+ All Categories

PDF

Date post: 18-Nov-2014
Category:
Upload: dominque23
View: 754 times
Download: 0 times
Share this document with a friend
Description:
 
Popular Tags:
83
Challenges in the RF Design of Challenges in the RF Design of highly integrated Direct highly integrated Direct Conversion Receivers for Conversion Receivers for multi-band multi-standard multi-band multi-standard applications applications Laboratorio di Microelettronica Laboratorio di Microelettronica Università degli Studi di Pavia, Italy Università degli Studi di Pavia, Italy Francesco Svelto Francesco Svelto
Transcript
Page 1: PDF

Challenges in the RF Design of highly Challenges in the RF Design of highly integrated Direct Conversion Receivers for integrated Direct Conversion Receivers for

multi-band multi-standard applicationsmulti-band multi-standard applications

Laboratorio di MicroelettronicaLaboratorio di Microelettronica

Università degli Studi di Pavia, ItalyUniversità degli Studi di Pavia, Italy

Francesco SveltoFrancesco Svelto

Page 2: PDF

Injection Locked dividers for Quadrature Generation in Direct Conversion Receivers

This Talk

A CMOS Direct Downconverter with +78dBm Minimum IIP2 for 3G Cell-Phones

A 750mV 15KHz 1/f Noise Corner 51 dBm IIP2 Direct Conversion Front-End for GSM in 90nm CMOS

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 3: PDF

A 0.13 m CMOS Front-End for DCS1800/UMTS/802.11b-g

This Talk

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 4: PDF

An Interference Robust 0.18m CMOS 3.1-8GHz UWB Receiver Front-End

This Talk

A Variable Gain RF Front-End for Multistandard WLANs Applications

LNA

IC

90°

Mixer

Mixer

VGA

VGA

VCO

Quad.Gen.

Page 5: PDF

A CMOS Direct Downconverter A CMOS Direct Downconverter

with +78dBm Minimum IIP2 with +78dBm Minimum IIP2

for 3G Cell-Phonesfor 3G Cell-Phones

International Solid-State Circuits Conference, Feb. 2005International Solid-State Circuits Conference, Feb. 2005

Page 6: PDF

• TX signal leakage sets challenging RX IIP2 (>+50dBm)

• Expensive external SAW filter alleviates IIP2 and IIP3 specs

State-of-the-Art “Hybrid” Zero-IF UMTS RX

Goal: fully integrated solution

LOLO

IC

ExternalSAW

LNA1 LNA2I

Q

Page 7: PDF

Mechanisms of 2nd Order Intermodulation

Counter-measures:

RF-LO coupling

Orthogonal RF and LO

paths

Mismatch in load resistors

Fully differential V-I converter (IIP2CM ~ +40dBm)

and 0.1% load resistors mismatch

IIP2 > +100dBm!

V-I converter

AC coupling

RF+ RF-

LO-

Common mode todifferential conversion

Low frequencyIM2 generation

LO+ LO+

Page 8: PDF

• Very high IIP2 (>+90dBm)

at low frequency

• Dramatic drop at radio

frequency

2nd Order Distortion in Switching Pairs

Parasitic capacitor at source

nodes plays a key role

RF+ RF-

LO-

2nd orderintermodulation

LO+ LO+

Page 9: PDF

Switching Pair Equivalent Model

VS - FrequencyVS - Time

LO+

Ibias

Cpar

Voff LO-VS

Ibias

Voff

0

1/fLO

VS

Cpar

t0

Voff

1/fLO = Cpar/gm

ffLO 3fLO

Page 10: PDF

IM2 Due to LO odd-harmonics

Ibias+ IIM

Voff

0

1/fLO

VS

IIM2

Cpar

Source voltage VS

ffLO 3fLO

Tailcurrent

fDC

Ibias IIM

fIM

Capacitor current down-converted by device commutation

IM2 sidebands

Page 11: PDF

Tailcurrent

Source voltage VS

IM2 sidebands

fDC

Ibias IIM

fIM

2fLO 4fLO

Gain at even LO harmonics due to duty-cycle distortion

IM2 due to LO even-harmonics

LO+

Cpar

Voff

LO-VS

IIM2

Ibias+ IIM

fLO

Page 12: PDF

IM2 contributions from harmonics

Power of down-converted side-bands around

fundamental at least 17dB higher

-190

-180

-170

-160

-150

-140

-130

-120

1 2 3 4 5 6

LO harmonic

Out

put I

M2

[dBm

]

21dB 17dB

W/L=200/0.3 m/mI=2mA

Page 13: PDF

Suppressing IM2 due to Switching Pairs

• LSW is chosen with

same impedance

magnitude as Cpar

at LO frequency

• CFAT drains IM2

currents flowing

through LSW

LO+

LO-LSW LSW

CFAT

cpar cpar

IM2 path

LO+

IM2 path

Page 14: PDF

IM2 contributions with LC filter

High order harmonics are almost unchanged

-190

-180

-170

-160

-150

-140

-130

-120

1 2 3 4 5 6

LO harmonic

Out

put I

M2

[dBm

]

Intrinsic behavior

With proposed LC filter

25dBattenuation

Page 15: PDF

V-I Converter

RC degeneration leads to high IIP2 and high IIP3

RF+ RF-iRF+ iRF-

Mdeg MdegCdeg Cdeg

Frequency [Hz]100k 1M 10M 100M 1G 10G

Tran

scon

duct

ance

[dB]

Example-30

-40

-50

-60

-70

-80

• AC Coupling tranconductor and switching pair is a solution,

but price is consumption

• Fully differential for high IIP2, Pseudo-differential for high IIP3

Page 16: PDF

V-I Converter: IIP2

Low gain at low frequency

improves IIP2RF+ RF-

Mdeg MdegCdeg Cdeg

2025303540455055606570

0 1 2 3 4 5 6 7 8 9 10

Biasing Current [mA]

IIP2CM

[dBm

]

Theory

Simulation

mCM2

2GIIV2=

G

2,rfCM

2

m,rf ds,deg

gG =

2 1+g r

Page 17: PDF

V-I Converter: IIP3

Cdeg provides low impedance at

signal frequency high IIP3

RF+ RF-

Mdeg MdegCdeg Cdeg

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10Biasing Current [mA]

IIP3

[dBm

]

RC deg.: theoryRC deg.: simulationFully diff.: simulation

22,rf ds,deg3,rfDIFF

3

m,rf ds,deg

g rgG = +

4 3 1+g r

mDIFF3

4GIIV3=

3 G

Page 18: PDF

Downconverter Schematic

• Differential load resistors

save voltage room

• Common-mode feedback

sets DC output voltage

• 4mA from 1.8V supply

RF+ RF-

912/1.13.3pF

LO+

LO-5.5nH

15pF

LO+

45/0.18

270/0.3

Op amp800

800/2

34pF

Page 19: PDF

Die Photo

• Differential inductor with

central tap RF grounded

by MIM capacitor

• Highly interdigitated

devices for matching

• Orthogonal LO and RF

paths where crossing

• 2.2mm2 die area

(1.2mm2 active area)

STMicroelectronics 0.18m RFCMOS - LQFP32 Package

Page 20: PDF

IIP2 Measurement

• The two tones are filtered by the mixer RC load

• Differential probe has negligible impact on measured IIP2

Signalgenerator

Balun

Mixer Differentialprobe

LO input

RF input

f

f = 500kHz

fTX

DC

IM2

ffTX-f LO500kHz[1.92GHz-1.98GHz]

Bal

un

-100-80-60-40-20

020406080

100120

-30 -20 -10 0 10 20 30 40 50 60 70 80 90

Input Power [dBm]

Out

put P

ower

[dB

m]

Input IP2 = +84dBm

IIP2 = 2PDSB-SC - PIM2

Page 21: PDF

50556065707580859095

100105

0 10 20 30 40 50 60

Sample #

IIP2

[dBm

]IIP2 Statistics

+78dBm

minimum IIP2

Lot #1 [March 2004]Lot #2 [June 2005]

Page 22: PDF

50

55

60

65

70

75

0 5 10 15 20

Sample #

IIP2

[dBm

]

IIP2 Statistics without Cfat

IN+ IN-

Op amp

LO-

LO+

LO-

912/1.1

CFAT

LSW

Vref

Cload

Mdeg MdegCdeg

Rload

MpMp

LSW

Rload

Cload

Cdeg

IIP2 without Cfat

X

Page 23: PDF

Conversion Gain and Noise

Conversion gain

• 16dB in-band gain

• 4.5MHz output bandwidth

Input referred noise

• 350kHz 1/f noise corner

• 4nV/√Hz average noise [10kHz-1.92MHz] -162

-160

-158

-156

-154

-152

-150

-148

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Frequency [MHz]

Inpu

t Noi

se P

SD [d

Bm

/Hz]

10k 100k 1M 10M8

10

12

14

16

18

Frequency [Hz]

In-B

and

Gai

n [d

B]

Page 24: PDF

Measurement Summary

Voltage Gain [dB] 16

Output Bandwidth [MHz] 4.5

IIP3out-of-band [dBm] +10

IIP3in-band [dBm] +9

Minimum IIP2 [dBm] +78

Input Ref. Noise [nV/Hz] 4

Voltage Supply [V] 1.8

Current Consumption [mA] 4

Page 25: PDF

Zero-IF UMTS Receiver

Assuming:

• 18dB LNA peak gain, Q=10 13dB gain at 1.98GHz

• 0dBm LNA IIP3out-of-band

• Downconverter with measured performance

IIP2 > +65dBm

IIP3out-of-band = -3dBm

Fully integrated zero-IF 3G receiver is feasible

Antenna input:

LOLO

IC

LNA I

Q

Page 26: PDF

A 750mV 15kHz 1/f Noise Corner A 750mV 15kHz 1/f Noise Corner

51dBm IIP2 Direct – Conversion 51dBm IIP2 Direct – Conversion

Front – End for GSM in 90nm CMOSFront – End for GSM in 90nm CMOS

International Solid-State Circuits Conference, Feb. 2006International Solid-State Circuits Conference, Feb. 2006

Page 27: PDF

Wireless Receivers in Deep-Submicron CMOS

Extremely high dynamic range at low voltagein cellular direct conversion solutions

90nm GSM Front-End at 750mV, to be compatible with 65nm and 45nm nodes

LNA LOQ

LOI

-43dBm-33dBm

-23dBm

GSMRX Signal(-99dBm)

AM Interferer

3MHz6MHz

0

RX Signal

Noise

IM2

f [kHz]100 200 300

Page 28: PDF

Low-Voltage RX Front-End for GSM

• Few stacked devicesRequires high supply voltage

LNA LOQ

LOI

IN+ IN-

OUT+ OUT-

LG

LS

MRF

MC

LL

CLMSW

MRF

LO+

RL

LO-LO-

IN+ IN-

OUT- OUT+

MBIAS

Page 29: PDF

Pseudo-Differential Input Stage

Mechanism #1:• IIM2,CM transfers to the

output still as a CM current

• R: conversion CM → diff.• Load resistors: (R/R=0.3%)

R/R ~ -50dB

Mixer IIP2 < 55dBmInadequate!

R + R

LO-LO-

IN+ IN-

VIM2,OUT

LO+

+ -

R -2

R2

IIM2,CM IIM2,CM

LO+ is ON

LO- is ONLC

filter

Suffers from excessive CM distortion: IIP2CM ~ 5dBm(W=50m, I=4mA)

Page 30: PDF

Leakage Through the Commutating Pairs

• Transconductor: IIP2CM ~ 5dBm

• Leakage (Voff = 2mV):

L ~ -50dB

Mixer IIP2 < 55dBmInadequate!

Mechanism #2:• Voff1 and Voff2 determine

different leakage gainsIM2DIFF at mixer output

Voff1

R

LO-LO-

IN+ IN-

VIM2,OUT

LO+

+ -

R

IIM2,CM IIM2,CM

Voff2

LDIFF,1 LDIFF,2

LCfilter

Page 31: PDF

Solution: Shunt-Shunt Feedback

• Low-frequency

CM feedback loop

attenuates IIM2,CM

• Transconductor:

IIP2CM ~ 5dBm;

R/R, L ~ -50dB;

1+GLOOP > 40dB

Mixer IIP2 > 90dBm!

LO-LO-

IN+ IN-

LO+

Voff1 Voff2

IIM2,CM IIM2,CM

Op

Amp+ -

VCM

VREF

IFEED IFEED

IIM2,CM

1+GLOOP

IIM2,CM

1+GLOOP

R + R2

R - R2

PCM

LCfilter

Page 32: PDF

PCS1900 Direct-Downconverter Schematic

• PCM injects

common-mode noise No noise penalty

• PL reduces voltage

drop on R1

• gm,RF = 24mS further reduces switches 1/f noise contribution trading IIP2 and IIP3

• 5mA from 750mV-VDD

MSW

MRF

L1

C1

PCM

LO+

RCM

PLR1

C3

LO-LO-

VREF

+ -

IN+ IN-

OUT- OUT+

C2

250 5pF

2000/2.5

520pF

10k

400/0.3

125/0.220pF

5nH1000/0.1

Op AmpA

Page 33: PDF

PCS1900 Low-Noise Amplifier Schematic

• Inductive degeneration for very low NF

• Partially external input impedance matching minimizes NF

From simulations: Gain = 23dB; NF = 1.6dB

• 5mA from 750mV-VDD

IN+ MIN 400/0.1

MC 400/0.1

20/0.1Gain Control

PG

CL 1.9pFLL 4.2nH

IN-LS 4nH

LSMD 4.7nH

OUT- OUT+

On C

hip

CSMD

2.2pF

Page 34: PDF

Die Photo

• Dedicated RF ground avoids noise coupling from the substrate

• STMicroelectronics CMOS090 (90nm) - LQFP32 Package

• Highly interdigitated devices for matching

• 4.3mm2 die area(2.7mm2 active area)LNA

Mix

er I

Mix

er Q

Page 35: PDF

Input Impedance Matching and RF Gain

1.7 1.8 1.9 2 2.1 2.218

20

22

24

26

28

30

32

34

-40

-30

-20

-10

0

Gai

n [d

B]

|S11

| [dB

]

Frequency [GHz]

Gain - MeasurementGain - Simulation|S11| - Measurement|S11| - Simulation

Page 36: PDF

Noise Power Spectral DensityIn

put-R

efer

red

Noise

PSD

[dBm

]

Frequency [kHz]0 20 40 60 80 100

-174

-172

-170

-168

-166

-164

-162

-16015kHz 1/f noise corner

Average Noise Figure

[1kHz-100kHz]: 3.5dB

Page 37: PDF

45

50

55

60

65

70

75

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sample #

IIP2

[dBm

]IIP2

51 dBm minimum

over 25 samples

Page 38: PDF

Voltage Gain 31.5dB

Noise Figure [1kHz-100kHz] 3.5dB

1/f Noise Corner 15kHz

Minimum IIP2 51dBm

IIP3 -10.5dBm

1dB C.P. due to 3MHz Blocker

-18dBm

Gain Reduction 6dB

Voltage Supply 750mV

Current Consumption 15mA

Die/Active Area 4.3/2.7mm2

Technology STMicroelectronics CMOS090

Measurement Summary

Page 39: PDF

Injection Locked dividers for Injection Locked dividers for

Quadrature Generation in Direct Quadrature Generation in Direct

Conversion CMOS ReceiversConversion CMOS Receivers

Journal of Solid-State Circuits, Sept. 2004Journal of Solid-State Circuits, Sept. 2004

Custom Integrated Circuits Conference, Sept. 2003Custom Integrated Circuits Conference, Sept. 2003

Page 40: PDF

Local Oscillator Generation

RF inLO

LO I

LO Q

BB I

BB Q

• Low phase noise at large offset

• Large tuning range

• Minimum power consumption

while driving large mixer LO input capacitancewhile driving large mixer LO input capacitance

Page 41: PDF

Coupled LC Oscillators

Quadrature accuracy trades with phase noise

Fixed capacitances reduce the available tuning range

I+

I+

I-

I-Q+

Q+ Q-

Q-

I+

I+

I-

I-Q+

Q+ Q-

Q-

+Cpar Cmixer

Page 42: PDF

Phase noise and tuning range set by the VCO

Quadrature accuracy set by dividers

Dividers must feature enough ‘locking band’

Injection Locking Frequency Dividers

A VCO running at 2A VCO running at 200 drives two LC frequency drives two LC frequency

dividersdividers

divideby 2

divide by 2

+

-

VCO@

20

LO_I

LO_Q

0

bias

V o-

bias

Vo+

Page 43: PDF

The DC current is actually limiting the locking range:

(es.: if IDC = Iinj, |max| ≈ 30°)

Harmonic components other than the fundamental are filtered-out by the LC tank For correct regeneration the loop phase shift is

() + () = 0

Regenerative Model, 3, 5, ...

Vocos(t+)

IDC +

IINJ @2

cos(t+)

ITANK =

IINJ/2 cos(t-)

ITANK=IINJ/2

IINJ cos(2t)IDC +

IINJ cos(2t)

cos(t+)

ITANK= IDC cos(t+) +

IINJ/2 cos(t-)

IDC

IINJ/2

ITANK

max

22

2 2DC inj

DC inj

I Iarctg

I I

Page 44: PDF

Locking Range and Quadrature Accuracy

inj

DCdev

inj 0

DC

I

Iχ 3 Δω 2Ph = Q +1 =

I4 ω 3 Q

I

V1cos(t+1)

V2sin(t+2)

+IINJ

-IINJ

IDC

IDC

Locking-range and phase accuracy improve

reducing load Q and increasing injection ratio

Page 45: PDF

• Fully Differential Topology

• DC offset cancellation loop

• 0.18m CMOS Technology

• Double Frequency VCO

• Second-Harmonic Injection Locking Dividers

CMOS Direct Conversion front-end

Servo-loop around the VGA implements a 3kHz high pass filter

2

90°

VCOLNA

IVGA

Gm

QVGA

Gm

Page 46: PDF

Die Microphotograph

Total chip area = 16mm2

3.4m

m4.7mm

I&Q I&Q VGA VGA

+ + servo servo looploop

VCOVCO

I&Q I&Q mixer mixer and and

dividersdividers

LNALNA

Page 47: PDF

VarBias

Vctrl

MN1MN2

Double Frequency VCOVsig

P-substrate

Vctrl

n-well

Cox

PolySI

n+n+

Separate supply voltage:

Improved tuning Range

Improved PSRR

0.1

0.2

0.3

0.4

-4 -2 0 2 4

VarBias-Vctrl[V]

Cap

[pF

]

Improved tuning

Page 48: PDF

Dividers Implementation

Capacitive load: parasitic only

Q lowered to 4 to keep a safety margin on quadrature error

Input trasconductor in subthresold for maximum Iinjection

Cload = 1.2pF

LO + LO -

bias

5nH

1.8 V

2kI+ I- Q- Q+

40/ 0.25

Page 49: PDF

3.5

3.6

3.7

3.8

3.9

4

0 0.3 0.6 0.9 1.2 1.5 1.8Var_control

VC

O F

req

uen

cy[G

Hz]

VddLO=1.1V

VddLO=1.2V

VddLO=1.3V

VddLO=1.4V

VCO Tuning Range

1.75

1.8

1.85

1.9

1.95

2

0 0.3 0.6 0.9 1.2 1.5 1.8Var_control

Div

iders

Fre

qu

en

cy

[GH

z]

VddLO=1.1V

VddLO=1.2V

VddLO=1.3V

VddLO=1.4V10.6%10.6%

Lower oscillation

frequency due to LC load variation

Page 50: PDF

Locking range and Phase deviation

0

1

2

3

4

5

6

7

8

9

10

1.73 1.78 1.83 1.88 1.93 1.98 2.03 2.08

Output Frequency [GHz]

model

Pha

se D

evia

tion

[°] measurements

Locking Range

0

5

10

15

20

25

30

-6 -4 -2 0 2 4 6 8 10 12 14Injected Power [dBm]

measurements

model

Lo

ckin

g R

ang

e [%

]

IINJ/IDC = 0.5

IINJ/IDC = 1

IINJ/IDC = 1.33

Phase Deviation

(down-converted signals)

IINJ/IDC=0.5

IINJ/IDC=0.9

IINJ/IDC=1.5

Page 51: PDF

Phase Noise

Page 52: PDF

* Integrated between 200 kHz and 1.92 MHz** Integrated between 10 kHz and 1.92 MHz

Performance Summary

Power consumption breakdown

47dBGain

-155dBc/HzPN@135MHz

0.18m 6M CMOS

Technology

16mm2Active Area

38mWPower

+44.8dBmMinimum IIP2

-2dBmIIP3 out-of-band

4.2dB * 5.6dB **NF

I&Q Mixer 38%

LNA 24%

VGA 9,5%

VCO 9,5%

I&Q DIV 19%

Page 53: PDF

Injection Locked Balanced Dividers

divideby 2

divide by 2

+

-

VCO@

20

LO_I

LO_Q

0Vo+ Vo-

VDCIDC

LC

Fully balanced multiplier suppress

the DC current0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

Output Frequency, [GHz]

Otp

ut

Am

pli

tud

e,

[V]

/0≈42%

Increasing IDC

42% measured locking range with Qtank = 14

Page 54: PDF

Towards highly integrated Towards highly integrated

Multiband MultistandardMultiband Multistandard

Receivers Receivers

Page 55: PDF

Universal Mobile Terminals

Ultimate

solution: Zero-IF

fully integrated

multistandard RX

• Mixer and analog base-band blocks are easily re-configurable

• LNA is the most critical block for multistandard operation

LNA

ADCAnalog BB

Analog BB ADC

I Q

Switchplexer& SAW

IC

n

n

GSM900GPS

GSM1800/1900CDMA2000

UMTS802.11b/g HiperLAN2

HiSWANa, 802.11a,

802.16a

f[GHz]1 2 3 4 5 6

Page 56: PDF

Vout

RS

VS

LB

LE

ZL

LNA State-of-the-Art

Resonant network

for voltage gain

Resonant network for

input impedance matching

Two resonant networks must be reconfigured for

multistandard operation critical in the GHz range

Page 57: PDF

Series-shunt feedback

Input impedance:

Feedback Amplifier

RS

VOUT

VS

CBYP

ZIN

ZL

IN Lm

1Z (f) + α Z (f)

g

• Biasing current not set by impedance matching constraints allows optimization of NF and IIP3

• Load reconfiguration allows multi-standard operations

OUT L

S S

V Z (f)(f) =

V 2R

Voltage gain

(input matched):

Page 58: PDF

f1

Multi-Band Feedback LNA

Rs

Vout

Vin

Cbypass

f1

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

Programmable resonance

frequency load

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f2

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f2

Page 59: PDF

Concurrent Feedback LNA

Rs

Vout

Vin

Cbypass

f1 f2 f3

Multiple resonant load

-35

-30

-25

-20

-15

-10

-5

0

Frequency

S11

[dB

]

-10

-5

0

5

10

15

20

Frequency

Gai

n [d

B]

f1 f2 f3

Page 60: PDF

Input Impedance:

) f ( Z gm1

1

gm

1Zin

load21

Current Gain:

)) f (Z gm(1

1

I

I

load2in

out

• gm1 > 1/Rs

• Current gain greater than 1

Positive Feedback based solution

Bias

In

Zload (f)

Out

IBias

-1

M1

M2

Iout

Iloop Iin

Zin

Page 61: PDF

A 0.13 m CMOS Front-End for

DCS1800/UMTS/802.11b-g with

Multi-band Positive Feedback

Low Noise Amplifier

VLSI Symposium on Circuits, June 2005VLSI Symposium on Circuits, June 2005

Page 62: PDF

Multi-Standard Scenario

MultiStandardReceiver

1805 1880 2110 2170 2400 2485

DCS1800 UMTS IEEE802.11b/g

f[MHz]

230MHz 230MHz

• Cellular (DCS1800)

• Data (IEEE802.11b/g)

• Mixed voice/data (UMTS)

Applications:

Page 63: PDF

• Positive feedback realized by M2-M4

• Re-configurable LC load by inductor selection

Multi-Band LNA

M4 M2

M1

+ Vin -

Vdd

V1L2 diff

L1

L4 diff

L3

V2

Tuneable Load

+ Vout -

Vbias

V3

VariableGain

M5

Vbias

V3

M6M3

Off- Chip

VariableGain

• Three selectable bands

• 6dB gain variation

Page 64: PDF

Multi-Standard Mixer: Transconductor

• Different noise-linearity

trade-off for each standard

• GSM requires higher gm

than UMTS and WLAN but

asks for lower IIP3

• Switch V1 sets the

transconductance gain

M1 M3 M4 M2

M5 M6

M7V1 V1

Vgain

VariableGain

C1 C1Vb1

+ Vin/2 - Vin/2

iRF+ iRF-

Page 65: PDF

Multi-Standard Mixer: Switching Pairs

• LC filter improves noise

and linearity

• PMOS switching pairs for

low 1/f noise

• Multi-mode RC load sets

appropriate gain and

bandwidth for each standard

Multi-mode Load

M8

M13 M14

M9 M10 M11 M12

Vb3

UMTS DCS WLAN

MultiModeLoad

LO+ LO+LO-

C2

Vb2

Vdd

L1

iRF+ iRF-

Page 66: PDF

Input Matching

-35

-30

-25

-20

-15

-10

-5

0

1.5 1.7 1.9 2.1 2.3 2.5

Frequency [Hz]

S11

[d

B]

DCS1800

UMTS

802.11b-g

Page 67: PDF

Gain

15

18

21

24

27

30

1.5 1.7 1.9 2.1 2.3 2.5Frequency (GHz)

Gai

n [

dB

]

DCS1800

UMTS

802.11b-g

Page 68: PDF

Performance summary

DCS1800 UMTS IEEE802.11b/g

Gain (high / low) [dB] 28.5 / 13.5 29.5 / 14.5 23.5 / 8.5

NF [dB] 5.2 5.6 5.8

IIP2 [dBm] 50 51 54

IIP3 [dBm] -7.5 0 -4.8

Current Consumption: 20mA

Voltage Supply: 1.8V

Page 69: PDF

A Variable Gain RF Front-End, A Variable Gain RF Front-End,

Based on a Voltage – Voltage Based on a Voltage – Voltage

Feedback LNA, for Multistandard Feedback LNA, for Multistandard

ApplicationsApplications

Journal of Solid-State Circuits, March 2005Journal of Solid-State Circuits, March 2005

Page 70: PDF

5-6GHz Multi-Standard WLAN Scenario

• About 1GHz overall bandwidth

• Spectrum allocation fragmented in 100-250MHz sub-bands

5150 - 5350

49005000

57255825

5000 5200 5400 5600 5800

Japan: MMAC HiSWANa

[MHz]

5150 - 5350Europe: ETSI

BRAN HiperLAN2 5470 - 5725

US: IEEE 802.11a

51505250

Multi-standard narrow-band

re-configurable receiver

Page 71: PDF

WLAN Multi-Band LNA

Simulated Results

Idiss Gain NF IIP3

6mA 23dB 1.6dB 0dBm

Tunable LC load

8 selectable bands

between

4.9-5.825GHz

Capacitive feedback

1

1 2

C

C C

Lload=3.3nH

RCM=8

Cc=4Ca

Vc

Cb=2Ca

Vb

Ca=40fF

Va

C2

C1

LSMD

Cc

Vc

Cb

Vb

Ca

Va

C2

C1

LSMD

OUT

IN

ONCHIP

Page 72: PDF

Variable Gain Mixer

• Pseudo differential NMOS input stage

• Input stage current boosting

• Differential inductor (Lquad=7nH)

Variable gain feature:

• 11dB gain reduction

• 3.5dB IIP3 improvement

• Constant output pole cut-off frequency and DC output level

7/0.25

50/0.25

Lquad=7nH

Cdiff=9pF

320

200

IN-IN+

LO- LO-

LO+

CSW=25pF

VgcVgc

Vgc

SW1 SW2

SW3

Vgc

SW4 SW5MR

R1

R2

CparCpar

CSW

1.75

mA

0.75

mA

Page 73: PDF

Die Photomicrograph

Technology: STMicroelectronics (BiCMOS7G)

BiasBias

LNALNA

Mix

er I

Mix

er I

Mix

er Q

Mix

er Q

• Chip area:

1.6mm2

• Package

QFN 36

• PAD ESD

protected

Page 74: PDF

Input Impedance Matching

-30

-25

-20

-15

-10

-5

0

4.5 4.65 4.8 4.95 5.1 5.25 5.4 5.55 5.7 5.85 6

Frequency [GHz]

|S1

1|

[dB

]

Page 75: PDF

18

20

22

24

26

28

30

32

4.5 4.65 4.8 4.95 5.1 5.25 5.4 5.55 5.7 5.85 6

Frequency [GHz]

Ga

in [

dB

]Front-End Gain

Fixed IF frequency (500kHz)

Page 76: PDF

Performance Summary

High Gain Low Gain

Voltage gain [dB] 31.5 20.5

NF [dB] 2.5 2.9

IIP3 [dBm] -9.5 -6

IIP2 [dBm] 23 31

I&Q matching [dB] 0.3

Voltage Supply [V] 2.5

Current consumption [mA] 16

Technology BiCMOS SiGe 0.25mm

Page 77: PDF

An Interference Robust An Interference Robust

0.180.18m CMOS 3.1-8GHz Receiver m CMOS 3.1-8GHz Receiver

Front-End for UWB RadioFront-End for UWB Radio

Custom Integrated Circuits Conference, Sept. 2005Custom Integrated Circuits Conference, Sept. 2005

Page 78: PDF

Multi-Band OFDM UWB Scenario

IEEE802.11a

IEE

E 8

02.1

1b/g

Group#1

Group#2

Group#4

Group#3

Group#5

f [MHz]

3168 4752 6336 7920 9504 10560

• Group #1 mandatory, groups #2 - #5 optional

• Huge 5-6GHz WLAN interferer can desensitize the UWB RX

Multi-resonance

LNA with 5-6GHz

WLAN attenuation

Page 79: PDF

Multi-Resonance UWB LNA

Cext=3pF

Vbias

OUT

IN

1.1pF

220fF3nH

1nH

Zload

Lext=5.6nH

C2=700fF

C1=20fF

40/0.18

Zin

on-chip • Feedback-based LNA for superior dynamic range

• 11dB simulated WLAN attenuation

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10Frequency [GHz]

|Zlo

ad| [

dB

]

Page 80: PDF

• Single I&Q transconductor lowers LNA load parasitic• 1.5nH inductor tunes out switching pairs parasitic• Second order LPF improves RX selectivity

I&Q Mixers

IN

Vbias

16pF

Cpar

62.5/0.18

LO I+ LO I-

600

OUT I-

4pF

Vbias

100/0.25

200/0.18

OUT I+

LO Q+ LO Q-

OUT Q-VbiasOUT Q+

625/1

1.5nH

580fF

Page 81: PDF

Gain and Input Matching

-30369

1215182124

1 2 3 4 5 6 7 8 9 10Frequency [GHz]

Gai

n [d

B]

-18-16-14-12-10-8-6-4-20

|S11

| [dB

]

Gain |S11|

Page 82: PDF

Performance summary

UWB Channel

[MHz]

Gain [dB]

IEEE802.11a blocking power

[dBm]

1dB C.P. [dBm]

IIP3 [dBm]

IIP2 [dBm]

NF [dB]

Group #1

3432 20.8 -6 -11 -3.5 36.9 7.2

3960 23.2 -6 -12.5 1 34.5 5.2

4488 20.6 -5.5 -11.5 -3.3 42.1 7.3

Group #3

6600 20.2 -5.5 -8 -3.15 46 7.7

7128 22.8 -6.5 -11.5 3.35 35.2 5.3

7656 20.7 -6 -8 -3 42 7.1

Current Consumption: 10mA

Voltage Supply: 1.8V

Page 83: PDF

These works have been carried on by the

following phd students : Francesco Gatta,

Danilo Manstretta, Paolo Rossi, Massimo

Brandolini, Antonio Liscidini, Andrea

Mazzanti, Paola Uggetti, Giuseppe Cusmai,

Marco Sosio.

I am indebted with them.

Acknowledgements


Recommended