+ All Categories
Home > Documents > PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation...

PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation...

Date post: 12-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
29
International Symposium on Improvement of Nuclear Safety Using Probabilistic Fracture Mechanics Yinsheng Li Nuclear Safety Research Center Japan Atomic Energy Agency (JAEA) October 24, 2014 PFM Applications to Seismic Safety Evaluation - Seismic Fragility Evaluation Using PFM -
Transcript
Page 1: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

International Symposium on Improvement of Nuclear Safety Using Probabilistic Fracture Mechanics

Yinsheng Li Nuclear Safety Research Center

Japan Atomic Energy Agency (JAEA) October 24, 2014

PFM Applications to Seismic Safety Evaluation - Seismic Fragility Evaluation Using PFM -

Page 2: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Contents 1

1. Background and Objective

2. Application to Seismic Safety Evaluation for Aged

Piping Using PFM

- Analysis code

- Benchmark analysis

- Application to seismic fragility evaluation

3. Evaluation Methodology of Crack Growth and

Fragility for Piping Subjected to Severe Earthquake

4. Summary 【本資料は公開文献に基づくものである】

Page 3: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Background 2

On March 11, 2011, Fukushima Dai-ichi Nuclear Power Station (NPS) experienced an extremely massive earthquake (the Tohoku District - off the Pacific Ocean Earthquake) and a severe accident followed at an unprecedented scale and over a lengthy period.

Many lessons have been learned from the Fukushima NPS accident. One of them is “Effective use of probabilistic safety assessment (PSA) in risk management” (Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety, June, 2011)

On the other hand, about one-third of the nuclear power plants (NPPs) in Japan have been operating for more than 30 years, and cracks due to age-related degradation mechanisms have been detected within some components including pipes.

Therefore, seismic PRA and seismic safety evaluation considering aging mechanisms for aged components have become increasingly important.

Page 4: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

PFM has been recognized as a rational methodology for risk assessment of aged components, because it can evaluate the failure probabilities considering the age-related degradation mechanisms and the influence parameters with their inherent probabilistic distributions.

In order to conduct seismic PRA considering aging mechanisms for aged components, a PFM analysis code for piping has been improved, considering typical aging mechanisms of pipes and fracture mechanics analysis models provided in Japan.

Based on the analysis results of PFM code, failure probabilities, fragility curves of aged pipes were investigated. These data of failure probabilities and fragility curves are useful for seismic safety evaluation for aged components.

Objective 3

Page 5: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Applications to Seismic Safety Evaluation

Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計上の想定を超える事象を考慮したリスク評価や安全裕度の評価を求めている。 Application to seismic PRA evaluation 改訂中の原子力学会標準 地震PRA実施基準では経年事象を考慮したフラジリティ評価及びリスク評価を明記している。 Application to risk evaluation and RI-ISI 地震荷重の影響、検査の効果を考慮したリスク評価。リスク情報の活用、RI-ISIの評価。 Application to seismic safety margin evaluation 偶然的不確実さ及び認識論的不確実さを考慮した信頼度評価及び裕度評価。 Application to evaluation of combination effect of main-shock and after-shock,

etc. 本震と余震の重畳を考慮した経年配管のフラジリティ評価

4

Page 6: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Applications to Seismic Safety Evaluation Building & Component

Fragility Evaluation Accident Sequence Evaluation Seismic Hazard Evaluation

Seismic ground motion strength

Occ

urre

nce

frequ

ency

Seismic hazard curve

Cor

e da

mag

e fre

quen

cy

Core damage probability

Core damage frequency

Accident sequence occurrence frequency

Seismic hazard curve

Component A Fragility curve

Seismic ground motion strength

Component B Fa

ilure

pr

obab

ility

Process of seismic PRA and failure probability considering age-related degradation

Aged component such as piping

Fragility curve

Failu

re

prob

abili

ty

Prog

ress

of

agi

ng

Seismic ground motion strength

Applications of PFM for aged piping

5

Seismic ground motion strength

Page 7: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Example analysis flow of PFM code for piping

In order to conduct seismic PRA or seismic safety evaluation for existing NPPs, a PFM analysis code for aged piping has been developed to evaluate failure probabilities and fragility curves of cracked pipes considering aging mechanisms and seismic loads.

To evaluate domestic aged piping at NPPs, this code has been improved based on the fracture mechanics analysis models and experimental data provided in Japan,

such as: • Crack initiation and distribution due to

SCC and PWSCC • Crack growth rates of SCC, PWSCC and

fatigue • Solutions of stress intensity factor • Detection probability of in-service

inspection • Failure evaluation of cracked pipe

PFM Analysis Code for Piping

6

Start

Select a sample weld joint of pipe

Sampling cracks based on the crack size distribution

Determine the crack detection probability in pre-service inspection

Calculate the crack growth considering SCC, PWSCC or/and

fatigue

Determine the crack detection probability in in-service inspection

Evaluate the failure of cracked pipe

Evaluate the leak detection

Calculate the failure and leak probabilities of the pipe

End

Nex

t tim

e st

ep

Nex

t sam

ple

(M

onte

Car

lo si

mul

atio

n)

Page 8: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Circumferential semi-elliptical surface cracks in weld joints

x

y

a1

R

t

Inner surface

c1

Outer surface

Crack examples: Circumferential semi-elliptical surface cracks occurrence in weld joints.

SCC in a weld joint

Base metal

Inner surface of pipe

Weld metal

SCC

Outer surface of pipe

Aging mechanisms: Cracks caused by SCC or initial cracks; Crack growth due to SCC and fatigue.

PFM Analysis Code for Piping

7

Analysis function for BWR piping

Crack initiation or distribution: Models based on Japanese measurement data.

PLR line

:Weld joints where crack has been detected

:Weld joints

Examples of SCC detected in BWR plants

Page 9: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Probabilistic models of crack growth rates for both SCC and fatigue: Models based on the data provided in Japanese Fitness-For-Service Code (JSME NA1-2012)

Crack growth model

溶接金属 Base metal

Inner surface of pipe

Weld metal

SCC

Outer surface of pipe Given in JSME NA1-2012

Cra

ck g

row

th ra

te o

f SC

C (m

/s)

mCKdtda

=

K (MPa√m)

Cra

ck g

row

th ra

te o

f SC

C (m

/s)

Given in JSME NA1-2012

K (MPa√m)

mCKdtda

=

Crack growth rate (CGR) for sensitized type 304 stainless steel

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

10 100

応力拡大係数 [MPa √m]

SC

Cき

裂進

展速

度 [

m/se

c]

実験値平均値±1σ±2σ維持規格

K (MPa√m)

Cra

ck g

row

th ra

te o

f SC

C (m

/s)

10-12

10-11

10-10

10-9

10-8

C: Log-normal distribution Mean ln(C) :-30.02 S. D. of ln(C) :0.3091

1σ 2σ

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

10 100

応力拡大係数 [MPa √m]

SC

Cき

裂進

展速

度 [

m/s

ec]

実験値平均値±1σ±2σ維持規格

Cra

ck g

row

th ra

te o

f SC

C (m

/s)

10-12

10-11

10-13

C: Log-normal distribution Mean ln(C) :-32.22 S. D. of ln(C) :11.80

10-10

10-9

10-8

K (MPa√m)

1σ 2σ

CGR for low carbon austenitic stainless steel

PFM Analysis Code for Piping

8

Analysis function for BWR piping

Page 10: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Ni-based alloy weld joint

x

y

R

t

Nozzle (Low alloy)

Safe end (Stainless steel)

Weld metal (Ni-based alloy)

W

t Depth direction

Width direction 2 With direction 1

Inner surface

Outer surface

PFM Analysis Code for Piping

9

Analysis function for PWR piping

Examples of PWSCC detected in PWR plants

Crack examples: Circumferential or axial semi-elliptical surface cracks occurrence in weld joints.

Aging mechanisms: Cracks caused by PWSCC or initial cracks; Crack growth due to PWSCC and fatigue.

CGR models: CGRs for different materials.

SG nozzle

WRS: WRS in dissimilar materials.

Circumferential semi-elliptical surface cracks in weld joints

Axial semi-elliptical surface cracks in weld joints

PWSCC

Inner surface

Outer surface

PWSCC

Weld metal (Ni-based alloy)

Page 11: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

( )βα thref

g KKTTR

Qdtda

−−=

11exp ( ) ( )

∆<∆∆≥∆−∆

=th

thrcN

KKKKRKtTc

dNda

01/ 34.125.324.077.0

R:stress ratio, tr: loading increasing time, Tc:temperature, cN :CGR coefficient

PFM Analysis Code for Piping

10

Analysis function for PWR piping CGR for PWSCC : Models based on the data provided in JSME

CGR for fatigue: Models based on the data provided in JSME

Q: thermal activation energy, R: universal gas constant T: temperature, Tref: reference temperature α: CGR coefficient, β: CGR exponent

Stress intensity factor K (MPa√m)

Cra

ck g

row

th ra

te d

a/dt

(m/s

)

Mean curve

2σ curve

Exp.

fatig

ue C

GR

(m/c

ycle

)

Predicted fatigue CGR (m/cycle)

Mean curve

2σ curve

Page 12: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

PWSCC

Outlet nozzle

SIF solutions for semi-elliptical surface cracks with large aspect ratio in plates and cylinders

• a/ = 0.5, 1.0, 2.0, 4.0 • a/t = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8 • t/Ri = 0 (plate), 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 (cylinder)

PWSCC

PFM Analysis Code for Piping Example PWSCC with large aspect ratio detected in NPPs

11

• Cracks in both circumferential and axial directions

Page 13: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

PFM Analysis Code for Piping

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0Crack depth, a/t (-)

Solu

tion

of K

, (M

Pa √

m)

31%

き裂深さ a/t, (-)

応力

拡大係数の解

K, (

MPa

√m

)

本提案手法による解

FEAによる解従来法による解

-300

-200

-100

0

100

200

300

400

500

600

0.0 0.2 0.4 0.6 0.8 1.0Distance from inner surface, x /t (-)

Res

idua

l stre

ss,

σres

(MPa

)

1 区間2 3 区間4 区間5

溶接残留応力

4次多項式による補間

応力分布

(M

Pa)

表面までの距離 x/t, (-)

区間別4次多項式による補間

・Semi-elliptical surface crack ・a/: 1/8

Curve fitting of stress distribution by segment division SIF solution using proposed method

SIF calculation method for complicated stress distributions

∑∑= =

=

m

j

n

i

i

ijijI

j

Qa

taAFK

1 0

π

12

a: crack depth, Q : flaw shape parameter m: number of divided segments nj: order of polynomial at j-th segment Aij : coefficients of stress polynomial distribution at segment j Fij : coefficients obtained from weight function

Stre

ss d

istri

butio

n, (M

Pa)

Distance from inner surface x/t, (-)

Solu

tion

of S

IF, (

MPa√a

)

Crack depth a/t, (-)

Present method

Conventional method

FEA solution

Page 14: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

y

βn

R

t

x'

y' γj

ξ

x

∑∑

=

==−

= n

iiii

n

jjjj

n

iiii

a

aaji

1

11

sincos

sinsinsinsin

tanθγ

θγθγ

ξ

−= ∑

=

n

iii

in

fcbn t

a

1sincossin2

2θγβ

πσ

σ

−−= ∑

= f

mn

ii

in t

aσσ

πθπβ12

1

The failure bending stress :

The neutral angle :

The failure evaluation method for a pipe containing multiple cracks in the same cross section of pipe [1]:

The direction of coordinates that provides the minimum failure strength:

[1] Y. Li. et al, PVP2009-77061

ni: number of cracks on the right side of y-axis nj: number of cracks on the left side of y-axis n: total number of cracks

corresponding to (x', y') coordinates

Pipe section with multiple cracks

PFM Analysis Code for Piping

13

Page 15: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

PFM Analysis Code for Piping

14

• Consideration of equivalent cyclic stress • Consideration of uncertainty of seismic

response stress • Consideration of seismic waves • Consideration of response stress from

severe earthquake

ln(Stress) -250

-200

-150

-100

-50

0

50

100

150

200

32 33 34 35 36 37 38 39 40 41 42

時間 [sec]

曲げ

応力

[M

Pa]

レンジ計数法による応力レンジの計数

Analysis function for seismic response stress

Realistic response

Prob

abili

stic

den

sity

Failure Probability

Ultimate capacity

Uncertainty of seismic response stress Consideration of seismic response waves

Cra

ck d

epth

Crack length

time 1 time 2

Crack growth due to age-related degradation

Crack growth due to postulated earthquake

Crack growth due to postulated earthquake

Page 16: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Benchmark Analysis Results 15

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 5 10 15 20Operation time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y

10-10

10-8

10-6

10-4

10-2

100

Cum

ulat

ive

failu

re p

roba

bilit

y (-

)

1100 gal

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

1100 gal

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 5 10 15 20Operation time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y

10-10

10-8

10-6

10-4

10-2

100

Cum

ulat

ive

failu

re p

roba

bilit

y ( -

)

1100 gal

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

1100 gal

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

Example results of failure probability

• Objective:confirm the reliability of PFM codes developed by different organizations • PFM analysis codes:PASCAL-SP (Developed by JAEA), PRAISE-JNES (Improved based

on pc-PRAISE by JNES) • Pipe:PLR pipe in BWR plant • Crack: SCC; Circumferential inner surface semi-elliptical crack in weld joints • Crack growth: crack growth due to SCC and fatigue • Failure probability: with and without seismic loads

Results considering crack initiated by SCC

300A pipe 400A pipe

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

Operation year after inspection (Year) Operation year after inspection (Year)

Page 17: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 5 10 15 20Operation time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y (-

)

10-8

10-6

10-4

10-2

100

Cum

ulat

ive

failu

re p

roba

bilit

y (-

)

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 5 10 15 20Operetion time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y

10-8

10-6

10-4

10-2

100

Cum

ulat

ive

failu

re p

roba

bilit

y (-

)

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

750 gal

450 gal

Without earthquake

PASCAL-SPPRAISE-JNES

16 Benchmark Analysis Results

Example results of failure probability

• PFM analysis codes:PASCAL-SP (JAEA), PRAISE-JNES (JNES) • Pipe:stainless pipe in BWR plant • Crack: initial crack in weld joints caused by welding or etc. • Crack growth: crack growth due to fatigue • Failure probability: with and without seismic stresses

Results considering crack growth due to fatigue

300A pipe 400A pipe

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

Page 18: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

Example Analysis Results for Seismic Safety

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20

Cum

ulat

ive

(con

ditio

nal)

failu

re p

roba

bilit

y

Operation time [year]Operation time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y

: PRAISE-JNES

: PASCAL-SPW/o earthquake

Seismic acc.:450 gal

750 gal

1150 gal

In-service Inspection

• Analysis model of detection probability: Proposed by Khaleel [1].

• Parameters: Corresponding to the “outstanding level” of the detection performance and crack due to SCC.

[1] M. A. Khaleel et al, ASME PVP 1995. Operation time(year)

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

1100 gal

10-5

10-4

10-3

10-2

10-1

100

w/o earthquake

• PFM analysis codes:PASCAL-SP (JAEA), PRAISE-JNES (JNES) • Pipe:PLR pipe in BWR plant ・Cracks: SCCs • Crack growth: crack growth due to SCC and fatigue • Failure probability: with and without seismic stresses

Results considering seismic stress and in-service inspection

Operation year after inspection (Year)

17

• Analysis for two initial cracks • Located at 0 deg. and 60 deg.

x

y

a1

c2

R t

Page 19: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

18

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20

Cum

ulat

ive

(con

ditio

nal)

failu

re p

roba

bilit

y

Operation time [year]Operation time (year)

Cum

ulat

ive

failu

re p

roba

bilit

y

: PRAISE-JNES

: PASCAL-SP

W/o earthquake

Seismic acc. : 1150 gal

750 gal

450 gal

• Analysis for two initiated cracks

• Initiated at 0 deg. and 60 deg.

x

y

a1

c1

R t

Cum

ulat

ive

cond

ition

al b

reak

pro

babi

lity

1100 gal 10-5

10-4

10-3

10-2

10-1

100

w/o earthquake

Benchmark Analysis Results

• PFM analysis codes:PASCAL-SP (JAEA), PRAISE-JNES (JNES) • Pipe:PLR pipe in BWR plant • Cracks: SCCs; Multiple cracks; Circumferential inner surface semi-elliptical crack in weld joints • Crack growth: crack growth due to SCC and fatigue • Failure probability: with and without seismic stresses

Results considering crack initiation and growth due to SCC

Operation year (Year)

Page 20: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

0.00

0.01

0.02

0.03

0.04

0 100 200 300 400

応力(MPa)

確率

密度

0 year

4th year

Progress of aging

2nd year

Stress (MPa)

Prob

abili

stic

den

sity

Realistic response

Ultimate capacity

300A, ばらつきあり(β=0.15)

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 1 2 3 4 5

検査後運転年数 (年)

破損

確率

地震無し

Ratio=1.5

Ratio=3.0

Ratio=4.0

Ratio=4.5

Ratio=5.0

Ratio=5.5

Ratio=6.0

Operation year after inspection (Year)

10-12

10-6

10-4

10-2

10-0

10-10

10-8

Cum

ulat

ive

failu

re p

roba

bilit

y

300A pipe, β=0.15

Failure probability considering seismic stress and probabilistic distribution of ultimate capacity

w/o seismic stress

19

Failure probabilities and probabilistic distribution of ultimate capacity

Example Analysis Results of Seismic Fragility

• Through PFM analyses, the failure probabilities considering the effects of age-related degradation and seismic stresses can be obtained.

• Corresponding to failure probabilities obtained from PFM, the probabilistic distribution of the ultimate capacity and its decrease due to progress of aging degradation can be evaluated.

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Page 21: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

300A, ばらつきあり(β=0.15)

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

0 1 2 3 4 5

検査後運転年数 (年)

破損

確率

地震無し

Ratio=1.5

Ratio=3.0

Ratio=4.0

Ratio=4.5

Ratio=5.0

Ratio=5.5

Ratio=6.00

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7

地震動比率

破損

確率

1year (β=0.15)

3year (β=0.15)

5year (β=0.15)

• Through PFM analyses, the failure probabilities considering the effects of age-related degradation and seismic stresses can be obtained.

• Based on the failure probabilities obtained from PFM, the fragility curves which are useful in risk evaluation can be obtained for different operation years.

• Comparing the general fragility curve, the fragility curve considering age-related degradation is a function of operation year. The fragility curve goes up with the increasing operation year, due to the progress of the aging mechanisms.

Operation year after inspection (Year)

10-12

10-6

10-4

10-2

10-0

10-10

10-8

Cum

ulat

ive

failu

re p

roba

bilit

y

300A pipe; β=0.15 Incr

easi

ng o

f ope

ratio

n ye

ars

Ratio of seismic motion

Cum

ulat

ive

failu

re p

roba

bilit

y

300A pipe; β=0.15

Failure probabilities and fragility curves considering age related degradation

w/o seismic stress

20 Example Analysis Results for Seismic Fragility Seismic fragility curves considering age-related degradation

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Page 22: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5 6 7

地震動比率

破損

確率

1year (β=0.15)

3year (β=0.15)

5year (β=0.15)

Failure probability basis

50

60

70

80

90

100

0 1 2 3 4 5

検査後の運転年数 (年)

耐震

裕度

の変

化率

 (%

)

Incr

easi

ng o

f ope

ratio

n ye

ars

Ratio of seismic motion

Cum

ulat

ive

failu

re p

roba

bilit

y

Operation year after inspection (Year)

Red

uctio

n of

pro

babi

lity-

base

d SM

(%)

• Based on the fragility curves and the assumed failure probability basis, the probability-based seismic margin and its reduction rate considering the age-related degradation can be obtained.

• Probability-based seismic margin decreases with the increasing of operation years. The reduction rate of seismic margin depends on the progress rate of age-related degradation, such as crack growth rate, the distribution of residual stress and so on.

Mcp

Tentatively assumed to be 1%

300A pipe

300A pipe

21 Example Analysis Results for Seismic Fragility Seismic fragility curves and seismic safety margin

Failure probabilities and fragility curves considering age related degradation

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Page 23: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

22

Seismic fragility curves considering the effect of after shock

Example Analysis Results for Seismic Fragility

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20

条件

付漏

洩確

経過時間 [年]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 0.5 1 1.5 2 2.5 3

条件

付漏

洩確

基準地震動レベル比率

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Cum

ulat

ive

cond

ition

al fa

ilure

pro

babi

lity

Operation year after inspection (Year) Ratio of seismic motion

Main-shock

Main-shock + after-shock

w/o seismic stress

Ratio of seismic motion: 1.5

Ratio of seismic motion: 1.0

Main-shock

Main-shock + after-shock

5yr

0yr

• Because PFM can consider the age-related degradation in mechanism, it can evaluate the combination effect of main-shock and after-shock.

• In the following case, the after-shock occurred soon after the main-shock with a same magnitude is evaluated.

Failure probability and seismic fragility curve with the effect of after-shock

Page 24: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

CGR and Fragility for Severe Earthquake In order to contribute to the seismic PRA and seismic safety evaluation for aged

components, it is necessary to consider the earthquake beyond design basis ground motion.

Therefore, we are developing the evaluation methodology of crack growth rate (CGR) beyond the small scale yielding condition, considering large seismic stresses corresponding to response of severe earthquakes.

Building & Component Fragility Evaluation Accident Sequence Evaluation Seismic Hazard Evaluation

Seismic ground motion strength

Occ

urre

nce

frequ

ency

Seismic hazard curve

Cor

e da

mag

e fre

quen

cy

Core damage probability

Core damage frequency

Accident sequence occurrence frequency

Seismic hazard curve

Component A Fragility curve

Seismic ground motion strength

Component B

Failu

re

prob

abili

ty

Process of seismic PRA

DB

GM

Seismic ground motion strength

Page 25: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

1.E-07

1.E-06

1.E-05

1.E-04

1.E+01 1.E+02 1.E+03

da/d

N(m

/cyc

le)

∆K (MPa√m)

系…系…da/dN = 1.60 x 10-13 ∆K3.58

Crack growth rate

CGR for cyclic stress under SSY:

( )m

fatigue

KCdNda

∆=

( )m

fatigue

JCdNda

∆=

It can not represent the CGR for cyclic stresses beyond SSY.

10-4

10-5

10-6

10-7

10 102 103 Cra

ck g

row

th ra

te (m

/cyc

le)

∆K (MPa√m)

1.E-07

1.E-06

1.E-05

1.E-04

1.E+01 1.E+02 1.E+03

da/d

N(m

/cyc

le)

∆J (kJ/m2)

da/dN = 2.42 x 10-9 ∆J1.79

Crack growth rate (Case 1)

10-4

10-5

10-6

10-7 Cra

ck g

row

th ra

te (m

/cyc

le)

10 102 103

∆J (kJ/m2)

Experimental data

( )m

fatigue

KCdNda

∆=

( )m

fatigue

JCdNda

∆=

24 CGR and Fragility for Severe Earthquake CGR for large seismic stresses • For constant cyclic stress beyond small scale yielding condition (SSY)

Experimental data

CGR of ∆J basis for cyclic stress beyond SSY:

It can represent the CGR for cyclic stresses beyond SSY.

Page 26: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

𝑑𝑑𝑑𝑑

= 𝐶′𝛽𝑎𝛽𝑏∆𝐽 𝑑𝑖

𝑟𝑝𝑖′

𝑟𝑝𝑝𝑝′ + 𝑑𝑝𝑝 − 𝑑𝑖

𝛾𝑅′

− ∆𝐽𝑖=1𝐽𝑚𝑎𝑚,𝑝𝑝 − 𝐽𝑚𝑎𝑚,𝑖

𝐽𝑚𝑎𝑚,𝑝𝑝 − 𝐽𝑚𝑎𝑚,1

𝑚′

1.E-07

1.E-06

1.E-05

1.E+00 1.E+01 1.E+02

Cra

ck g

row

th ra

te (m

/cyc

le)

∆J (kJ/m2)

Experimental dataPrediction with excessive loadingPrediction without excessive loading

Excessive compressive load > excessive tensile load

Evaluation method of CGR for large seismic stresses beyond SSY

Cra

ck g

row

th ra

te (m

/cyc

le)

Cra

ck g

row

th ra

te (m

/cyc

le) 10-5

10-6

10-7

10 100 1 ∆J (kJ/m2)

10 100 1 ∆J (kJ/m2)

10-5

10-6

10-7

The case that CGR is accelerated

( )mJCdNda

∆=

( )mJCdNda

∆=

25 CGR and Fragility for Severe Earthquake CGR for large seismic stresses • For random cyclic stress beyond SSY

The case that CGR is retarded

Excessive tensile load > excessive compressive load

Page 27: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

き裂進展量

(mm

)

サイクル数 (-)

試験体

荷重負荷

Crack Loading points

Loa

d

Cyclic No. Loa

d

Cyclic No.

Example of severe seismic wave

Cra

ck g

row

th v

alue

(mm

)

Cyclic No. (-)

Present method

Previous method under SSY

Experimental result Pipe

specimen

Experiment using seismic load and pipe specimen Comparison of experimental and predicted results

(Case of stainless steel pipe)

26

• Stainless steel pipe(SUS316) • Carbon steel pipe(STPT410)

• Do: 114.3 mm x t: 8.6 mm • Circumferential through wall crack

Pipe/Materials Dimension of pipe/crack

CGR and Fragility for Severe Earthquake Confirmation of CGR for large seismic stresses

Page 28: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

0 10 20 30 40

Con

ditio

nal c

umul

ativ

e br

eak

prob

abili

ty (-

) 10-7

10-8

10-9

10-10

Operating time (year)

Case 3: 2/3 σ0

Case 1: 1.5 σ0

Case 2: σ0

• When the maximum amplitude of the seismic stress is larger than the yield stress σ0 , break probability based on the elastic fracture mechanics is not conservative.

Present method Previous method under SSY

27 CGR and Fragility for Severe Earthquake Failure probability evaluation considering different levels

of seismic stresses

Analysis condition • Pipe:stainless pipe in

BWR plant • Crack: initial crack in

weld joints caused by welding or etc.

• Crack growth: fatigue

Page 29: PFM Applications to Seismic Safety Evaluation - …Applications to Seismic Safety Evaluation Application to safety advancement evaluation 「実用発電用原子炉の安全性向上評価に関する運用ガイド」では経年事象や設計

28 Summary

Seismic PRA and seismic safety evaluation considering aging mechanisms for aged components are important and the ongoing issues.

Example applications to seismic fragility evaluation using PFM considering IGSCC and fatigue are introduced in this presentation.

We are making efforts considering other important aged components and age-related degradation mechanisms such as

• PWSCC

• NiSCC

• Flow Accelerated Corrosion

• Thermal aging embrittlement

We are also making efforts to link with seismic hazard and accident sequence evaluation, and to utilize failure probabilities considering age-related degradation mechanisms and seismic stresses.


Recommended