiedin2.6.5.1andstrengthreductionfactors in6.2.3.1.

    6.1.2.2 Design of reinforced concrete members using Working Stress Design method

    (AppendixB)isalsopermitted.

  • 7/27/2019 Part 6-Chap 6

    11/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 611

    6.1.2.3 Structuresand structuralmembers shallbedesigned tohavedesignstrengthatall

    sectionsatleastequaltotherequired strength(U)calculatedforthefactoredloads

    and forces insuchcombinations asarestipulated inChapter2,Loads.Thenominal

    strengthprovidedforthesectionmultipliedbythestrengthreductionfactorshallbeequaltoorgreaterthanthecalculatedrequiredstrengthU.

    6.1.2.4 MembersshallalsomeetalltheotherrequirementsofthisCodetoensureadequate

    performanceatserviceloads.

    6.1.2.5 Design strength of reinforcement represented by the values of and used indesign calculationsshallnotexceed550MPa,except forprestressingsteeland for

    transversereinforcement in6.3.9.3andSec.8.3. or mayexceed420MPa,onlyif theratiooftheactualtensilestrengthtotheactualyieldstrengthisnotlessthan

    1.20,andtheelongationpercentageisnotlessthan16.

    6.1.2.6 Forstructuralconcrete, shallnotbe less than17MPa.NomaximumvalueofshallapplyunlessrestrictedbyaspecificCodeprovision.

    6.1.3 Loading

    6.1.3.1 Loadsandtheircombinationsshallbeinaccordancewiththerequirementsspecified

    inChapter2,Loads.

    6.1.3.2 Structuresshallbedesignedtoresistallapplicableloads.

    6.1.3.3 Effects of forces due to prestressing, crane loads, vibration, impact, shrinkage,

    temperature changes, creep, expansion of shrinkagecompensating concrete, and

    unequalsettlementofsupportsshallbedulyconsidered.

    6.1.4 Methodsofanalysis6.1.4.1 Members of frames or continuous construction (beams or oneway slabs) shall be

    designedforthemaximumeffectsoffactored loadsasdeterminedbythetheoryof

    elastic analysis, except as modified for redistribution of moments in continuous

    flexuralmembersaccordingto6.1.5.Designispermittedtobesimplifiedbyusingthe

    assumptionsspecifiedin6.1.6&6.1.9through6.1.12.

    6.1.4.2 Frame analysis by approximate methods shall be permitted for buildings of usual

    typesofconstruction, spans,andstoryheights.

    6.1.4.3 Provided (a)through (e)belowaresatisfied, theapproximatemomentsandshears

    given here shall be permitted for design of continuous beams and oneway slabs

    (slabs reinforced toresist flexuralstresses inonlyonedirection),asanalternate to

    frameanalysis:

    a) Therearetwoormorespans;

    b) Spansareapproximately equal,withthelargeroftwoadjacentspansnotgreaterthan

    theshorterbymorethan20percent;

    c) Loadsareuniformlydistributed;

    d) Unfactoredliveload,,doesnotexceedthreetimesunfactoreddeadload,;ande) Membersareprismatic.

    Forcalculatingnegativemoments,istakenastheaverageoftheadjacentclearspanlengths.Positivemoment

    Endspans

  • 7/27/2019 Part 6-Chap 6

    12/111

    Part6

    StructuralDesign

    612 Vol.2

    Discontinuous endunrestrained 11 Discontinuousendintegralwithsupport 14 Interiorspans

    16

    Negativemomentsatexteriorfaceoffirstinteriorsupport

    Twospans 9 Morethantwospans 10 Negativemomentatotherfacesofinterior

    Supports 11

    Negativemomentatfaceofallsupportsfor

    Slabswithspansnotexceeding3.048m;

    andbeamswhereratioofsumofcolumnstiffnessestobeamstiffnessexceeds8ateachendofthespan 12

    Negativemomentatinteriorfaceofexteriorsupportformembersbuiltintegrallywith

    supportsWheresupportisspandrelbeam 24 Wheresupportisacolumn

    16

    Shearinendmembersatfaceoffirst

    interiorsupport1.152

    Shearatfaceofallothersupports 2 6.1.4.4 Strutandtiemodels,providedinAppendixA,shallbepermittedtobeusedinthedesignof

    structuralconcrete.

    6.1.5 Redistributionofmomentsincontinuousflexuralmembers6.1.5.1 Itshallbepermittedtodecreasefactoredmomentscalculatedbyelastictheoryatsectionsof

    maximumnegativeormaximumpositivemomentinanyspanofcontinuousflexuralmembers

    foranyassumedloadingarrangementbynotmorethan1000percent,withamaximumof20percent,exceptwhereapproximatevaluesformomentsareused.

    6.1.5.2 Redistribution ofmomentsshallbemadeonlywhenisequaltoorgreaterthan0.0075atthesectionatwhichmomentisreduced.

  • 7/27/2019 Part 6-Chap 6

    13/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 613

    6.1.5.3 Atallothersectionswithinthespans,thereducedmomentshallbeusedforcalculating

    redistributedmoments.Staticequilibriumshallhavetobemaintainedafterredistribution of

    momentsforeachloadingarrangement.

    6.1.6 Spanlength6.1.6.1 Thespanlengthofasimplysupportedbeamshall betakenasthesmallerofthedistance

    betweenthecentresofbearings,orthecleardistancebetweensupportsplustheeffective

    depth.

    6.1.6.2 Fordetermination ofmomentsinanalysisofframesorcontinuousconstruction, spanlength

    shallbetakenasthedistancecentertocenterofsupports.

    6.1.6.3 Designonthebasisofmomentsatfacesofsupportshallbepermittedforbeamsbuilt

    integrallywithsupports.

    6.1.6.4 Itshallbepermittedtoanalyzesolidorribbedslabsbuiltintegrallywithsupports,withclear

    spansnotmorethan3m,ascontinuousslabsonknifeedgesupportswithspansequaltothe

    clearspansoftheslabandwidthofbeamsotherwiseneglected.

    6.1.7 Modulusof

    elasticity

    6.1.7.1 Modulusofelasticity,,forconcreteshallbepermittedtobetakenas .0.043 (inMPa)forvaluesofbetween1440and2560kg/m3.Fornormalweightconcrete,shallbepermittedtobetakenas4700.

    6.1.7.2 Modulusofelasticity,,forreinforcement shallbepermittedtobetakenas200,000MPa.

  • 7/27/2019 Part 6-Chap 6

    14/111

    Part6

    StructuralDesign

    614 Vol.2

    6.1.8 Lightweightconcrete6.1.8.1 Toaccountfortheuseoflightweightconcrete,unlessspecificallynotedotherwise,a

    modificationfactorappearsasamultiplierofinallapplicableequationsandsectionsofthisCode,where 0.85forsandlightweightconcreteand0.75foralllightweightconcrete.Linearinterpolationbetween0.75and0.85shallbepermitted,onthebasisof

    volumetricfractions,whenaportionofthelightweightfineaggregateisreplacedwith

    normalweightfineaggregate.Linearinterpolation between0.85and1.0shallbepermitted,

    onthebasisofvolumetricfractions,forconcretecontainingnormalweightfineaggregateand

    ablendoflightweightandnormalweightcoarseaggregates.Fornormalweightconcrete, 1.0.Ifaveragesplittingtensilestrengthoflightweightconcrete,,isspecified, /0.56 1.0.6.1.9 Stiffness6.1.9.1 Forcomputingrelativeflexuralandtorsionalstiffnessesofcolumns,walls,floors,androof

    systems,useofanysetofreasonableassumptionsshallbepermitted.Theassumptions

    adoptedshallbeconsistentthroughoutanalysis.

    6.1.9.2 Bothindeterminingmomentsandindesignofmembers,effectofhaunchesshallbe

    considered.

    6.1.10 Effectivestiffnessfordetermininglateraldeflections6.1.10.1 Lateraldeflectionsresultingfromservicelateralloadsforreinforcedconcretebuildingsystems

    shallbecomputedbyeitheralinearanalysiswithmemberstiffnessdeterminedusing1.4

    timestheflexuralstiffnessdefinedin6.1.10.2and6.1.10.3orbyamoredetailedanalysis.

    Memberpropertiesshallnotbetakengreaterthanthegrosssectionproperties.

    6.1.10.2 Lateraldeflectionsresultingfromfactoredlateralloadsforreinforcedconcretebuilding

    systemsshallbecomputedeitherbylinearanalysiswithmemberstiffnessdefinedby(a)or

    (b),orbyamoredetailedanalysisconsideringthereducedstiffnessofallmembersunderthe

    loadingconditions:

    a) Bysectionpropertiesdefinedin6.3.10.4.1(a)through(c);or

    b) 50percentofstiffnessvaluesbasedongrosssectionproperties.

    6.1.10.3 Lateraldeflectionsresultingfromfactoredlateralloadsshallbepermittedtobecomputedby

    usinglinearanalysis,wheretwowayslabswithoutbeamsaredesignatedaspartofthe

    seismicforceresistingsystem.Thestiffnessofslabmembersshallbedefinedbyamodelthat

    isinsubstantialagreementwithresultsofcomprehensivetestsandanalysisandthestiffness

    ofotherframemembersshallbeasdefinedin6.1.10.2.

    6.1.11 ConsiderationsforColumns6.1.11.1 Columnsshallbedesignedtoresisttheaxialforcesfromfactoredloadsonallfloorsorroof

    andthemaximummomentfromfactoredloadsonasingleadjacentspanofthefloororroof

    underconsideration. Loadingconditionresultingthemaximumratioofmomenttoaxialload

    shallalsobeconsidered.

    6.1.11.2 Inframesorcontinuousconstruction,considerationshallbegiventotheeffectofunbalanced

    floororroofloadsonbothexteriorandinteriorcolumnsandofeccentricloadingduetoother

    causes.

  • 7/27/2019 Part 6-Chap 6

    15/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 615

    6.1.11.3 Itshallbepermittedtoassumefarendsofcolumnsbuiltintegrallywiththestructuretobe

    fixed,whilecomputinggravityloadmomentsincolumns.

    6.1.11.4 Resistancetomomentsatanyfloororrooflevelshallbeprovidedbydistributing themoment

    betweencolumnsimmediatelyaboveandbelowthegivenfloorinproportiontotherelative

    columnstiffnessesandconditionsofrestraint.

    6.1.12 Liveloadarrangement

    6.1.12.1 Thefollowingshallbepermittedtoassume:

    a) Theliveloadisappliedonlytothefloororroofunderconsideration;and

    b) Thefarendsofcolumnsbuiltintegrallywiththestructureareconsideredtobefixed.

    6.1.12.2 Arrangementofliveloadshallbepermittedtobeassumedtobelimitedtocombinations of:

    a) Factoreddeadloadonallspanswithfullfactoredliveloadontwoadjacentspans;and

    b) Factoreddeadloadonallspanswithfullfactoredliveloadonalternatespans.

    6.1.13 ConstructionofT-beam6.1.13.1 IntheconstructionofTbeam,theflangeandwebshallbebuiltintegrallyorotherwise

    effectivelybondedtogether.

    6.1.13.2 WidthofslabeffectiveasaTbeamflangeshallnotexceedonequarterofthespanlengthof

    thebeam,andtheeffectiveoverhangingflangewidthoneachsideofthewebshallnot

    exceed:

    a) Eighttimestheslabthickness;and

    b) Onehalfthecleardistancetothenextweb.

    6.1.13.3 Theeffectiveoverhangingflangewidthforbeamswithaslabononesideonlyshallnot

    exceed:

    a) Onetwelfththespanlengthofthebeam;

    b) Sixtimestheslabthickness;and

    c) Onehalfthecleardistancetothenextweb.

    6.1.13.4 Isolatedbeams,inwhichtheTshapeisusedtoprovideaflangeforadditionalcompression

    area,shallhaveaflangethicknessnotlessthanonehalfthewidthofwebandaneffective

    flangewidthnotmorethanfourtimesthewidthofweb.

    6.1.13.5 WhenprimaryflexuralreinforcementinaslabthatisconsideredasaTbeamflange

    (excludingjoistconstruction)isparalleltothebeam,reinforcementshallbeprovidedinthe

    topoftheslabinthedirectionperpendicular tothebeamandinaccordancewiththe

    following:

    6.1.13.5.1 Transversereinforcementshallbedesignedtocarrythefactoredloadontheoverhanging

    slabwidthassumedtoactasacantilever.Forisolatedbeams,thefullwidthofoverhangingflangeshallbeconsidered.ForotherTbeams,onlytheeffectiveoverhangingslabwidthneed

    beconsidered.

    6.1.13.5.2 Spacing of transverse reinforcement shall be not farther apart than five times the slab

    thickness,norfartherapartthan450mm.

    6.1.14 Constructionofjoist6.1.14.1 Constructionofjoistconsistsofamonolithiccombinationofregularlyspacedribsandatop

    slabarrangedtospaninonedirectionortwoorthogonaldirections.

  • 7/27/2019 Part 6-Chap 6

    16/111

    Part6

    StructuralDesign

    616 Vol.2

    6.1.14.2 Widthofribsshallnotbelessthan100mm,andtheribsshallhaveadepthofnotmorethan

    31/2timestheminimumwidthofrib.

    6.1.14.3 Clearspacingbetweenribsshallnotexceed750mm.

    6.1.14.4 Joistconstruction notmeetingthelimitationsof6.1.14.1through6.1.14.3shallbedesignedas

    slabsandbeams.

    6.1.14.5 Whenpermanentburnedclayorconcretetilefillersofmaterialhavingaunitcompressive

    strengthatleastequaltointhejoistsareused:6.1.14.5.1 Forshearandnegativemomentstrengthcomputations, theverticalshellsoffillersincontact

    withtheribsshallbepermittedtoinclude.Otherportionsoffillersshallnotbeincludedin

    strengthcomputations.

    6.1.14.5.2 Slabthicknessoverpermanentfillersshallbenotlessthanonetwelfththecleardistance

    betweenribs,norlessthan40mm.

    6.1.14.5.3 Reinforcement normaltotheribsshallbeprovidedintheslabinonewayjoists,asrequiredby8.1.11

    6.1.14.6 Whenremovableformsorfillersareused,whichdonotcomplywith6.1.14.5,then:

    6.1.14.6.1 Slabthicknessshallbenotlessthanonetwelfththecleardistancebetweenribs,norlessthan

    50mm.

    6.1.14.6.2 Reinforcementnormaltotheribsshallbeprovidedintheslabasrequiredforflexure,

    consideringloadconcentrations,ifany,butnotlessthanrequiredby8.1.11

    6.1.14.7 Whereconduitsorpipesaspermittedbyrelevantprovisionsofembedmentsinconcreteare

    embeddedwithintheslab,slabthicknessshallbeatleast25mmgreaterthanthetotaloverall

    depthoftheconduitsorpipesatanypoint.Conduitsorpipesshallnotimpairsignificantlythe

    strengthoftheconstruction.

    6.1.14.8 Forjoistconstruction, shallbepermittedtobe10percentmorethanthatspecifiedinSec6.4.

    6.1.15 Separatefloorfinish6.1.15.1 Unlessplacedmonolithicallywiththefloorslabordesignedinaccordancewithrequirements

    ofSec.6.12,floorfinishshallnotbeincludedaspartofastructuralmember.

    6.1.15.2 Allconcretefloorfinishesshallbepermittedtobeconsideredaspartofrequiredcoveror

    totalthicknessfornonstructuralconsiderations.

    6.2 STRENGTHANDSERVICEABILITYREQUIREMENTS

    6.2.1 General6.2.1.1 Structuresandstructuralmembersshallbedesignedtohavedesignstrengthsatallsections

    atleastequaltotherequiredstrengthscalculatedforthefactoredloadsandforcesinsuch

    combinations asarestipulatedinthisCode.

  • 7/27/2019 Part 6-Chap 6

    17/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 617

    6.2.1.2 MembersalsoshallmeetallotherrequirementsofthisCodetoensureadequateperformance

    atserviceloadlevels.

    6.2.2 Requiredstrength6.2.2.1 Requiredstrengthshallbeatleastequaltotheeffectsoffactoredloadsinsuch

    combinationsasarestipulatedinChapter2,Loads.

    6.2.2.2 Ifresistancetoimpacteffectsistakenintoaccountindesign,sucheffectsshallbeincludedwith.

    6.2.2.3 Estimationsofdifferentialsettlement,creep,shrinkage,expansionofshrinkagecompensating

    concrete,ortemperaturechangeshallbebasedonarealisticassessmentofsucheffects

    occurringinservice.

    6.2.3 DesignStrength6.2.3.1 Designstrengthprovidedbyamember,anditsconnectionstoothermembers,intermsof

    flexure,axialload,shear,andtorsion,shallbetakenasthenominalstrengthcalculatedin

    accordancewiththerequirementsandassumptionsofthischapter,multipliedbyastrength

    reductionfactorsasstipulatedin6.2.3.2,6.2.3.3,and6.2.3.4.6.2.3.2 Strengthreductionfactorshallbeasgivenin6.2.3.2.1through6.2.3.2.6:6.2.3.2.1 Tensioncontrolledsectionsasdefinedin6.3.3.4............................................... 0.90

    6.2.3.2.2 Compressioncontrolledsections,asdefinedin6.3.3.3:

    Memberswithspiralreinforcement conformingto6.3.9.3........................ 0.75

    Otherreinforcedmembers.......................................................................... 0.65

    Forsectionsinwhichthenettensilestrainintheextremetensionsteelatnominalstrength,,isbetweenthelimitsfor compressioncontrolledandtensioncontrolledsections,shallbepermittedtobelinearlyincreased from that for compressioncontrolled sections to0.90as

    increases from the compression

    controlledstrainlimitto0.005(AlsoseeFig. 6.2.3.1).While interpolating, it shallbepermittedtoroundtoseconddigitafterdecimal.

    Fig.6.2.3.1Variationof withnettensilestrain inextremetensionsteel,and forGrade420reinforcementandforprestressingsteel(seesec.6.2.3.2.2)

  • 7/27/2019 Part 6-Chap 6

    18/111

    Part6

    StructuralDesign

    618 Vol.2

    6.2.3.2.3 Itshallbepermittedforcompressioncontrolledsections,asdefinedin6.3.3.3,thefollowing

    optional, more conservative alternative values of strength reduction factor, where lesscontrolled construction environment justifies such selection according to engineering

    judgmentofthedesigner:

    Memberswithspiralreinforcementconformingto6.3.9.3 0.70

    Otherreinforcedmembers 0.60

    Forsectionsinwhichthenettensilestrainintheextremetensionsteelatnominalstrength,,isbetweenthelimitsforcompressioncontrolledandtensioncontrolledsections,shallbepermittedtobelinearlyincreased from that for compressioncontrolled sections to 0.90 as increases from the compressioncontrolledstrainlimitto0.005(AlsoseeFig. 6.2.3.2).While interpolating, it shallbepermittedtoroundtoseconddigitafterdecimal.

    Fig. 6.2.3.2Variation of with net tensile strain in extreme tension steel,

    and

    for Grade 420

    reinforcementand

    for

    prestressing

    steel

    with

    reduced

    values

    of

    (0.6

    and

    0.7)

    for

    compression

    controlled sections (see sec.6.2.3.2.3, Optional application in case of less controlled

    environmentasperengineeringjudgment)

    6.2.3.2.4 Shearandtorsion 0.75

    6.2.3.2.5 Bearingonconcrete(exceptforposttensionedanchoragezonesandstrutandtiemodels:

    0.65

    6.2.3.2.6 Strutandtiemodels(AppendixA),andstruts,ties,nodalzones,andbearingareasinsuch

    models:0.75

    6.2.3.2.7CalculationofdevelopmentlengthspecifiedinSec8.2doesnotrequirea strengthreduction

    factor.

    6.2.3.3 ForstructuresrelyingonintermediateprecaststructuralwallsinSeismicDesignCategoryD,

    specialmomentframes,orspecialstructuralwallstoresistearthquakeeffects,,shallbemodifiedasgivenin(a)through(c):

    a) Foranystructuralmemberthatisdesignedtoresist,ifthenominalshearstrengthofthememberislessthantheshearcorrespondingtothedevelopmentofthenominal

    flexuralstrengthofthemember,forshearshallbe0.60.Thenominalflexuralstrengthshallbedeterminedconsideringthemostcriticalfactoredaxialloadsandincluding;

  • 7/27/2019 Part 6-Chap 6

    19/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 619

    b) Fordiaphragms,forshearshallnotexceedtheminimumforshearusedfortheverticalcomponentsoftheprimaryseismicforceresistingsystem;

    c) Forjointsanddiagonallyreinforcedcouplingbeams,forshearshallbe0.85.6.2.3.4 Strengthreductionfactor shallbe0.60forflexure,compression, shear,andbearingof

    structuralplainconcrete.

    6.2.4 Designstrengthforreinforcement

    The values of and used in design calculations shall not exceed 550 MPa, except for transversereinforcement in6.3.9.3andSec.8.3.6.2.5 Controlofdeflections6.2.5.1 Reinforcedconcretememberssubjectedtoflexureshallbedesignedtohaveadequate

    stiffnesstolimitdeflectionsoranydeformationsthatmayadverselyaffectstrengthor

    serviceabilityofastructure.

    6.2.5.2 Onewayconstruction(nonprestressed)

    6.2.5.2.1 MinimumthicknessstipulatedinTable6.2.5.1shallapplyforonewayconstruction not

    supportingorattachedtopartitionsorotherconstruction likelytobedamagedbylarge

    deflections, unlesscomputationofdeflectionindicatesalesserthicknesscanbeusedwithout

    adverseeffects.

    6.2.5.2.2 Wheredeflectionsaretobecomputed,deflectionsthatoccur immediatelyonapplicationof

    load shall be computed by usual methods or formulas for elastic deflections, considering

    effectsofcrackingandreinforcement onmemberstiffness.

    TABLE 6.2.5.1 MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONEWAY SLABS UNLESS

    DEFLECTIONSARECALCULATED

    Minimumthickness,Simplysupported Oneend

    continuous

    Bothendscontinuous

    Cantilever

    MemberMembersnotsupportingorattachedtopartitionsorotherconstructionlikelytobe

    damagedbylargedeflections

    Solidone way

    slabs

    /20 /24 /28 /10

    Beamsorribbedone wayslabs /16 /18.5 /21 /8

    Notes:

    Values given shall be used directly for members with normalweight concrete and Grade 420

    reinforcement.Forotherconditions,thevaluesshallbemodifiedasfollows:

    a) For lightweight concrete having equilibrium density, , in the range of1440 to1840kg/m3

    , thevaluesshallbemultipliedby1.65 0 .0003 butnot lessthan1.09.b)For otherthan420MPa,thevaluesshallbemultipliedby0.4/700.6.2.5.2.3 Ifnotstiffnessvaluesareobtainedbyamorecomprehensiveanalysis,immediatedeflection

    shallbecomputedwiththemodulusofelasticityforconcrete,,asspecifiedin6.1.7.1(normalweightorlightweightconcrete)andwiththeeffectivemomentofinertia,,asfollows,butnotgreaterthan 1 6.2.1

  • 7/27/2019 Part 6-Chap 6

    20/111

    Part6

    StructuralDesign

    620 Vol.2

    where

    6.2.2and

    0.62

    6.2.36.2.5.2.4 shallbepermittedtobetakenforcontinuousmembersastheaverageofvaluesobtainedfromEq.(6.2.1)forthecriticalpositiveandnegativemomentsections.Forprismaticmembers,shallbepermittedtobetakenasthevalueobtainedfromEq.(6.2.1)atmidspanforsimpleandcontinuousspans,andatsupportforcantilevers.

    6.2.5.2.5 Ifthevaluesarenotobtainedbyamorecomprehensiveanalysis,additionallongterm

    deflectionresultingfromcreepandshrinkageofflexuralmembers(normalweightor

    lightweightconcrete)shallbedeterminedbymultiplyingtheimmediatedeflectioncausedby

    thesustainedloadconsidered,bythefactor 6.2.4 whereshallbethevalueatmidspanforsimpleandcontinuousspans,andatsupportforcantilevers. Itshallbepermittedtoassume,thetimedependentfactorforsustainedloads,tobeequalto:

    5yearsormore 2.0

    12months 1.4

    6months 1.2

    3months 1.0

    6.2.5.2.6 Thevalueofdeflectioncomputedinaccordancewith6.2.5.2.2through6.2.5.2.5shallnot

    exceedlimitsstipulatedinTable6.2.5.2.

    6.2.5.3 Twowayconstruction(nonprestressed)

    6.2.5.3.1 Theminimumthicknessofslabsorothertwowayconstruction designedinaccordancewith

    theprovisionsofSec.6.5andconformingwiththerequirementsof6.5.6.1.2shallbegoverned

    bySection6.2.5.3.Thethicknessofslabswithoutinteriorbeamsspanningbetweenthe

    supportsonallsidesshallsatisfytherequirementsof6.2.5.3.2or6.2.5.3.4.Thethicknessof

    slabswithbeamsspanningbetweenthesupportsonallsidesshallsatisfyrequirementsof

    6.2.5.3.3or6.2.5.3.4.

    6.2.5.3.2 Ifslabsarewithoutinteriorbeamsspanningbetweenthesupportsandhavearatiooflongto

    shortspannotgreaterthan2,theminimumthicknessshallbeinaccordancewiththe

    provisionsofTable6.2.5.3andshallnotbelessthanthefollowingvalues:

    Slabswithoutdroppanelsasdefinedin6.5.2.5 125mm;

    Slabswithdroppanelsasdefinedin6.5.2.5 100mm.

    TABLE6.2.5.2MAXIMUMALLOWABLECOMPUTEDDEFLECTIONS

    Typeofmember Deflectiontobeconsidered Deflection

    Flatroofsnotsupportingorattachedto

    nonstructuralelementslikelytobedamaged

    bylargedeflections

    Immediatedeflectionduetoliveload /180

  • 7/27/2019 Part 6-Chap 6

    21/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 621

    Floorsnotsupportingorattachedto

    nonstructuralelementslikelytobedamaged

    bylargedeflections

    Immediatedeflectionduetoliveload /360

    Rooforfloorconstructionsupportingor

    attachedtononstructuralelementslikelyto

    bedamagedbylargedeflections

    Thatpartofthetotaldeflection

    occurringafterattachmentof

    nonstructuralelements(sumofthe

    longtermdeflectionduetoallsustainedloadsandtheimmediate

    deflectionduetoanyadditionallive

    load)

    /480

    Rooforfloorconstructionsupportingor

    attachedtononstructuralelementsnotlikely

    tobedamagedbylargedeflections

    l/240

    *Limitnotintendedtosafeguardagainstponding.Pondingshouldbecheckedbysuitablecalculations

    ofdeflection,includingaddeddeflectionsduetopondedwater,andconsideringlongtermeffectsofall

    sustainedloads,camber,constructiontolerances,andreliabilityofprovisionsfordrainage.

    Longtermdeflectionshallbedeterminedinaccordancewith6.2.5.2.5,butmaybereducedbyamount

    ofdeflectioncalculatedtooccurbeforeattachmentofnonstructuralelements.Thisamountshallbe

    determinedon

    basis

    ofaccepted

    engineering

    data

    relating

    totime

    deflection

    characteristics

    of

    memberssimilartothosebeingconsidered.

    Limitmaybeexceededifadequatemeasuresaretakentopreventdamagetosupportedorattached

    elements.

    Limitshallnotbegreaterthantoleranceprovidedfornonstructuralelements.Limitmaybeexceeded

    TABLE6.2.5.3MINIMUM THICKNESSOFSLABSWITHOUTINTERIORBEAMS*

    , MPaWithout drop panels With drop panels

    Exteriorpanels Interior Exteriorpanels Interior

    Without

    edgebeams

    Withedge

    beams

    Without

    edgebeams

    Withedge

    beams

    280 /33 /36 /36 /36 /40 /40420 /30 /33 /33 /33 /36 /36520 /28 /31 /31 /31 /34 /34

    *For twoway construction, is the length of clear span in the long direction,measuredfacetofaceofsupportsinslabswithoutbeamsandfacetofaceofbeamsor

    othersupportsinothercases.

    For between the values given in the table, minimum thickness shall bedeterminedbylinearinterpolation.

    Droppanelsasdefinedin6.5.2.5.

    Slabswithbeamsbetweencolumnsalongexterioredges.Thevalueof fortheedgebeamshallnotbelessthan0.8.6.2.5.3.3 Theminimumthickness,forslabswithbeamsspanningbetweenthesupportsonallsides,

    shallbeasfollows:

    a) Forequaltoorlessthan0.2,theprovisionsof6.2.5.3.2shallapply;b) Forgreaterthan0.2butnotgreaterthan2.0,shallnotbelessthan . . (6.2.5)

  • 7/27/2019 Part 6-Chap 6

    22/111

    Part6

    StructuralDesign

    622 Vol.2

    andnotlessthan125mm;

    c) For greaterthan2.0,shallnotbelessthan . 6.2.6andnotlessthan90mm;

    d) An edge beam with a stiffness ratio not less than 0.80 shall be provided atdiscontinuousedges,ortheminimumthicknessrequiredbyEq.(6.2.5)or(6.2.6)shallbeincreasedbyatleast10percentinthepanelwithadiscontinuousedge.

    Termin(b)and(c)islengthofclearspaninlongdirectionmeasuredfacetofaceofbeams.Term in(b)and(c)isratioofclearspansinlongtoshortdirectionofslab.

    6.2.5.3.4 WhencomputeddeflectionsdonotexceedthelimitsofTable6.2.5.2,slabthicknesslessthan

    the minimum required by6.2.5.3.1, 6.2.5.3.2, and 6.2.5.3.3 shall be permitted.Deflections

    shallbecomputedtakingintoaccountsizeandshapeofthepanel,conditionsofsupport,and

    natureofrestraintsatthepaneledges.Themodulusofelasticityofconcrete,,shallbeasspecified in6.1.7.1.Theeffectivemomentof inertia, , shallbe thatgivenbyEq. (6.2.1);othervaluesshallbepermittedtobeusediftheyresultincomputeddeflectionsinreasonable

    agreement with results of comprehensive tests. Additional longterm deflection shall be

    computedinaccordancewith6.2.5.2.5.

    6.2.5.4 Compositeconstruction

    6.2.5.4.1 Shoredconstruction

    Where composite flexural members are supported during construction so that, after removal of

    temporarysupports,deadloadisresistedbythefullcompositesection,itshallbepermittedtoconsider

    the compositememberequivalent toa monolithically castmember for computationofdeflection. For

    nonprestressedmembers,theportionofthemember incompressionshalldeterminewhethervalues in

    Table6.2.5.1fornormalweightorlightweightconcreteshallapply.Ifdeflectioniscomputed,accountshall

    betakenofcurvaturesresultingfromdifferentialshrinkageofprecastandcastinplacecomponents,and

    ofaxialcreepeffectsinaprestressedconcretemember.

    6.2.5.4.2 Unshoredconstruction

    When the thickness of a nonprestressed precast flexural member meets the requirements of Table

    6.2.5.1,deflectionneednotbecomputed.Ifthethicknessofanonprestressedcompositemembermeets

    the requirementsofTable6.2.5.1, it isnotrequired tocomputedeflectionoccurringafter themember

    becomes composite, but the longterm deflection of the precast member shall be investigated for

    magnitudeanddurationofloadpriortobeginningofeffectivecompositeaction.

    6.2.5.4.3 The computed deflection in accordance with 6.2.5.4.1 or 6.2.5.4.2 shall not exceed limits

    stipulatedinTable6.2.5.2.

    6.3 AXIALLOADSANDFLEXURE

    6.3.1 ScopeTheprovisionsofSec.6.3shallbeapplicabletothedesignofmemberssubjecttoflexureoraxialloadsor

    acombinationthereof.

  • 7/27/2019 Part 6-Chap 6

    23/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 623

    6.3.2 Designassumptions6.3.2.1 Theassumptionsgiven in6.3.2.2through6.3.2.7,andsatisfactionofapplicableconditionsof

    equilibriumandcompatibilityofstrainsshallformthebasisofstrengthdesignofmembersfor

    flexureandaxialloads.

    6.3.2.2 Itshallbeassumed thatstrain inreinforcementandconcrete isdirectlyproportional tothe

    distancefromtheneutralaxis,exceptthat,fordeepbeamsasdefinedin6.3.7.1,ananalysis

    that considers a nonlinear distribution of strain shall be used. Alternatively, it shall be

    permittedtouseastrutandtiemodel.See6.3.7,6.4.6,andAppendixA.

    6.3.2.3 Itshallbeassumedthatthemaximumusablestrainatextremeconcretecompressionfiberis

    equalto0.003.

    6.3.2.4 For stress in reinforcementbelow, it shallbe takenas times steel strain.For strainsgreater than that corresponding to , stress in reinforcement shall be consideredindependentofstrainandequalto.

    6.3.2.5 Inaxialandflexuralcalculations ofreinforcedconcrete,thetensilestrengthofconcreteshall

    beneglected.

    6.3.2.6 Therelationshipbetweenconcretecompressivestressdistributionandconcretestrainshall

    be assumed to be rectangular, trapezoidal, parabolic, or any other shape that results in

    predictionofstrengthinsubstantialagreementwithresultsofcomprehensive tests.

    6.3.2.7 Anequivalentrectangularconcretestressdistributiondefinedby6.3.2.7.1through6.3.2.7.3

    belowshallsatisfytherequirementsof6.3.2.6.

    6.3.2.7.1 Concrete stress of 0.85shall be assumed uniformly distributed over an equivalentcompressionzoneboundedbyedgesofthecrosssectionandastraightlinelocatedparallelto

    theneutralaxisatadistance fromthefiberofmaximumcompressivestrain.6.3.2.7.2 Distance from the fiber of maximum strain to the neutral axis, , shall be measured in adirectionperpendicular totheneutralaxis.6.3.2.7.3 Forbetween17and28MPa,shallbetakenas0.85.Forabove28MPa,shallbe

    reducedlinearlyatarateof0.05foreach7MPaofstrengthinexcessof28MPa,butshallnotbetaken lessthan0.65.Forbetween28and56MPa,maybecalculatedfromEq.(6.3.1). 0.85 0.007143 28 0.65 0.85 6.3.1

  • 7/27/2019 Part 6-Chap 6

    24/111

    Part6

    StructuralDesign

    624 Vol.2

    6.3.3 Generalprinciplesandrequirements6.3.3.1 Stressandstraincompatibilityusingassumptionsin6.3.2shallbethebasisfordesignofcross

    sectionssubjecttoflexureoraxialloads,oracombinationthereof.

    6.3.3.2 A cross section shall be considered to be in balanced strain conditions when the tension

    reinforcement reachesthestraincorrespondingto justasconcreteincompressionreachesitsassumedultimatestrainof0.003.6.3.3.3 Sectionsarecompressioncontrolledifthenettensilestrainintheextremetensionsteel,,is

    equal to or less than the compressioncontrolled strain limit when the concrete in

    compression reaches its assumed strain limit of 0.003 (Fig.6.3.3.1). The compression

    controlled strain limit is the net tensile strain in the reinforcement at balanced strain

    conditions. For Grade 420 reinforcement, it shall be permitted to set the compression

    controlled strain limit equal to 0.002. For other grades compressioncontrolled strain limit

    maybedeterminedbydividingtheyieldstrengthbymodulusofelasticityEandthenrounding

    the value obtained to four significantdigits after the decimal. For example, for Grade500

    reinforcement,the

    compression

    controlled

    strain

    limit

    shall

    equal

    to0.0025.

    Fig.6.3.3.1Straindistributionandnettensilestrain

  • 7/27/2019 Part 6-Chap 6

    25/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 625

    6.3.3.4 Sections are tensioncontrolled if the net tensile strain in the extreme tension steel, , isequaltoorgreaterthan0.005whentheconcreteincompressionreachesitsassumedstrain

    limit of 0.003. Sections with between the compressioncontrolled strain limit and 0.005constitute a transition region between compressioncontrolled and tensioncontrolled

    sections.

    6.3.3.5 Nettensilestrain intheextremetensionsteelatnominalstrength,

    shallnotbe lessthan

    0.004fornonprestressedflexuralmembersandnonprestressedmemberswithfactoredaxialcompressiveloadlessthan0.10

    6.3.3.5.1 Useofcompressionreinforcement shallbepermitted inconjunctionwithadditionaltension

    reinforcementtoincreasethestrengthofflexuralmembers.

    6.3.3.6 Forcompressionmembers,designaxialstrengthshallnotbetakengreaterthan,,computedbyEq.(6.3.2)or(6.3.3).

    6.3.3.6.1 FornonprestressedmemberswithspiralreinforcementconformingtoSec.8.1orcomposite

    membersconformingto6.3.13:

    , 0.850.85

    (6.3.2)

    6.3.3.6.2 Fornonprestressed memberswithtiereinforcementconformingtoSec.8.1:, 0.800.85 (6.3.3)6.3.3.7 Memberssubjecttocompressiveaxialloadshallbedesignedforthemaximummomentthat

    canaccompanytheaxialload.Thefactoredaxialforceatgiveneccentricityshallnotexceedthatgiven in6.3.3.6.Themaximumfactoredmomentshallbemagnifiedforslendernesseffectsinaccordancewith6.3.10.

    6.3.4 Spacingoflateralsupportsforflexuralmembers6.3.4.1 Distancebetweenlateralsupportsforabeamshallnotexceed50times

    ,theleastwidthof

    compressionflangeorface.

    6.3.4.2 Effects of lateral eccentricityof load shallbe taken intoaccount in determining spacing of

    lateralsupports.

    6.3.5 Minimumreinforcementformembersinflexure6.3.5.1 Atevery sectionofa flexuralmemberwhere tensile reinforcement is requiredbyanalysis,

    except as provided in 6.3.5.2, 6.3.5.3, and 6.3.5.4, provided shall not be less than thatgivenby

    ,.

    6.3.4andnotlessthan1.4/.

  • 7/27/2019 Part 6-Chap 6

    26/111

    Part6

    StructuralDesign

    626 Vol.2

    6.3.5.2 Forstaticallydeterminatememberswithaflangeintension,,shallnotbelessthanthevaluegivenbyEq.(6.3.4),exceptthatisreplacedbyeither2orthewidthoftheflange,whicheverissmaller.

    6.3.5.3 If,ateverysection,providedisatleastonethirdgreaterthanthatrequiredbyanalysis,therequirementsof6.3.5.1and6.3.5.2neednotbeapplied.

    6.3.5.4 Forstructuralslabsandfootingsofuniformthickness,,inthedirectionofthespanshallbe the same as that required by 8.1.11. Maximum spacing of this reinforcement shall not

    exceedthreetimesthethickness,nor450mm.

    6.3.6 Distributionofflexuralreinforcementinone-wayslabsandbeams6.3.6.1 Rules fordistributionof flexural reinforcement to control flexural cracking inbeamsand in

    onewayslabs(slabsreinforcedtoresistflexuralstressesinonlyonedirection)areprescribed

    inthissection.

    6.3.6.2 Distribution offlexuralreinforcementintwowayslabsshallbeasrequiredby6.5.3.

    6.3.6.3 As prescribed in 6.3.6.4, flexural tension reinforcement shall be well distributed within

    maximumflexuraltensionzonesofamembercrosssection.

    6.3.6.4 Thespacingofreinforcementclosesttothetensionface,,shallbelessthanthatgivenby 380 2.5 (6.3.5)but shall not exceed 300280/, where is the least distance from surface ofreinforcement to the tension face. If there isonly onebar orwire nearest to the extreme

    tensionface,usedinEq.(6.3.5)isthewidthoftheextremetensionface.Calculated stress in reinforcement closest to the tension face at service load shall becomputedbasedontheunfactoredmoment.Itshallbepermittedtotake

    as

    2/3.

    6.3.6.5 Forstructuressubjecttoveryaggressiveexposureordesignedtobewatertight,provisionsof

    6.3.6.4 are not sufficient. For such structures, special investigations and precautions are

    required.

    6.3.6.6 When flanges of Tbeam construction are in tension, part of the flexural tension

    reinforcement shallbedistributedoveraneffective flangewidthasdefined in6.1.13,ora

    widthequaltoonetenththespan,whicheverissmaller.Iftheeffectiveflangewidthexceeds

    onetenththespan,some longitudinalreinforcement shallbeprovided intheouterportions

    oftheflange.

    6.3.6.7 Longitudinal skin reinforcement shall be uniformly distributed along both side faces of a

    member(Fig.6.3.6.1),whereofabeamorjoistexceeds900mm.Skinreinforcementshallextendforadistance 2 fromthetensionface.Thespacingshallbeasprovidedin6.3.6.4,where isthe leastdistancefromthesurfaceoftheskinreinforcementtothesideface.Itshall be permitted to include such reinforcement in strength computations if a strain

    compatibility analysisismadetodeterminestressintheindividualbarsorwires.

  • 7/27/2019 Part 6-Chap 6

    27/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 627

    Fig.6.3.6.1Skinreinforcementforbeamsandjoistswithh >900mm.

    6.3.7 Deepbeams6.3.7.1 Deepbeamsaremembers loadedonone faceand supportedon theopposite face so that

    compressionstrutscandevelopbetweentheloadsandthesupports,andhaveeither:

    a) clearspans,,equaltoorlessthanfourtimestheoverallmemberdepth;orb) regions with concentrated loadswithin twice thememberdepth from the face of the

    support.

    Deepbeamsshallbedesignedeithertakingintoaccountnonlineardistributionofstrain,orby

    AppendixA.(Seealso6.4.6.1and8.2.7.6)Lateralbucklingshallbeconsidered.

    6.3.7.2 ofdeepbeamsshallbeinaccordancewith6.4.6.6.3.7.3 Minimumareaofflexuraltensionreinforcement,,,shallconformto6.3.5.6.3.7.4 Minimumhorizontalandverticalreinforcementinthesidefacesofdeepbeamsshallsatisfy

    eitherA.3.3or6.4.6.4and6.4.6.5.

    6.3.8 Designdimensionsforcompressionmembers6.3.8.1 Isolatedcompressionmemberwithmultiplespirals

    Outerlimitsoftheeffectivecrosssectionofacompressionmemberwithtwoormoreinterlockingspirals

    shallbetakenatadistanceoutsidetheextremelimitsofthespiralsequaltotheminimumconcretecover

    requiredby8.1.7.

    6.3.8.2 Monolithicallybuiltcompressionmemberwithwall

    Outerlimitsoftheeffectivecrosssectionofaspirallyreinforcedortiedreinforcedcompressionmember

    builtmonolithicallywithaconcretewallorpiershallbetakennotgreaterthan40mmoutsidethespiral

    ortiereinforcement.

    6.3.8.3 Equivalentcircularcompressionmemberreplacingothershapes

    Inlieuofusingthefullgrossareafordesignofacompressionmemberwithasquare,octagonal,orother

    shaped cross section, it shallbepermitted tousea circular sectionwithadiameterequal to the least

    lateraldimensionoftheactualshape.Grossareaconsidered,requiredpercentageofreinforcement,and

    designstrengthshallbebasedonthatcircularsection.

    6.3.8.4 Limitsofsection

    Foracompressionmemberwithacrosssectionlargerthanrequiredbyconsiderations ofloading,itshall

    bepermittedtobasetheminimumreinforcementandstrengthonareducedeffectiveareanot less

  • 7/27/2019 Part 6-Chap 6

    28/111

    Part6

    StructuralDesign

    628 Vol.2

    thanonehalfthetotalarea.Thisprovisionshallnotapplytospecialmomentframesorspecialstructural

    wallsdesignedinaccordancewithSec.8.3.

    6.3.9 Limitsofreinforcementforcompressionmembers6.3.9.1 Fornoncompositecompressionmembers,theareaoflongitudinalreinforcement,

    ,shallbe

    not less than 0.01

    or more than 0.06. To avoid practical difficulties in placing andcompactingofconcreteaswellastodeliverductilitytononcompositecompressionmembers,areaoflongitudinal reinforcement, ,ispreferrednottoexceed0.04 unlessabsolutelyessential.

    6.3.9.2 Minimumnumber of longitudinal bars in compressionmembers shallbe4 for bars within

    rectangularorcircularties,3forbarswithintriangularties,and6forbarsenclosedbyspirals

    conformingto6.3.9.3.

    6.3.9.3 Volumetricspiralreinforcementratio,,shallbenotlessthanthevaluegivenby

    0.45

    1

    6.3.6wherethevalueofusedinEq.(6.3.6)shallnotexceed700MPa.Forgreaterthan420MPa,lapsplicesaccordingto8.1.9.3(e)shallnotbeused.6.3.10 Slendernesseffectsincompressionmembers

    6.3.10.1 Slendernesseffectsshallbepermittedtobeneglectedinthefollowingcases:

    a) forcompressionmembersnotbracedagainstsideswaywhen: 22 6.3.7b) forcompressionmembersbracedagainstsideswaywhen: 34 12 40 6.3.8

    where

    ispositiveifthecolumnisbentinsinglecurvature,andnegativeifthemember isbentin

    doublecurvature.

    Compressionmembersmaybeconsideredtobebracedagainstsideswaywhenbracingelementshavea

    total stiffness, resisting lateral movement of that story, of at least 12 times the gross stiffness of the

    columnswithinthestory.

    TheJacksonandMorelandAlignmentCharts(Fig.6.3.10.1),whichallowagraphicaldeterminationofforacolumnofconstantcrosssectioninamultibayframemaybeusedastheprimarydesignaidtoestimate

    theeffectivelengthfactor.

  • 7/27/2019 Part 6-Chap 6

    29/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 629

    6.3.10.1.1 Theunsupported lengthofa compressionmember, , shallbe takenas the cleardistancebetween floor slabs,beams, orother members capable of providing lateral support in the

    direction being considered. Where column capitals or haunches are present, shall bemeasuredtothelowerextremityofthecapitalorhaunchintheplaneconsidered.

    6.3.10.1.2 It shall be permitted to take the radius of gyration, , equal to 0.30 times the overalldimensioninthedirectionstabilityisbeingconsideredforrectangularcompressionmembers

    and0.25timesthediameterforcircularcompressionmembers.Forothershapes, itshallbepermittedtocomputeforthegrossconcretesection.

    Fig.6.3.10.1Effectivelengthfactorsk.

  • 7/27/2019 Part 6-Chap 6

    30/111

    Part6

    StructuralDesign

    630 Vol.2

    6.3.10.2 When slenderness effects are not neglected as permitted by 6.3.10.1, the design of

    compressionmembers,restrainingbeams,andothersupportingmembersshallbebasedon

    thefactoredforcesandmomentsfromasecondorderanalysissatisfying6.3.10.3,6.3.10.4,or

    6.3.10.5.Thesemembersshallalsosatisfy6.3.10.2.1and6.3.10.2.2.Thedimensionsofeach

    membercrosssectionusedintheanalysisshallbewithin10percentofthedimensionsofthe

    membersshown

    on

    the

    design

    drawings

    orthe

    analysis

    shall

    be

    repeated.

    6.3.10.2.1 Totalmomentincludingsecondordereffectsincompressionmembers,restrainingbeams,or

    otherstructuralmembersshallnotexceed1.4timesthemomentduetofirstordereffects.

    6.3.10.2.2 Secondordereffectsshallbeconsideredalongthe lengthofcompressionmembers.Itshall

    bepermittedtoaccountfortheseeffectsusingthemomentmagnificationprocedureoutlined

    in6.3.10.6.

    6.3.10.3 Nonlinearsecondorderanalysis

    Secondorderanalysisshallconsidermaterialnonlinearity,membercurvatureandlateraldrift,durationof

    loads,shrinkageandcreep,and interactionwiththesupportingfoundation.Theanalysisprocedureshall

    have

    been

    shown

    to

    result

    in

    prediction

    of

    strength

    in

    substantial

    agreement

    with

    results

    of

    comprehensivetestsofcolumnsinstaticallyindeterminatereinforcedconcretestructures.

    6.3.10.4 Elasticsecondorderanalysis

    Elastic secondorder analysis shall consider section properties determined taking into account the

    influenceofaxialloads,thepresenceofcrackedregionsalongthelengthofthemember,andtheeffects

    ofloadduration.

    6.3.10.4.1 Itshallbepermittedtousethefollowingpropertiesforthemembersinthestructure:

    a) Modulusofelasticity...................... from6.1.7.1b) Momentsofinertia,Compressionmembers:

    Columns 0.70Walls Uncracked 0.70Cracked 0.35

    Flexuralmembers:

    Beams 0.35Flatplatesandflatslabs 0.25c) Area 1.0Alternatively, the moments of inertia of compression and flexural members, , shall bepermittedtobecomputedasfollows:

    Compressionmembers: 0.80 25 1 0.5 0.875 (6.3.9)where and shall be determined from the particular load combination underconsideration, orthecombinationofanddeterminedinthesmallestvalueof.neednotbetakenlessthan0.35.Flexuralmembers: 0.10 25 1.20.2 0.5 (6.3.10)

  • 7/27/2019 Part 6-Chap 6

    31/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 631

    Forcontinuous flexuralmembers,shallbepermitted tobetakenas theaverageofvaluesobtainedfromEq.(6.3.10)forthecriticalpositiveandnegativemomentsections.neednotbetakenlessthan0.25.Thecrosssectionaldimensionsandreinforcementratiousedintheaboveformulasshallbewithin10percentofthedimensionsandreinforcement ratioshown

    onthedesigndrawingsorthestiffnessevaluationshallberepeated.

    6.3.10.4.2 When sustained lateral loads are present, for compression members shall be divided by1

    .The term

    shallbe takenas the ratioofmaximum factoredsustainedshear

    withina story to themaximum factored shear in that storyassociatedwith the same load

    combination,butshallnotbetakengreaterthan1.0.

    6.3.10.5 Procedureformomentmagnification

    Columnsandstoriesinstructuresshallbedesignatedasnonswayorswaycolumnsorstories.Thedesign

    ofcolumnsinnonswayframesorstoriesshallbebasedon6.3.10.6.Thedesignofcolumnsinswayframes

    orstoriesshallbebasedon6.3.10.7.

    6.3.10.5.1 A column in a structure shall be permitted to be assumed as nonsway if the increase in

    column end moments due to secondordereffects does not exceed 5 percent of the first

    orderendmoments.

    6.3.10.5.2 Astorywithinastructureispermittedtobeassumedasnonswayif: 0.05 (6.3.11)whereandarethetotalfactoredverticalloadandthehorizontalstoryshear,respectively,inthestorybeingevaluated,andisthefirstorderrelativelateraldeflectionbetweenthetopandthebottomofthatstorydueto.6.3.10.6 ProcedureformomentmagnificationNonsway

    Compressionmembersshallbedesignedforfactoredaxial forceandthefactoredmomentamplifiedfortheeffectsofmembercurvaturewhere (6.3.12)

    where

    . 1.0 (6.3.13)and

    6.3.146.3.10.6.1 shallbetakenas

    . (6.3.15)or

    .

    (6.3.16)

    Asanalternative,shallbepermittedtobecomputedusingthevalueoffromEq.(6.3.9)dividedby1 .

  • 7/27/2019 Part 6-Chap 6

    32/111

    Part6

    StructuralDesign

    632 Vol.2

    6.3.10.6.2 Thetermshallbetakenastheratioofmaximumfactoredaxialsustainedloadtomaximumfactoredaxialloadassociatedwiththesameloadcombination, butshallnotbe

    takengreaterthan1.0.

    6.3.10.6.3 Theeffectivelengthfactor,,shallbepermittedtobetakenas1.0.6.3.10.6.4 Formemberswithnotransverseloadbetweensupports,shallbetakenas 0.6 0.4 (6.3.17)where ispositiveifthecolumnisbentinsinglecurvature,andnegativeifthememberisbentindoublecurvature.Formemberswithtransverseloadsbetweensupports,shallbetakenas1.0.6.3.10.6.5 Factoredmoment,,inEq.(6.3.12)shallnotbetakenlessthan, 15 0.03 (6.3.18)abouteachaxisseparately,where0.6andare inmm.Formembers inwhich,exceeds,thevalue of in Eq. (6.3.17) shall either be taken equal to 1.0, or shall be based on the ratio of thecomputedendmoments, .6.3.10.7 Procedure

    for

    moment

    magnification

    Sway

    Momentsandattheendsofanindividualcompressionmembershallbetakenas (6.3.19) (6.3.20)whereiscomputedaccordingto6.3.10.7.3or6.3.10.7.4.6.3.10.7.1 Flexuralmembersshallbedesignedforthetotalmagnifiedendmomentsofthecompression

    membersatthejoint.

    6.3.10.7.2 Thevaluesofand given in6.3.10.4shallbeused fordetermining theeffective lengthfactoranditshallnotbelessthan1.0.

    6.3.10.7.3 Themomentmagnifiershallbecalculatedas 1 (6.3.21)IfcalculatedbyEq. (6.3.21)exceeds1.5,shallbecalculatedusingsecondorderelasticanalysisor6.3.10.7.4.

    6.3.10.7.4 Alternatively,itshallbepermittedtocalculateas . 1 (6.3.22)whereisthesummationforallthefactoredverticalloadsinastoryandisthesummationforallswayresistingcolumnsinastory.iscalculatedusingEq.(6.3.14)with determinedfrom6.3.10.7.2andfrom6.3.10.6.1.

    6.3.11 AxiallyloadedmemberssupportingslabsystemAxiallyloadedmemberssupportingaslabsystemincludedwithinthescopeof6.5.1shallbedesignedas

    providedinSec.6.3andinaccordancewiththeadditionalrequirementsofSec.6.5.

    6.3.12 ColumnloadtransmissionthroughfloorsystemIfofacolumnisgreaterthan1.4timesthatofthefloorsystem,transmissionofloadthroughthefloorsystemshallbeprovidedby6.3.12.1,6.3.12.2,or6.3.12.3.

  • 7/27/2019 Part 6-Chap 6

    33/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 633

    6.3.12.1 Concrete of strength specified for the column shall be placed in the floor at the column

    location. Top surface of the column concrete shall extend 2 ft into the slab from face of

    column.Columnconcreteshallbewell integratedwithfloorconcrete,andshallbeplaced in

    accordancewithrelevantprovisionsforconstructionjointsofcolumns,wallsetc.withbeams,

    slabsetc.Toavoidaccidentalplacingoflowerstrengthconcreteinthecolumns,thestructural

    designershall indicateon thedrawingwherethehighand lowstrengthconcretesare tobe

    placed.

    6.3.12.2 Strengthofacolumn througha floorsystemshallbebasedon the lowervalueofconcrete

    strengthwithverticaldowelsandspiralsasrequired.

    6.3.12.3 Forcolumns laterallysupportedonfoursidesbybeamsofapproximatelyequaldepthorby

    slabs,itshallbepermittedtobasestrengthofthecolumnonanassumedconcretestrengthin

    the columnjointequal to75percentof column concrete strengthplus35percentof floor

    concretestrength.Intheapplicationof6.3.12.3,theratioofcolumnconcretestrengthtoslab

    concretestrengthshallnotbetakengreaterthan2.5fordesign.

    6.3.13 Compositecompressionmembers6.3.13.1 All

    members

    reinforced

    longitudinally

    with

    structural

    steel

    shapes,

    pipe,

    or

    tubing

    with

    or

    withoutlongitudinalbarsshallbeincludedincompositecompressionmembers.

    6.3.13.2 Acompositememberstrengthshallbecomputedforthesamelimitingconditionsapplicable

    toordinaryreinforcedconcretemembers.

    6.3.13.3 Anyaxial loadstrengthassigned toconcreteofacompositemembershallbe transferredto

    theconcretebymembersorbracketsindirectbearingonthecompositememberconcrete.

    6.3.13.4 Allaxialloadstrengthnotassignedtoconcreteofacompositemembershallbedevelopedby

    directconnectiontothestructuralsteelshape,pipe,ortube.

    6.3.13.5 Forevaluationofslendernesseffects,radiusofgyration,

    ,ofacompositesectionshallbenot

    greaterthanthevaluegivenby

    / (6.3.23)and,asanalternativetoamoreaccuratecalculation,inEq.(6.3.14)shallbetakeneitherasEq.(6.3.15)or

    / (6.3.24)6.3.13.6 Concretecoreencasedbystructuralsteel

    6.3.13.6.1 Whenacompositemember isastructuralsteelencasedconcretecore,thethicknessof the

    steelencasementshallbenotlessthan foreachfaceofwidthnor forcircularsectionsofdiameter6.3.13.6.2 Whencomputingand,longitudinalbarslocatedwithintheencasedconcretecoreshall

    bepermittedtobeused.

    6.3.13.7 Spiralreinforcementaroundstructuralsteelcore

    A composite member with spirally reinforced concrete around a structural steel core shall conform to

    6.3.13.7.1through6.3.13.7.4.

  • 7/27/2019 Part 6-Chap 6

    34/111

    Part6

    StructuralDesign

    634 Vol.2

    6.3.13.7.1 Designyieldstrengthofstructuralsteelcoreshallbethespecifiedminimumyieldstrengthfor

    thegradeofstructuralsteelusedbutnottoexceed350MPa.

    6.3.13.7.2 Spiralreinforcementshallconformto6.3.9.3.

    6.3.13.7.3 Longitudinalbarslocatedwithinthespiralshallbenotlessthan0.01normorethan0.06times

    netareaofconcretesection.

    6.3.13.7.4 Longitudinalbarslocatedwithinthespiralshallbepermittedtobeusedincomputingand.6.3.13.8 Tiereinforcementaroundstructuralsteelcore

    Laterally tied concrete around a structural steel core forming a composite member shall conform to

    6.3.13.8.1through6.3.13.8.7.

    6.3.13.8.1 Designyieldstrengthofstructuralsteelcoreshallbethespecifiedminimumyieldstrengthfor

    thegradeofstructuralsteelusedbutnottoexceed350MPa.

    6.3.13.8.2 Lateralties

    shall

    extend

    completely

    around

    the

    structural

    steel

    core.

    6.3.13.8.3 Lateral ties shall have a diameter not less than 0.02 times the greatest side dimension of

    compositemember,exceptthattiesshallnotbesmallerthan10mmandarenotrequired

    tobelargerthan16mm.Weldedwirereinforcementofequivalentareashallbepermitted.

    6.3.13.8.4 Vertical spacing of lateral ties shall not exceed 16 longitudinal bar diameters, 48 tie bar

    diameters,or0.5timestheleastsidedimensionofthecompositemember.

    6.3.13.8.5 Longitudinalbarslocatedwithinthetiesshallbenotlessthan0.01normorethan0.06times

    netareaofconcretesection.

    6.3.13.8.6 A longitudinal barshallbe locatedateverycornerofarectangularcrosssection,withother

    longitudinal bars spaced not farther apart than onehalf the least side dimension of the

    compositemember.

    6.3.13.8.7 Longitudinalbarslocatedwithinthetiesshallbepermittedtobeusedincomputingand.6.3.14 Bearingstrength6.3.14.1 Design bearing strength of concrete shall not exceed 0.85, except when the

    supportingsurfaceiswideronallsidesthantheloadedarea,thenthedesignbearingstrength

    of the loadedareashallbepermittedtobemultipliedby butbynotmore than2(Fig.6.3.14.1).

  • 7/27/2019 Part 6-Chap 6

    35/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 635

    Fig.6.3.14.1 DeterminationorareaA2insteppedorslopedsupportsusingfrustum(6.3.14.1).

    6.3.15 DesignforFlexure6.3.15.1 DesignofRectangularBeams

    a) Formula for singly reinforced beams : The following equations which are based on the

    simplifiedstressblockof 6.3.2.7,are applicabletosinglyreinforcedrectangular beamsalongwithTbeamswheretheneutralaxislieswithintheflange.

    / (6.3.25)where

    . (6.3.26)

    Loaded area

    Loaded area

    A 1

    A 1

    A 2

    45 deg

    45 deg

    Plan

    Load

    is measured on this plane

    Elevation

    2

    1

  • 7/27/2019 Part 6-Chap 6

    36/111

    Part6

    StructuralDesign

    636 Vol.2

    Byestimatinganinitialvalueofa,Eq(6.3.25)canbeusedtodetermineanapproximate

    valueof.ThatvaluecanbesubstitutedinEq(6.3.26)togetabetterestimateofandhenceanew /2 canbedeterminedforsubstitutioninEq(6.3.25).InEq(6.3.25),nominalflexuralstrengthofsection,

    maybetakenasfactoredmoment

    atsection,dividedbystrengthreduction factor, 0.9asapreliminaryvalue.determined fromEq (6.3.25) shallhave togivea reinforcement ratio, notexceeding,where 0.85 1 0.004 (6.3.27)Above, 0.003 Additionally,determined fromEq (6.3.25) shallhave to satisfy the requirementsofminimumreinforcementformembersinflexureasper6.3.5.

    Revisedshallbedeterminedfrom6.2.3.2basedoneither 1 or,whereisthenettensilestraininthereinforcementfurthestfromthecompressionfaceofthe

    concrete at the depth. Strain, may be calculated from Eq. (6.3.27) by replacing0.004by andby.b) Design formulae fordoublyreinforcedbeams:Adoublyreinforcedbeamshallbedesigned

    onlywhenthere isarestrictionondepthofbeamandmaximumtensilereinforcementallowed

    cannotproducetherequiredmoment.Toestablishifdoublyreinforcedbeamisrequiredthefollowingapproachcanbefollowed:

    Determine,

    0.005 0.85 1

    0.005 (6.3.28)

    0.005 . (6.3.29)If is less thanrequiredmomentwith 0.9 ,adoubly reinforcedbeam isneededandthentakingvaluesofandfromabove,put and Then,thefollowingvaluesaretobeevaluated,

    (6.3.30)

    Assumingcompressionsteelyields(needstobecheckedlater), Check forcompressionsteelyielding,where

    0.85 (6.3.31)If (i.e.compressionsteelyields),

  • 7/27/2019 Part 6-Chap 6

    37/111

    Chapter1

    UltimateStrengthDesignofReinforcedConcreteStructures

    BangladeshNationalBuildingCode2011 637

    find . andfind,andconfirm 0.9 intheaboveequations.Valueof shallbe determined from 6.2.3.2 based on either or , as stated above forrectangularbeams.

    If compression steel does not yield, is to be found from concrete section force equilibriumcondition,C=Twhichwillresultinaquadraticequationof.needstobecalculatedfromstraindiagramand revised.

    shallbecalculatedfromforfinding.6.3.15.2 DesignofTBeams

    a) General:

    For effective widths and other parameters for T, L or isolated beams, 6.1.13.2 to

    6.1.13.4shallapply.

    b) FormulaeforTbeams:ATbeamshallbetreatedasarectangularbeamif

    where

    isobtainedfrom Eq(6.3.26).InusingEq(6.3.


Recommended