+ All Categories
Home > Documents > Peter Kutne, Bhavin K. Kapadia, Wolfgang Meiertu-freiberg.de › sites › default › files ›...

Peter Kutne, Bhavin K. Kapadia, Wolfgang Meiertu-freiberg.de › sites › default › files ›...

Date post: 15-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
14
Is Oxyfuel Combustion an Option for Gas Turbines? Peter Kutne, Bhavin K. Kapadia, Wolfgang Meier DLR Institute for Combustion Technology
Transcript
  • Is Oxyfuel Combustion an Option for Gas Turbines?

    Peter Kutne, Bhavin K. Kapadia, Wolfgang Meier DLR Institute for Combustion Technology

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 2

    Overview of Presentation

    Institute of Combustion Technology

    Motivation

    BIGCO2 project

    Experimental setup

    Results

    Summary & Outlook

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 3

    Combustion for Gasturbines

    Objectives:

    • Reduction of pollutants NOx , soot particles, UHC, CO2

    • Reliability of unsteady combustion processes ignition, extinction, thermoacoustic

    • Fuel flexibility kerosene, natural gas quality, alternatives as syngas and synfuels

    • Burner systems and power plant concepts

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 4

    Institut of Combustion Technology interdisciplinary competences

    Combustion SystemsNumerical Simulation

    Temperature

    CO mole fraction

    DiagnosticsTestrigsKineticsReaction A n Eact/R Reference

    CH3 + H (+M) = CH4 (+M) 1.69E+14 0.0 0 Leeds mechanism Low pressure limit : 1.41E+24 -1.8 0 Troe centering 3.70 3315 61 N2/0.4/ O2/0.4/ CO2/1.5/ H2O/6.5/ C2H6/3/ CO/7.5/ CH4/3/ AR /0.35/2CH3 (+M) = C2H6(+M) 3.61E+13 0.0 0 Leeds mechanism Low pressure limit : 3.63E+41 -7.0 1390 Troe centering 0.62 73 1180 N2/0.4/ O2/0.4/ CO2/1.5/ H2O/6.5/ C2H6/3/ CO/7.5/ CH4/3/ AR /0.35/2 CH3 = C2H5 + H 2.80E+13 0 6800 Frank, Braun-UnkhoffC2H5 + M = C2H4 + H + M 2.0E+15 0 15600 Frank, Braun-UnkhoffC2H4 + M = C2H3+ H 7.40E+17 0.0 48603.6 Leeds mechanism N2/0.4/ O2/0.4/ CO2/1.5/ H2O/6.5/ C2H6/3/ CO/7.5/ CH4/3/ AR /0.35/C2H2+ H (+M) = C2H3(+M) 8.43E+12 0.0 1300.2 Leeds mechanism Low pressure limit : 3.43E+18 0 739.7 Troe centering 1.0 1.0 1.0 1231 N2/0.4/ O2/0.4/ CO2/1.5/ H2O/6.5/ C2H6/3/ CO/7.5/ CH4/3/ AR /0.35/C2H2 + O = CH2 + CO 1.63E+14 0 4975 Bhaskaran, FrankC2H2 + O = HCCO +O 3.98E+14 0 5365 Bhaskaran, FrankH + O2 = OH + O 2.47E+14 0 8696 Frank, JustCH3 + O2 = CH3O +O 2.10E+12 0 12242 BraUn, Frank, NaumannCH3 + O2 = CH2O +OH 3.10E+10 0 4402 BraUn, Frank, NaumannCH3O = CH2O + H 1.50E+14 0 14600 CEC Data EvaluationCH3 + NO = H2CN + OH 9.70 E+11 0 11040 BraUn, Frank, NaumannCH3 + NO = HCN + H2O 8.32E+11 0 8100 Wintergerst, FrankCH3 + O2 (+M) = CH3O2 (+M) 7.80 E+08 1.2 0 Bromly et al.(1996) Low pressure limit : 5.80 E+25 -3.3 0CH3O2 + NO = CH3O + NO2 3.10 E+12 0 -358 Schelb, BraUn, FrankCH3O2 + CH3 = CH3O + CH3O 3.24 E+13 0 0 Schelb, BraUn, FrankCH3O + NO2 = CH2O + HONO 9.37 E+12 0 2285 Bromly et al.(1996)CH3O + NO = CH2O + HNO 1.95 E+12 0 -390 Schelb, BraUn, Frank

    ( k = A Tn exp(-Ea/RT) units: mol / cal / cm / s / K )

    COMPREHENSIVE

    REDUCEDMECHANISM

    VALIDATION

    APPLICATION

    REACTION MECHANISM

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 5

    Motivation

    Oxyfuel combustion for gas turbines connects the efficient combined cycle process with the post combustion capture option of the Oxyfuel process

    It is suited for all kind of fossil fuels, e.g. natural gas or syngas from coal

    On paper, it is a highly efficient way to avoid CO2 emissions while using fossil fuels

    Oxyfuel combustion for gas turbines has never been taken beyond thermodynamic calculations

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 6

    Differences between Oxyfuel combustion and air combustion for gas turbines

    Steam and CO2 as a working fluid of the turbo machineryRedesign of the compressor and turbine parts necessary

    Physical propertiesheat capacityCO2 is an infrared active moleculeGas transport properties (diffusivity)

    Chemical properties high chaperon efficiency (enhances third body reactions)Participation in chemical reactions like

    HCOOHCO +⇔+ 2

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 7

    BIGCO2 phase II - CO2 Management Technologies for Future Power Generation

    Enabling sustainable gas-fuelled power generation based on carbon capture and storage

    High temperature oxygen and hydrogen membranesPost combustion CO2 captureOxyfuel combustion & chemical looping CO2 storage

    Duration: 2007 - 2011Volume: 16 Mio€Partners: StatoilHydro, GE Global Research, Statkraft, Aker Kvaerner, Shell, TOTAL, ConocoPhillips, Alstom, Research Council of Norway (178004/I30), Gassnova (176059/I30), SINTEF, NTNU, University of Oslo, CICERO

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 8

    BIGCO2 phase II - CO2 Management Technologies for Future Power Generation – DLR part

    Fundamental research on Oxyfuel combustion for gas turbines

    Development and validation of kinetic reaction modelsLaminar flame speed measurementsIgnition delay time measurements

    Experiments on swirl stabilized Oxyfuel flamesStability analysis at atmospheric pressureDetailed measurements at atmospheric pressureSetup of a high pressure test rig for Oxyfuel combustionDetailed measurements under gas turbine conditions

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 9

    Experimental setup

    Burner:Gas turbine model combustorTwo co-swirled oxidizer flowsFuel injection through a ring between the oxidizer inlets

    Operation conditions:Fuel: CH4Thermal power: 10 - 30 kWO2 fraction: 20 % - 40 %fuel / oxidizer ratio: φ

    = 0.5 – 1

    Flame monitoring:OH*- chemiluminescence

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 10

    Flame stabilization for different operating conditions

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 11

    Variations in oxygen concentration

    Oxygen level of the oxidizer has a large effect on flame speedAt 40% O2 the laminar flame speed is comparable to a CH4 /air flameTo meet specifications for RIT (1600 K) the O2 level has to be around 20%, which could not be stabilized in the atmospheric experiments without preheating

    (a) 26 % O2 (b) 30 % O2 (c) 34 % O2 (d) 38 % O2

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 12

    Variations in stoichiometry

    (a) φ

    = 0.54 (b) φ

    = 0.61 (c) φ

    = 0.82 (d) φ

    = 1.0016.6 kW 18.7 kW 24.9 kW 29.9 kW

    Stoichiometry variation has only a small effect on flame shapeIncrease in OH*-chemiluminescence intensity due to higher heat release rateInlet velocity of the fuel changes from 26 m/s to 46 m/s (a-d)

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 13

    Summary & outlook

    Combustion behavior of different Oxyfuel/CH4 flames in a swirl stabilized burner was characterized over a wide parameter range at atmospheric conditionsFlame characteristics are quite different from CH4 /air flames at comparable conditionsOxygen level has a large influence on the combustion behavior

    Because of the different physicochemical properties it is not possible to predict the combustion behavior at elevated pressure from the atmospheric resultsThe pressure dependence has to be analyzed to determine if Oxyfuel combustion in a gas turbine is a viable way

  • CCT 2009 Dresden > Peter Kutne > 19.05.2009

    Slide 14

    Acknowledgements

    The presented work forms a part of the BIGCO2 project, performed under the strategic Norwegian research program Climit. The authors acknowledge the partners:

    StatoilHydro, GE Global Research, Statkraft, Aker Kvaerner, Shell, TOTAL, ConocoPhillips, Alstom, the Research Council of Norway (178004/I30), Gassnova (176059/I30) for their support.

    Is Oxyfuel Combustion an Option for Gas Turbines?��Peter Kutne, Bhavin K. Kapadia, Wolfgang Meier�DLR Institute for Combustion Technology�Overview of PresentationCombustion for Gasturbines Institut of Combustion Technology�interdisciplinary competencesMotivationDifferences between Oxyfuel combustion and air combustion for gas turbinesBIGCO2 phase II - CO2 Management Technologies for Future Power GenerationBIGCO2 phase II - CO2 Management Technologies for Future Power Generation – DLR partExperimental setupFlame stabilization for different operating conditionsVariations in oxygen concentrationVariations in stoichiometrySummary & outlookAcknowledgements


Recommended