+ All Categories
Home > Documents > Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2....

Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2....

Date post: 09-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
194
Pharmacological Manipulation of Long-term Potentiation and Cortical Inhibition from the Dorsolateral Prefrontal Cortex, a Model to Understand Cognitive Deficits of Schizophrenia by Bahar Salavati A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Institute of Medical Science University of Toronto © Copyright by Bahar Salavati 2017
Transcript
Page 1: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

 

Pharmacological Manipulation of Long-term Potentiation and Cortical Inhibition from the Dorsolateral Prefrontal Cortex, a Model to Understand Cognitive Deficits of Schizophrenia

by

Bahar Salavati

A thesis submitted in conformity with the requirements for the degree of doctor of philosophy

Institute of Medical Science University of Toronto

© Copyright by Bahar Salavati 2017

Page 2: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

ii  

Pharmacological Manipulation of Long-term Potentiation and

Cortical Inhibition from the Dorsolateral Prefrontal, a Model to

Understand Cognitive Deficits of Schizophrenia

Bahar Salavati

Doctor of Philosophy

Institute of Medical Science University of Toronto

2017

Abstract

Several studies have assessed the pharmacological modulation of cortical inhibition (CI) and

long-term potentiation (LTP) using transcranial magnetic stimulation (TMS) from the motor

cortex and recorded these effects through surface electromyography (EMG). However, recording

CI and LTP from the dorsolateral prefrontal cortex (DLPFC), a cortical region that is more

closely associated with the pathophysiology of severe psychiatric disorders including

schizophrenia were previously not done. Objectives: This study, therefore, was designed to

investigate whether CI, indexed by long interval cortical inhibition (LICI), and LTP measured

using paired associative stimulation (PAS) could be modulated and measured from the DLPFC

in healthy participants through the use of TMS combined with electroencephalography ( EEG )

using a placebo-controlled, randomized double-blinded crossover study design. Methods: 12

healthy participants were given a single oral dose of baclofen, a GABAB agonist,

dextromethorphan, a NMDA antagonist, L-DOPA, a dopamine precursor, rivastigmine, an

acetylcholine esterase inhibitor for each arm of the study. Results: LICI was enhanced and

suppressed by increasing GABAergic tone and cholinergic tone, respectively. LTP was increased

by enhancing cholinergic tone and dopaminergic tone and abolished when NMDA receptors

Page 3: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

iii  

were blocked. Conclusion: These results are important and have the potential for therapeutic

application in manipulating neural plasticity and CI in the DLPFC to treat a variety of conditions,

including depression, Parkinson's disease, and schizophrenia.

Page 4: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

iv  

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to everyone who helped me

with this endeavor. Foremost, I would like to thank my supervisors and mentors, Dr. Jeff.,

Zafiris, Daskalakis and Dr. Tarek Rajji. Jeff and Tarek, thank you for challenging me

intellectually for the past four years. I am truly grateful for this opportunity and words cannot

express my appreciation. The completion of this thesis would have been possible without both

of your guidance and support. Next, I would like to thank my two phenomenal committee

members, Dr. Chen and Dr. Pollock for always finding time to provide timely feedback and

guidance. You are both an inspiration and I truly appreciate your support and patience. I would

also like to extend my gratitude to Reza Zoomordi and Yinming Sun and my other CAMH

friends for all their support. Also a special thank you to the volunteers who participated and

made this study possible, as well as, to the Ontario Metal Health Foundation and the Ontario

Graduate Scholarship for partially funding my studentship. I would also like to thank my

wonderful family for all for their support and for letting me believe I could do anything I set my

mind to. Last but not least, I would like to thank my wonderful husband Bruce, for the

encouragement he has given to me throughout my academic career, without him, my dream

would still be a dream.

Page 5: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

v  

Contributions

Chapter 1. Introduction This chapter was written solely by Bahar Salavati to serve as the introduction of this dissertation

Chapter 2. Imaging-based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional Long-Term Potentiation. Bahar Salavati fully wrote this chapter. Bahar Salavati conducted the systematic literature search and data interpretation. Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls in Different Brain Regions for this paper. All the authors critically reviewed, edited and approved the final version for publication.

Chapter 3. Pharmacological Modulation of Long-term Potentiation in the Dorsolateral Prefrontal Cortex. Tarek Rajji and Zafiris Daskalakis designed the study. Bahar Salavati conducted the recruitment and screened all research participants to ensure eligibility. Bahar Salavati collected and analyzed all the data. Reza Zoomordi provided consultation and expertise with the EEG analysis and approved the final EEG analysis. Bahar Salavati wrote the paper but all authors reviewed and edited this paper and approved the final version for publication.

Chapter 4. Pharmacological Manipulation of Cortical Inhibition in the Dorsolateral Prefrontal Cortex Bahar Salavati, Tarek Rajji, and Zafiris Daskalakis designed the study. Bahar Salavati conducted the recruitment and screened all research participants to ensure eligibility. Bahar Salavati collected and analyzed all the data. Reza Zoomordi provided consultation and expertise with the EEG analysis and approved the final EEG analysis. Bahar Salavati wrote the paper and all authors reviewed and edited this paper and approved the final version for publication.

Chapter 5 Discussion. This chapter was written solely by Bahar Salavati to serve as the general discussion of this dissertation

Page 6: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

vi  

Table of Contents Abstract .......................................................................................................................................... ii

Acknowledgments ........................................................................................................................ iv

Contributions................................................................................................................................. v

List of Abbreviations .................................................................................................................... x

List of Tables .............................................................................................................................. xiii

List of Figures ............................................................................................................................. xiv

Chapter 1 ....................................................................................................................................... 1 1. Introduction ........................................................................................................................... 1 1. 1 Schizophrenia and Cognitive Deficits ............................................................................... 1

1.1.1 Schizophrenia Symptoms ............................................................................................... 1 1.2. What is Long-term Potentiation? ..................................................................................... 2

1.2.1 NMDA-Dependent LTP ................................................................................................. 3 1.2.2 Properties of Long-term Potentiation ............................................................................. 4 1.2.3 NMDA-Dependent Long-term Potentiation is Associated with Learning and Memory 5

1.3 Abnormal Plasticity and Long-term Potentiation in Schizophrenia .............................. 5 1.3.1 In vivo LTP Studies in Schizophrenia ............................................................................ 6

1.4 Dorsolateral Prefrontal Cortex and Schizophrenia: ........................................................ 7 1.4.1 Functional Abnormalities ............................................................................................... 7 1.4.2 Anatomical Abnormalities .............................................................................................. 7

1.5 Long-term Potentiation of the Dorsolateral Prefrontal Cortex ...................................... 8 1.6 Glutamate ............................................................................................................................. 8

1.6.1 Glutamate and Glutamate Receptors .............................................................................. 8 1.7 Glutamatergic Activity on Long-term Potentiation ......................................................... 9 1.8 Glutamatergic Activity Associated Schizophrenia ......................................................... 10

1.9.1 Dopamine...................................................................................................................... 11 1.9.2 Dopaminergic Pathways ............................................................................................... 11 1.9.3 Dopamine Receptors ..................................................................................................... 12 1.9.4 Dopamine Release ........................................................................................................ 13

1.10 Dopaminergic Activity on Long-term Potentiation ...................................................... 13 1.10.1 D1 Receptor Activation ............................................................................................... 13 1.10.2 D2 Receptor Activation ............................................................................................... 14 1.10.3 D1 and D2 Receptor Activation ................................................................................... 14 1.10.4 Dose-dependent Effects of Dopamine ........................................................................ 15

1.11 Dopaminergic Activity Associated with Schizophrenia ............................................... 16 1.12 Acetylcholine .................................................................................................................... 17

1.12.1 Cholinergic Pathways ................................................................................................. 17 1.12.2 Nicotinic Receptors .................................................................................................... 18

Page 7: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

vii  

1.12.3 Muscarinic Receptors ................................................................................................. 19 1.13 Cholinergic Activity in Modulating Long-term Potentiation ...................................... 20 1.14 Cholinergic Activity in Schizophrenia........................................................................... 22 1.15 Gamma-aminobutyric Acid (GABA) ............................................................................ 23

1.15.1 GABAergic Interneurons ............................................................................................ 23 1.15.2 GABAA Receptors ...................................................................................................... 24 1.15.3 GABAB Receptors ...................................................................................................... 25

1.16 GABAergic Activity in Modulating Long-term Potentiation ...................................... 25 1.17 GABAergic Activity in Schizophrenia........................................................................... 26 1.18 Transcranial Magnetic Stimulation ............................................................................... 28

1.18.1 TMS Coil .................................................................................................................... 29 1.18.2 TMS Activation .......................................................................................................... 31

1.19 Transcranial Magnetic Stimulation and Electromyography ...................................... 31 1.20 Paired Associative Stimulation ...................................................................................... 32 1.21 Electroencephalogram .................................................................................................... 33

1.21.1 Cortical Oscillations ................................................................................................... 34 1.22 EEG Artifacts and Independent Component Analysis (ICA) ..................................... 35 1.23 Cortical Inhibition (CI) ................................................................................................... 36

1.23.1 Long Interval cortical Inhibition................................................................................. 36 1.23.2 Cortical Silent Period.................................................................................................. 37 1.23.3 Short Interval Cortical Inhibition ............................................................................... 38

1.24 Cortical Excitation .......................................................................................................... 39 1.24.1 Resting Motor Threshold ............................................................................................ 39 1.24.2 Intracortical Facilitation ............................................................................................. 40

1.25 Pharmaco-TMS Experiments ......................................................................................... 40 1.25.1 GABAergic Activity ................................................................................................... 41 1.25. 2 Glutamatergic Activity .............................................................................................. 42 1.25.3 Dopaminergic Activity ............................................................................................... 42 1.25.4 Cholinergic Activity ................................................................................................... 43

1.26. Abnormal Cortical Inhibition in Schizophrenia ......................................................... 43 1.27 Pharmacology of the Drugs Used in this Dissertation ................................................. 45

1.27.1 Baclofen ...................................................................................................................... 45 1.27. 2 Dextromethorphan ..................................................................................................... 45 1.27.3 Levodopa .................................................................................................................... 46 1.27.4 Rivastigmine ............................................................................................................... 46

Chapter 2 ..................................................................................................................................... 52

2. Imaging-based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional Long-Term Potentiation .............................................................................. 52

2.1 Abstract .............................................................................................................................. 53 2.2 Introduction ....................................................................................................................... 54

Page 8: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

viii  

2.3 Methods .............................................................................................................................. 55 2.3 Results ................................................................................................................................ 56

2.3.1 Glutamatergic System................................................................................................... 56 2.3.2 Dopaminergic System................................................................................................... 63 2.3.3 GABAergic System ...................................................................................................... 72

2.4 Discussion ........................................................................................................................... 73 2.5 Limitations ......................................................................................................................... 76 2.6 Conclusion .......................................................................................................................... 77

Chapter 3 ..................................................................................................................................... 80

Pharmacological Modulation of Long-term Potentiation in the Dorsolateral Prefrontal Cortex ........................................................................................................................................... 80

3.1 Abstract .............................................................................................................................. 81 3.2 Introduction ....................................................................................................................... 82 3.3 Participants and Methods ................................................................................................. 83

3.3.1 Overall Study Design.................................................................................................... 83 3.3.2 Participants ................................................................................................................... 84 3.3.3 Locating and Co-Registering the DLPFC .................................................................... 84 3.3.4 Electromyography (EMG) recordings from the Motor Cortex and TMS-EEG in the DLPFC ................................................................................................................................... 85 3.3.5 PAS to the DLFPC ....................................................................................................... 87 3.3.6 EEG Data Processing.................................................................................................... 87 3.3.7 Statistical Analysis ....................................................................................................... 88

3.4 Results ................................................................................................................................ 89 3.5 Discussion ........................................................................................................................... 96 3.6 Conclusion .......................................................................................................................... 98

Chapter 4 .......................................................................................... Error! Bookmark not defined.

Pharmacological Manipulation of Cortical Inhibition in the ............................................... 100

Dorsolateral Prefrontal Cortex ................................................................................................ 100 Abstract 4.1. ........................................................................................................................... 101 4.2 Introduction ..................................................................................................................... 102 4.3 Methods and Participants ............................................................................................... 105

4.3.1 Overall Study Design.................................................................................................. 105 4.3.2 Participants ................................................................................................................. 107 4.3.3 Locating and Co-Registering the DLPFC .................................................................. 107 4.3.4 TMS-EMG in the Motor Cortex and TMS-EEG in the DLPFC ................................ 108 4.3.5 EEG Data Processing.................................................................................................. 109 4.3.6 LICI Quantification .................................................................................................... 109 4.3.7 Statistical Analysis ..................................................................................................... 111

4.4 Results .............................................................................................................................. 111

Page 9: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

ix  

4.5 Discussion ......................................................................................................................... 116 4.6 Conclusion ........................................................................................................................ 120

Chapter 5 ................................................................................................................................... 121

5. Discussion............................................................................................................................... 121 5.1 Summary of the Dissertation ......................................................................................... 121 5.1.1 Summary of the First Paper ........................................................................................ 122 5.1.2 Summary of the Second Paper .................................................................................... 122 5.1.3 Summary of the Third Paper ...................................................................................... 123

5.2 General Discussion .......................................................................................................... 123 5.2.1 Glutamate.................................................................................................................... 123 5.2.2 Dopamine.................................................................................................................... 125 5.2.3 GABA ......................................................................................................................... 128 5.2.4 Nicotine ...................................................................................................................... 130 5.2.5 PAS as Therapeutic Tool ............................................................................................ 131

5.3 Significance of this Work ................................................................................................ 133 5.4 Limitations ....................................................................................................................... 133 5.5 Conclusion ........................................................................................................................ 134 5.6 Future Direction .............................................................................................................. 136

Page 10: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

x  

List of Abbreviations

APV 2-amino-5-phosphonopentanoic acid

L-DOPA (3, 4-dihydroxyphenylalanine)

Acetyl CoA acetyl coenzyme A

AD adenylyl cyclase

APB abductor pollicis brevis

Ca2+ calcium

CaMKII calmodulin dependent protein kinase II

cAMP cyclic adenoside monophosphate

ChAT choline acetyltransferase

CI cortical inhibition

COMT catechol-O-methyl transferase

CNS central nervous system

CS conditioning stimulus

CSP cortical silent period

D-AP5 D-(-) 2-amino-5-phosphonopentanoic acid

DLPFC dorsolateral prefrontal cortex

EEG electroencephalography

EMG electromyography

EPSP excitatory post synaptic potential

GABA gamma-aminobutyric acid

GAD glutamic acid decarboxylase

GAT1 GABA transporters

GDP guanosine diphosphate

Page 11: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

xi  

GTP guanosine triphosphate

ICA independent component analysis

ICF intracortical facilitation

IPSP inhibitory post synaptic potential

ISI interstimulus interval

L-DOPA levodopa

LICI long interval cortical inhibition

LTP long-term potentiation

Mg2+ magnesium

MAO monoamine oxidase  

MEP motor evoked potential

MPFC medial prefrontal cortex

MRI magnetic resonance image

MRS magnetic resonance spectroscopy

mV millivolt

Na+ sodium

NMDA N-methyl D-aspartate

PAS paired associative stimulation

PET position emission tomography

PCP phencyclidine

PFC prefrontal cortex

PKC protein kinase C

PNS peripheral nerve stimulation

RMT resting motor threshold

SCZ schizophrenia

Page 12: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

xii  

SICF short interval cortical facilitation

SICI short interval cortical inhibition

tDCs transcranial direct current stimulation

TMS transcranial magnetic stimulation

TS test stimulus

VAChT vesicular acetylcholine transporter

VMAT vesicular monoamine transporter

VTA ventral tegmental area

WCST Wisconsin Card Sorting Test 

 

 

Page 13: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

xiii  

List of Tables

Table 1. Image Studies Assessing the Glutamatergic Systems in Antipsychotic-

Naïve/Antipsychotic-Free Patients with Schizophrenia………………………... Appendix 140

Table 2. Image Studies Assessing Dopaminergic Systems in Antipsychotic-Naïve or Antipsychotic-

Free Patients with Schizophrenia.…………………………………….…………….. Appendix 145

Table. 3 Demographic and Basic Neurophysiologic Characteristics………………………..91

Table 4. Potentiation over the Dorsolateral Prefrontal Cortex under each Drug Condition………………………………………………………………………………………..96

Table 5. Properties of Drugs ………………………………………………………..………..108

Table 6. Demographic and Neurophysiologic Characteristics……………………………..113

Table 7. Pre-Drug vs Post-Drug LICI from stimulation to Dorsolateral Prefrontal Cortex under each Drug Condition……………………………………………………….……….…116

 

 

 

 

 

 

 

Page 14: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

xiv  

List of Figures

Figure 1. PAS in the motor Vs PAS in the DLPFC…………………………………………..33

Figure 2. Cortical Inhibition Measures………………………………………………………..40

Figure 3. Neurochemical Model …………….............................................................................79

Figure 4. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls in Different Brain Regions…………………………………………………80

Figure 5. Experimental design…………………………………………………………...…… 87

Figure 6. Effects of Drugs on DLPFC Neuroplasticity……………………………………….93

Figure 7. Event-Related Potentials (ERPs) Across All Conditions…………………………..94

Figure 8. LICI Protocol………………………………………………………………………..107

Figure 9. Effects of Drugs on DLPFC LICI……………………………………………….….114

Figure 10. Topographical plots for LICI………………………………………………….….115

 

 

 

 

Page 15: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

1  

Chapter 1

1. Introduction

 

1.1 Schizophrenia and Cognitive Deficits  

Schizophrenia is a psychiatric disorder that affects 1 % of the world’s population, (Torrey 1987;

Whiteford, Degenhardt et al. 2013) and is among the top 10 causes of life-long functional

disability worldwide, occupying 10% of all hospital beds, and exacting enormous personal,

social and economic costs. Worse of all, 15% of those diagnosed eventually commit suicide

(Kaplan HI 1994).

1.1.1 Schizophrenia Symptoms  

Symptoms of schizophrenia are separated into two categories, positive and negative symptoms.

Positive symptoms include hallucinations, delusions, and disorganized speech (Schultz and

Andreasen 1999). These symptoms reflect excesses from normal experience, whereas, negative

symptoms are deficits in normal emotional responses or thought processes. These symptoms

include poverty of speech, affective flattening, and avolition (Andreasen and Olsen 1982;

Schultz and Andreasen 1999). Severe cognitive deficits involving learning, memory, and

executive function are also central to the disorder (Heinrichs and Zakzanis 1998; van Os and

Kapur 2009). In fact, first episode patients typically score half a standard deviation below the

mean on tasks requiring executive function and memory (Bilder, Goldman et al. 2000). These

results are independent of medication, as drug-naïve first episode patients also demonstrate

impaired executive function (Krieger, Lis et al. 2005). Furthermore, these patients also show

Page 16: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

2  

greater difficulties on alertness, information maintenance, sustained and selective attention, as

well as, explicit and implicit recall (Lussier and Stip 2001) functions associated with cognition.

These findings highlight that cognitive impairment in this population is independent of

medication and is truly illness-related.

Despite some success for positive symptoms, treatment has not been promising for cognitive

symptoms (i.e. memory and learning impairments) which are the strongest predictors of

functional disability (Green 1996). Although the etiology of these symptoms are unknown,

several researchers have proposed that impaired cortical inhibition (CI) and long-term

potentiation (LTP), two widely accepted cellular mechanism that govern learning and memory,

(Malenka 2003; Lynch 2004) may contribute and promote cognitive deficits in schizophrenia

(Daskalakis, Christensen et al. 2002; Hasan, Nitsche et al. 2011).

1.2. What is Long-term Potentiation?  

Neuroplasticity represents the ability of the brain to reorganize its anatomical and functional

properties in response to a changing environment (Pascual-Leone, Amedi et al. 2005). LTP is a

synaptic form of neuroplasticity that involves a persistent strengthening of synapses between

neurons. This can result from the upregulation of receptors located on presynaptic and/or

postsynaptic neurons, changes in the quantity of neurotransmitters released into the synaptic

cleft, or how effectively neurons respond to those neurotransmitters (Collingridge and Bliss

1995). Given that memory and learning are associated with the modification of synaptic strength,

LTP is widely considered to be one of the cellular mechanisms that underlies cognitive deficits

(Bliss and Lomo 1973; Malenka 2003; Malenka and Bear 2004; Cooke and Bliss 2006; Citri and

Malenka 2008).

Page 17: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

3  

1.2.1 NMDA-Dependent LTP  

Although there are different types of LTP, the most commonly studied is mediated by N-methyl-

D-aspartate (NMDA) receptors and involves -amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) glutamate receptors (Morris 1989; Collingridge and Bliss 1995), and therefore, the

focus of this thesis. At resting membrane potential, NMDA receptors are blocked by magnesium

(Mg2+) ions and cannot be activated. When presynaptic glutamate release coincides with the

postsynaptic membrane depolarization, via AMPA receptors, NMDA receptors become available

due to the expulsion of Mg2+ions by electrostatic repulsion of sodium (Na+) ions. (Ascher and

Nowak 1988). Dislodge of Mg2+ ions allow calcium (Ca2+) and Na+ ions to flow freely through

NMDA receptors. Intracellular calcium is a major determinant of LTP plasticity (Malenka 2003).

High calcium concentrations result in LTP, while small concentrations result in long-term

depression (LTD), the opposing phenomenon, characterized by a decrease in synaptic

transmission (Mulkey and Malenka 1992).

This influx of calcium subsequently activates calmodulin, which in turn activates both

calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) (Malinow,

Schulman et al. 1989; Lisman, Schulman et al. 2002). Calmodulin also activates adenylyl cyclase

(AD) which increases the signaling of cyclic adenosine monophosphate (cAMP) and activates

protein kinase A (Wu, Thomas et al. 1995; Wong, Athos et al. 1999). The activation of protein

kinases leads to the phosphorylation and upregulation of postsynaptic AMPA receptors (Hayashi,

Shi et al. 2000). This upregulation induces LTP by strengthening synaptic connections. This

effect is long-lasting and can last up to several months (Malenka and Bear 2004).

Page 18: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

4  

1.2.2 Properties of Long-term Potentiation  

NMDA-dependent LTP exhibits four main properties, these include input specificity,

cooperativity, associativity, and persistence. First, input specificity means that the induction of

LTP is restricted to only the inputs that received stimulation and does not spread to adjacent

synapses that were not activated. That is, there is a spatially restricted increase in intracellular

Ca2+ in only the relevant neuron. Second, cooperativity means that LTP can be induced either by

a strong stimulation of one presynaptic neuron that synapses onto a postsynaptic neuron,

or cooperatively by several weaker stimulations of many presynaptic neurons that converge onto

a postsynaptic neuron. Third, associativity means a weak stimulus from a single pathway is

insufficient to induce LTP, but when simultaneously paired with a strong stimulus from another

pathway, will be sufficient enough to induce LTP at the postsynaptic neuron (Bliss and Lomo

1973; Malenka 2003; Malenka and Bear 2004). That is, a weak input is potentiated when

activated in “association” with a strong input. This is the basis of paired associative stimulation

(PAS), a noninvasive neurostimulation technique that combines TMS with peripheral nerve

stimulation (PNS) to artificially induce LTP-like plasticity in the human cortex (Stefan, Kunesch

et al. 2000). This technique is described in greater detail below. Finally, persistence means that

the induced LTP is long-lasting, which lasts from several minutes to many months, it is this long-

lasting effect that separates LTP from other forms of synaptic plasticity.

Page 19: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

5  

1.2.3 NMDA-Dependent Long-term Potentiation is Associated with Learning and Memory  

LTP is required for cognitive functions including learning and memory. This was first proposed

in 1940’s by Donald Hebb who claimed that when presynaptic and postsynaptic activity is

coupled, associative memories are formed through the strengthening of synaptic connections.

This concept is better known as “neurons that fire together wire together” (Larry. R Squire

2008). Subsequently, in the early 1980’s Collingridge discovered that NMDA activation is

required for the induction of LTP (Collingridge, Kehl et al. 1983). Later, in 1986 Morris et al.

demonstrated that memory is NMDA receptor dependent. He bathed the hippocampi of one

group of rodents in the NMDA receptor blocker, 2-amino-5-phosphonopentanoic acid (APV) and

noticed this group failed to perform the Morris swim task, a spatial learning, and memory task

(Morris 1989). Similar results were later shown through gene targeting, where spatial

impairments were evident in rodents who had their NMDA receptors knocked from the

hippocampus (Tsien, Huerta et al. 1996). Therefore, the cumulative efforts of these studies

suggest that impairments in NMDA-dependent LTP may underlie cognitive deficits as seen in

schizophrenia.

1.3 Abnormal Plasticity and Long-term Potentiation in Schizophrenia

Abnormal LTP weakens synaptic connections, which in turn impairs connections between

populations of neurons, and ultimately impairs highly plastic regions such as the hippocampus,

amygdala, and neocortex. These brain regions are commonly the most affected and implicated in

schizophrenia (Friston 2002). Abnormal LTP also impairs connections between different brain

Page 20: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

6  

regions. In fact, patients demonstrate a reduction in connectivity between the PFC and temporal

cortex, and between the motor and sensory cortex (Pettersson-Yeo, Allen et al. 2011). This

abnormal connection is linked to cognitive and self-monitoring impairments and hallucinations

(Friston 2002; Ford, Roach et al. 2008).

1.3.1 In vivo LTP Studies in Schizophrenia  

In vivo LTP can be induced and measured using several neurostimulation techniques. Through

the use of these techniques, it has consistently been shown that patients with schizophrenia have

impaired in vivo LTP in the motor cortex. For example, by applying transcranial direct current

stimulation (TDCS) on multi-episode patients, results showed a reduction in LTP-like plasticity

compared with recent-onset patients and healthy controls (Hasan, Nitsche et al. 2011). This

finding illustrates that disease severity or duration may be a contributing factor in LTP

dysfunction. In another study, patients showed impaired use-dependent plasticity, a transcranial

magnetic stimulation (TMS) paradigm that assesses the brain's adaptation to the direction of

trained movement.(Daskalakis, Christensen et al. 2008) This deficit was independent of

medication, as patients who were on and off medication exhibited impairments in LTP to the

same degree (Daskalakis, Christensen et al. 2008). Impairments have also been demonstrated

using PAS. Following PAS-induced LTP (PAS-LTP) was present in healthy controls but absent

in patients with schizophrenia (Frantseva, Fitzgerald et al. 2008). These patients also showed

impaired motor learning, an outcome of abnormal LTP facilitation, (Frantseva, Fitzgerald et al.

2008) which lasted one-week post-PAS (Rajji, Liu et al. 2011). Most importantly, PAS-LTP was

also impaired in patients when assessed from the dorsolateral prefrontal cortex (DLPFC) using

the combination of PAS and electroencephalography (Rajji 2014). This finding is important

Page 21: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

7  

given that the DLPFC is directly involved in cognitive functions including learning and memory,

and abnormalities in function may underlie cognitive impairments in this population.

1.4 Dorsolateral Prefrontal Cortex and Schizophrenia

1.4.1 Functional Abnormalities  

The DLPFC is a part of the prefrontal cortex (PFC) and connected to the orbital frontal cortex,

thalamus, basal ganglia and the primary and secondary area of the neocortex (Fuster 1995). It is

involved in higher order cognitive processes, including executive function, learning and working

memory, (Fuster 1995; Curtis and D'Esposito 2003) and damage to this region causes severe

deficits (Barbey, Koenigs et al. 2013). As such, compromised DLPFC function is thought to

underlie cognitive disturbances in schizophrenia. (Goto, Yang et al. 2010). In fact, abnormalities

have consistently been shown in the left DLFC, as both hypo-activity (Weinberger, Berman et al.

1986) and hyperactivity (Manoach, Press et al. 1999) which have been reported in both

medicated and unmedicated patients during working memory tasks.

1.4.2 Anatomical Abnormalities  

Anatomically, the DLPFC of patients with schizophrenia is also different. For example, the right

DLPFC in patients is denser compared to the left, while the left is denser in healthy controls.

Also, in healthy controls, pyramidal neurons are larger and rounder in the left DLPFC compared

to the right, while no significant difference has been seen between the right and left DLPFC in

patients with schizophrenia (Cullen, Walker et al. 2006). As such, these findings highlight that

abnormal DLPFC function and anatomy in schizophrenia may be a contributing factor for

cognitive impairments.

Page 22: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

8  

1.5 Long-term Potentiation of the Dorsolateral Prefrontal Cortex  

The PFC has been proposed to be involved in memory because LTP has been induced in the

DLPFC, (Wang and Arnsten 2015), medial prefrontal cortex (MPFC), (Otani, Daniel et al. 2003)

and its afferents from the hippocampus (Laroche, Jay et al. 1990; Gurden, Tassin et al. 1999),

amygdala (Maroun and Richter-Levin 2003), thalamus (Herry, Vouimba et al. 1999),

and sensory cortex (Kim, Chun et al. 2003). LTP in the PFC is mediated by glutamate (Jay,

Burette et al. 1995) and gamma-aminobutyric acid (GABA)(Vickery, Morris et al. 1997), and

modulated by dopamine (Gurden, Tassin et al. 1999; Otani, Daniel et al. 2003; Huang, Simpson

et al. 2004; Goto and Grace 2006; Matsuda, Marzo et al. 2006) and acetylcholine (Couey,

Meredith et al. 2007; Lopes Aguiar, Romcy-Pereira et al. 2008). These neurochemicals are also

abnormal in schizophrenia. As such, these neurochemicals and their effect on LTP and impact on

schizophrenia will be discussed in the next section.

1.6 Glutamate

1.6.1 Glutamate and Glutamate Receptors  

Glutamate is the most abundant excitatory neurotransmitter and the metabolic precursor of

GABA, the major inhibitory neurotransmitter (Petroff 2002) in the brain. Glutamate binds to

three classes of ionotropic receptors, AMPA, kainate, and NMDA receptors (Nakanishi 1992).

These receptors are ion channels that when activated cause an influx of Na+ and/or Ca2+ ions and

an efflux of K+ ions (Honore 1989).

Glutamate also activates eight metabotropic guanosine triphosphate (GTP) (G)-protein coupled

receptors labeled from mGluR1 to mGluR8 (Nakanishi 1992). In general, when a G-protein

Page 23: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

9  

receptor is activated, guanosine diphosphate (GDP) is converted to GTP causing the α and βγ

subunits to dissociate from each other, which allows both subunits to activate downstream

signaling pathways. Due to the scope of this thesis, the effects of these receptors will be not be

explored further.

1.7 Glutamatergic Activity on Long-term Potentiation  

As the main glutamatergic receptors, AMPA and NMDA receptors play an essential role in

mediating the induction of LTP (McEntee and Crook 1993). Normally, a weak stimulation

activates only AMPA receptors, allowing a small amount of Na+ ions to enter the postsynaptic

neuron (Malenka 2003). This influx slightly depolarizes the neuron but not sufficiently to

activate NMDA receptors. In contrast, a strong stimulation causes a large amount of Na+ ions to

enter. This influx expels Mg2+ ions that are blocking the pore of NMDA receptors. Once

unblocked Ca2+ and Na+ ions can rush in and depolarize the neuron (Malenka and Bear 2004).

Increased concentration of Ca2+ sets off a cascade of biochemical reactions, which ultimately

upregulate AMPA receptors and makes the synapse more efficient (McEntee and Crook 1993).

Several manipulation studies have also shown that NMDA receptors are vital for the induction of

LTP. For example, in animal studies, the non-competitive NMDA receptor antagonists,

dextromethorphan (Church, Lodge et al. 1985) abolished LTP in the hippocampus (Krug 1993).

Similarly, the NMDA antagonist D-(-) 2-amino-5-phosphonopentanoic acid (D-AP5) blocked

LTP at the hippocampal-prefrontal cortex pathway (Jay, Burette et al. 1995). This effect was also

shown in humans as dextromethorphan abolished PAS-LTP in the motor cortex (Stefan, Kunesch

et al. 2002). This finding is important as it demonstrates that PAS-LTP is NMDA-dependent and

shares similar mechanisms as LTP induced in animals.

Page 24: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

10  

Therefore, since glutamate plays an important role in LTP facilitation, then abnormal

glutamatergic activity may lead to aberrant synaptic plasticity, which in turn can promote

cognitive deficits in schizophrenia. For this reason, abnormal glutamatergic activity has been the

focus of several hypotheses attempting to explain cognitive symptoms of schizophrenia.

1.8 Glutamatergic Activity Associated Schizophrenia  

The glutamate hypothesis of schizophrenia posits that cognitive symptoms are associated with

abnormal glutamatergic signaling, in particular, hypofunction of NMDA receptors (Kim,

Kornhuber et al. 1980; Olney, Newcomer et al. 1999; Coyle and Tsai 2004). Support for this

hypothesis comes from several lines of evidence. First, recreational drugs, such as phencyclidine

(PCP) and ketamine, which are NMDA receptor antagonists induce both positive and negative

symptoms similar to those observed in schizophrenia (Luby, Cohen et al. 1959; Javitt 2007).

Second, low levels of glutamate have been reported in the cerebrospinal fluid of patients with

schizophrenia (Kim, Kornhuber et al. 1980). Third, cognitively impaired patients display a 30%

reduction in the expression of NMDA receptors in the temporal cortex compared to healthy

controls, whereas patients without cognitive impairment show no such reduction (Humphries,

Mortimer et al. 1996). Fourth, NMDA receptors are reduced in the superior frontal region of

drug-naïve patients but not in antipsychotic-treated patients, suggesting that antipsychotics may

have upregulated NMDA receptors back to normal (Sokolov 1998). Lastly, the administration of

ketamine to healthy participants promotes abnormal hyper-connectivity and activation, and this

hyper-connectivity is related to positive and negative symptoms (Driesen, McCarthy et al. 2013).

Thus, overall these studies provide support for abnormal glutamatergic activity, which may

contribute to cognitive symptoms of schizophrenia. Nevertheless, glutamatergic activity is

Page 25: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

11  

regulated by complex systems in the brain, which involves other neurotransmitters including

dopamine, acetylcholine, and GABA. Thus, although there is strong support for the

glutamatergic hypothesis, these alterations are unlikely to exist in isolation.

1.9. Dopamine  

Dopamine (3, 4-dihydroxyphenethylamine) is the catecholamine neuromodulator. The metabolic

pathway for the synthesis of dopamine starts with tyrosine. Tyrosine is converted into L-DOPA

(3, 4-dihydroxyphenylalanine) by tyrosine hydroxylase, and L-DOPA is decarboxylated into

dopamine by aromatic L-amino acid decarboxylase. After synthesis, dopamine is transported

into synaptic vesicles known as vesicular monoamine transporter (VMAT) that are released into

the synaptic cleft via an action potential. After release dopamine is degraded into homovanillic

acid by three main enzymes know as, monoamine oxidase (MAO), catechol-O-methyl

transferase (COMT), and aldehyde dehydrogenase. There are two isoforms of monoamine

oxidase, MAO-A and MAO-B and both metabolize dopamine (Larry. R Squire 2008). The

metabolites are then removed out of the bloodstream and filtered out by the kidneys to be

excreted in the urine.

1.9.1 Dopaminergic Pathways  

Dopamine is the most abundant catecholamine neuromodulator and as such plays a vital role in

voluntary movement, motivation, sleep, mood, and working memory (Larry. R Squire 2008).

These actions are mediated by four main dopaminergic pathways within the brain, these are

known as the neostriatal, mesolimbic, tuberoinfundibular and mesocortical pathways. The first

pathway, the nigrostriatal pathway originates from the substania nigra and innervates the dorsal

Page 26: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

12  

striatum, which is composed of the caudate and putamen. This pathway plays a significant role in

the motor control and learning new motor skills. The second pathway, the mesolimbic pathway

starts from the ventral tegmental area (VTA) as well as, the retrorubral area and projects to

several regions of the limbic system, including the nucleus accumbens (or ventral striatum), the

septum, olfactory tubercle, amygdala, and piriform cortex. These pathways play a central role in

reward, memory and other aspects of motivation. The third pathway is the tuberoinfundibular

pathway, it starts from the periventricular and arcuate nuclei of the hypothalamus and innervates

the median eminence of the hypothalamus. This pathway modulates the secretion of prolactin

from the anterior pituitary. The last pathway, the mesocortical pathway originates from the VTA

and innervates the cortex, including the prefrontal, cingulate, and entorhinal cortex.

Dopaminergic neurons in this pathway are vital as they regulate information flow from other

areas of the brain and modulate cognitive function (Larry. R Squire 2008). There is also a source

of dopaminergic neurons in the hypothalamus which innervates the central nucleus of the

amygdala, Broca’s area, and paraventricular nucleus of the hypothalamus, which are suggested

to play a key role in learning, motivation and memory.

1.9.2 Dopamine Receptors  

Dopamine activates 5 types of metabotropic G-protein-coupled receptors referred to as, D1, D2,

D3, D4 and D5 (Kebabian and Calne 1979; Neve, Seamans et al. 2004). D1 and D5 receptors are

generally categorized as excitatory, while D2, D3 and D4 receptors are classified as inhibitory

(Neve, Seamans et al. 2004). D1 and D5 are grouped together because their G-protein (Go)

stimulates adenylate cyclase, which in turn increases Ca2+ concentrations. These receptors are

mainly present in the striatum, nucleus accumbens, olfactory tubucle, limbic system,

Page 27: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

13  

hypothalamus, thalamus, and cortex. In contrast, D2, D3, and D4 receptors are grouped together

because their G-protein (Gi) inhibits adenylate cyclase (Neve, Seamans et al. 2004). These

receptors are found in the striatum, olfactory tubercle, nucleus accumbens, substania nigra pars

compacta and ventral tegmental area, on both presynaptic and postsynaptic dopaminergic

neurons (Larry. R Squire 2008). For simplicity, throughout the rest of the thesis D1/D5 receptors

will be referred to as D1 receptors and D2/D3/D4 as D2, unless otherwise specified.

1.9.3 Dopamine Release  

Dopamine release is regulated by two states known as phasic and tonic release. Tonic release

maintains a steady “pacemaker “ background level of dopaminergic tone, while phasic release

consists of spontaneous bursts of firing, which is in response to behaviorally relevant stimuli. D2

receptors are more sensitive to changes in the tonic release, while D1 receptors are sensitive to

changes in the phasic release. Although dopamine activates both types of receptors, it has a

greater affinity for D2 receptors compared to D1 receptors. Thus, D1 receptors may play a greater

role in triggering plasticity, while D2 receptors modulate the direction plasticity.

1.10 Dopaminergic Activity on Long-term Potentiation

1.10.1 D1 Receptor Activation  

Several studies have investigated the role of D1 and D2 receptors in the induction of LTP.

Numerous studies have been shown that D1 activation facilitates the induction of LTP. For

instance, this has been demonstrated in pyramidal neurons in the hippocampus (Roggenhofer,

Fidzinski et al. 2010, striatum {Hu, 1997 #6182), and PFC (Tseng and O'Donnell 2004). This has

also been shown in the hippocampal-prefrontal synapse (Gurden, Takita et al. 2000). This study

Page 28: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

14  

showed that D1 antagonism causes a dose-dependent impairment in LTP induction, illustrating

the importance of D1 receptors in transferring information from the hippocampus to the PFC

(Gurden, Takita et al. 2000).

1.10.2 D2 Receptor Activation  

The activation of D2 receptors on presynaptic GABAergic interneurons also plays a role in LTP

facilitation. For instance, in the striatum D2 receptors on presynaptic GABAergic interneurons

reduced GABA release, which in turn increased postsynaptic glutamatergic transmission (Cooper

and Stanford 2001). Similar results were shown in the amygdala, as dopamine promoted LTP by

suppressing feed-forward inhibition from local interneurons (Bissiere, Humeau et al. 2003).

1.10.3 D1 and D2 Receptor Activation  

The cooperative activation of D1 and D2 receptors have also been shown to facilitate LTP. For

example, in the striatum, the co-application of D1 receptor agonist SKF 38393 combined with the

D2 receptor agonist quinpirole (Hu and White 1997) enhanced LTP. Similar results were shown

using dopamine. When primed with dopamine a weak stimulation which would lead to LTD

instead, induced LTP (Matsuda, Marzo et al. 2006). This study highlights the importance of tonic

dopamine activity in the modulation of LTP. Further, in the monkey PFC, the application of

dopamine was shown to enhance neuronal activity associated with memory. This enhancement

was hindered by D2 antagonists, fluphenazine, and haloperidol, but a weaker D2 antagonist,

sulpiride had no significant effect (Sawaguchi, Matsumura et al. 1988).

Page 29: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

15  

1.10.4 Dose-dependent Effects of Dopamine  

Furthermore, it has been shown that the facilitating effects of dopamine follow an inverted-U

shaped dose response curve, whereas concentrations that are too low or too high impair LTP.

(Seamans and Yang 2004; Kolomiets, Marzo et al. 2009). This is because when dopaminergic

neurons are stimulated, dopamine is phasically released, which when combined with low tonic

background dopamine, induces LTP via D1 receptor activation. However, excessive amounts of

tonic or phasic dopamine can activate D2 receptors and impair the induction of LTP.

Several human studies have also assessed the effects of dopamine on in vivo LTP from the motor

cortex. First, it has been shown that L-DOPA, a dopamine precursor increases the magnitude and

duration of PAS-LTP (Kuo, Paulus et al. 2008), implying, as noted previously, that a balanced co-

activation of D1 and D2 receptors is necessary for optimal LTP induction (Hu and White 1997).

Second, this effect by L-DOPA was not affected by the D2 receptor antagonist sulpiride (Nitsche,

Kuo et al. 2009) or the D2 agonist cabergoline (Korchounov and Ziemann 2011) suggesting that

D1 receptors play a slightly greater role in enhancing PAS-LTP. Third, haloperidol a stronger D2

antagonist impaired PAS-LTP, indicating that D2 receptors, although to a lesser degree than D1

receptors, play a vital role in facilitating LTP (Nitsche, Kuo et al. 2009; Korchounov and Ziemann

2011)(Nitsche, Kuo et al. 2009; Korchounov and Ziemann 2011). Lastly, it has been shown that

the facilitating effects of L-DOPA, similar to dopamine, follows an inverted U-shaped dose-

response curve, where concentrations that are too high or too low abolish PAS-LTP

(Thirugnanasambandam, Grundey et al. 2011). Therefore, these studies suggest that LTP and

memory are promoted by increasing dopaminergic tone through both D1 and D2 receptor

activation.

Page 30: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

16  

1.11 Dopaminergic Activity Associated with Schizophrenia  

Abnormal dopaminergic activity has long been hypothesized to be associated with

schizophrenia. The first version of the dopamine hypothesis suggested that increased dopamine

transmission was responsible for schizophrenic symptoms. This association was postulated based

on the observation that drugs such as cocaine and amphetamine, which increase dopaminergic

activity induce psychotic symptoms similar to those observed in schizophrenia (Snyder 1972;

Lieberman, Kane et al. 1987). This hypothesis was later strengthened by the finding that D2

antagonists such chlorpromazine effectively reduce positive symptoms, and were subsequently

used as antipsychotics (Seeman and Lee 1975).

While the first version of the dopamine hypothesis accounted for positive symptoms, it did not

explain negative symptoms. As such a second version was developed that included an

explanation for negative symptoms and regional specificity. This theory proposed that

dopaminergic signaling is increased in the striatum, producing positive symptoms and reduced in

the PFC, producing negative symptoms (Davis, Kahn et al. 1991; Howes and Kapur 2009). This

reconceptualization supported the observation that drug-naïve and drug-free patients displayed

increased D1 receptors in the DLPFC, possibly due to a compensatory effect of

hypodopaminergic activity (Abi-Dargham, Mawlawi et al. 2002). They also have increased

baseline and amphetamine-induced dopamine release in the striatum, suggesting

hyperdopaminergic activity (Abi-Dargham, van de Giessen et al. 2009).

Page 31: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

17  

1.12 Acetylcholine  

Acetylcholine is a neuromodulator that is synthesized from two precursors, acetyl coenzyme A

(acetyl-CoA) and choline by the enzyme choline acetyltransferase (ChAT). It is packaged into

synaptic vesicles by the vesicular acetylcholine transporter (VAChT), which is subsequently

released into the synaptic cleft. After release, acetylcholine is hydrolyzed by the enzyme

acetylcholine esterase (Dani and Bertrand 2007). This enzyme breaks down acetylcholine to

acetyl and choline, which is then taken up by the neuron and recycled (Dani and Bertrand 2007).

1.12.1 Cholinergic Pathways

Acetylcholine is produced by cholinergic neurons in the basal forebrain, a brain area composed

of several cholinergic nuclei, including the nucleus basalis of magnocellularis , medial septum

nucleus, substantia innominata and diagonal band of Broca (Mesulam 1995; Woolf and Butcher

2011). It is also produced by the pedunculopontine nucleus, medial habenula and laterodorsal

tegmental area in the brain stem (Mesulam, Mufson et al. 1983), and in sparsely distributed

cholinergic interneurons (Eckenstein and Baughman 1984; von Engelhardt, Eliava et al. 2007).

Cholinergic neurons in the medial septum and the diagonal band of Broca project to the

hippocampus, while neurons in the nucleus basalis of magnocellularis project to the neocortex

and to the amygdala. The PFC receives cholinergic innervation from the basal forebrain, basal

nucleus, parts of the diagonal band of Broca, magnocellular preoptic nucleus and substantia

innominate. Innervations to the PFC have been shown to regulate and modulate cognitive

functions (Ragozzino 2000).

Page 32: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

18  

1.12.2 Nicotinic Receptors

Acetylcholine binds to two classes of receptors, referred to as muscarinic and nicotinic,

originally named for their specific activation by nicotine and muscarine, respectively (Dani and

Bertrand 2007).Nicotinic acetylcholine receptors are widespread and found on all neurons,

including GABAergic, glutamatergic, and dopaminergic. These receptors are ligand-gated ion

channels composed of five subunits (Gotti and Clementi 2004), which are further divided into

two main subfamilies, the homopentameric, and heteropentameric. The homopentameric

receptors are composed of five α7 subunits, while, the heteropentameric receptors are composed

of two α4 subunits, two β2 subunits and a fifth subunit, which can be α4, β2 or α5 (Albuquerque,

Pereira et al. 2009). Further, there are seven isoforms of the α subunit (α2 – α7), and three

isoforms of the β subunit (β2 – β4), which allow for multiple arrangements that create for various

biological effects (Mineur and Picciotto 2008).

Nicotinic receptors can modify neuronal state depending on their location. Receptors that are

located on postsynaptic neurons depolarize the neuron through an influx of Na+, and efflux of

K+, while nicotinic receptors that are on presynaptic neurons regulate neurotransmitter

release(Dani and Bertrand 2007). Further, it should also be noted that some homopentameric, α7

nicotinic receptors are permeable to calcium, and these receptors play an important role in

facilitating LTP by influencing both neurotransmitter release and neuronal depolarization {Shen,

2009 #10844

Page 33: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

19  

1.12.3 Muscarinic Receptors

Muscarinic acetylcholine receptors are seven transmembrane G-protein coupled receptors.

There are five types of muscarinic receptors, numbered M1-M5 {Bubser, 2012 #8803}. These

receptors are sub-grouped based on the type of G-protein that binds to the α subunit. The first

group includes M1, M3 and M5 receptors, which interact with Gq/11 proteins, whereas the second

group consists of M2 and M4 receptors, and these interact with Gi proteins (Brown 2010).

M1, M3 and M5 Receptors

The first group, the M1, M3 and M5 receptors are mainly excitatory and postsynaptic (Levey,

Kitt et al. 1991). The G-protein of these receptors activates phospholipase C, which initiates the

phosphatidylinositol triphosphate signaling cascade leading to an increase in intracellular Ca2+

concentration and activation of protein kinase C while reducing K+ conductance. M1 receptors

are mainly found in cerebral cortex, hippocampus, and corpus striatum (Oki, Takagi et al. 2005),

while M3 and M5 receptors are expressed consistently throughout the central nervous system

(CNS), but are highly expressed on smooth muscle and glandular tissues (Levey 1993).

M2 and M4 Receptors

The second group, the M2, and M4 receptors are usually inhibitory and decrease intracellular

levels of cAMP by inhibiting adenylate cyclase (Gulledge and Stuart 2005). Generally, M2

receptors mediate postsynaptic inhibition, whereas M4 receptors mediate presynaptic inhibition

(Zhang and Warren 2002). M4 receptors are predominately found in the striatum, whereas M2

receptors are most abundant in the thalamus-hypothalamus and the pons-medulla region, and

Page 34: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

20  

some are found in the cortex, hippocampus and striatum where they control acetylcholine release

(Raiteri, Marchi et al. 1990; Wei, Walton et al. 1994).

1.13 Cholinergic Activity in Modulating Long-term Potentiation  

Research has shown that cholinergic nicotinic and muscarinic receptors are essential for

attention, learning and working memory. As such these receptors play a vital role in regulating

plasticity (Tracy, Monaco et al. 2001; Sarter, Bruno et al. 2003; Pepeu and Giovannini 2004).

Nicotinic receptors modulate plasticity through both presynaptic and postsynaptic activity.

Presynaptic nicotinic activation leads to an influx of Ca2+, which increases the probability of

neurotransmitter release (Albuquerque, Pereira et al. 1997; Mansvelder and McGehee 2000),

while, postsynaptic activation, increases the probability of neuronal depolarization (Blitzer, Gil

et al. 1990; Jones, Sudweeks et al. 1999).

Several animal studies have assessed the effects of nicotinic receptor activation on LTP

plasticity. For example, in the hippocampus and piriform cortex nicotinic activation enhanced

LTP in vivo (Blitzer, Gil et al. 1990; Auerbach and Segal 1994; Patil, Linster et al. 1998;

Matsuyama, Matsumoto et al. 2000). Similar results were demonstrated in the PFC,

glutamatergic neurons from the medial dorsal thalamus that project to the PFC were potentiated

by nicotinic agonists (Vidal and Changeux 1993).

Muscarinic receptors also play a role in modulating LTP. For instance, postsynaptic activation of

M1 receptors enhances LTP in the hippocampus (Natsume and Kometani 1997) and cortex

Page 35: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

21  

(Gulledge, Bucci et al. 2009) by facilitating pyramidal neuron firing and increasing Ca2+

concentration from intracellular stores. This enhancement in the hippocampus may be regionally

sensitive as in the CA3 region, muscarine decreased LTP (Williams and Johnston 1988), whereas

in the dentate gyrus LTP was facilitated by muscarine (Burgard and Sarvey 1990). In contrast,

scopolamine, an M1 muscarinic receptor antagonist blocked LTP (Hirotsu, Hori et al. 1989),

illustrating the importance of M1 receptors in facilitating LTP.

Like M1 receptors, M2 receptors also play a key role in modulating LTP. For example, M2 knockout

rodents exhibit significant problems in working memory, hippocampal plasticity, and behavioral

flexibility (Seeger, Fedorova et al. 2004). In contrast, M3 knockout rodents do not present

behavioral or cognitive problems (Yamada, Miyakawa et al. 2001), illustrating that these receptors

play less of a role in cognitive processes. Furthermore, several studies have shown that signaling

through M4 receptors facilitates plasticity. For example, studies using M4 genetic knock-out

rodents or the M4- antagonist, MT3, demonstrate impaired plasticity, indicating that M4 receptors

also contribute to synaptic plasticity (Bonsi, Martella et al. 2008; Dasari and Gulledge 2011).

Further, the application of MT3 impairs memory performance in rodents (Ferreira, Furstenau et

al. 2003), highlighting the vital role of M4 receptors in plasticity and memory.

Cholinergic activity on LTP has also been assessed in vivo in the human motor cortex. For

example, use-dependent plasticity was blocked by the non-selective muscarinic antagonist

scopolamine (Sawaki, Boroojerdi et al. 2002; Meintzschel and Ziemann 2006). The muscarinic

M1 receptor antagonist, biperiden, also suppressed both use-dependent plasticity (Meintzschel

and Ziemann 2006) and PAS-LTP (Korchounov and Ziemann 2011). In contrast, tacrine, another

Page 36: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

22  

cholinesterase inhibitor, had no significant effect on PAS-LTP but enhanced use-dependent

plasticity (Meintzschel and Ziemann 2006). On the other hand, the cholinesterase inhibitor,

rivastigmine enhanced PAS-LTP by inactivating acetylcholine esterase, which allows for longer

cholinergic activation (Kuo, Grosch et al. 2007). Similar results were also seen with nicotine

(Thirugnanasambandam, Grundey et al. 2011) and varenicline, a nicotinic agonist (Batsikadze,

Paulus et al. 2015), suggesting that enhancement of PAS-LTP may be mediated through nicotinic

receptors. (Metherate and Ashe 1993; Letzkus, Wolff et al. 2011)

1.14 Cholinergic Activity in Schizophrenia  

Considering cholinergic activity is pivotal for cognition, dysregulation may be partly responsible

for cognitive impairments seen in schizophrenia (Smucny, Olincy et al. 2013; Smucny and

Tregellas 2013; Ahlers, Hahn et al. 2014). In fact, nicotinic receptors in the frontal cortex,

hippocampus, and striatum are downregulated and reduced in patients (Freedman, Hall et al.

1995; Guan, Zhang et al. 1999; Breese, Lee et al. 2000; Durany, Zochling et al. 2000; Esterlis,

Ranganathan et al. 2014). Patients also demonstrate reduced expression and function of the α7

nicotinic receptors, which play an important role in cognition and plasticity (Leonard, Adams et

al. 1996; Freedman, Adams et al. 2000). Similarly, muscarinic receptors are downregulated in

the frontal cortex, (Crook, Tomaskovic-Crook et al. 2001), hippocampus (Crook, Tomaskovic-

Crook et al. 2000) and striatum (Dean, Crook et al. 1996). This reduction is also evident in

unmedicated patients with schizophrenia, suggesting that these abnormalities are illness related

and independent of medication use (Raedler, Knable et al. 2003). Furthermore, the M1/M4

agonist, xanomeline has been shown to have antipsychotic effects, in addition to enhancing

cognition (Shannon, Rasmussen et al. 2000; Felder, Porter et al. 2001). As such, based on these

Page 37: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

23  

findings impaired nicotinic and muscarinic receptors in patients with schizophrenia may play a

role in the abnormal plasticity observed in this population.

1.15 Gamma-aminobutyric Acid (GABA)

Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter, as 15-30

% of all neurons are GABAergic (DeFelipe 2002). GABA is synthesized from glutamate by the

enzyme glutamic acid decarboxylase (GAD) and pyridoxal phosphate (an active form of vitamin

B6), which acts as a co-factor. There are two forms of GAD that are named by their molecular

weight, GAD65, and GAD67. Synaptic GABA acts on two main classes of GABA receptors, the

GABAA and, GABAB type, each which mediates inhibition through a distinct mechanism. After

release, GABA is taken up via presynaptic GABA transporters (GAT1) (DeFelipe 2002).

1.15.1 GABAergic Interneurons  

A subgroup of GABAergic neurons are interneurons, which are classified by their morphology,

or their synaptic connections with pyramidal neurons (DeFelipe 2002). The three most common

types include basket, chandelier, and double bouquet cells. Basket cells act at the soma or

proximal dendrite of pyramidal neurons and as result have powerful inhibitory effects (Amitai

2001). These cells play an essential role in controlling sensory information from the thalamus via

feed-forward inhibition (Amitai 2001). Chandelier cells, on the other hand, act at the axon

hillock or initial segment of pyramidal neurons. Due to their location, these cells can prevent the

propagation of an action potential and as such play an important role in regulating the output of

pyramidal activity (DeFelipe 2002). These cells are abundant in the cortex and hippocampus and

play an important role in learning and memory (Benes and Berretta 2001). In contrast, double

Page 38: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

24  

bouquet cells synapse at the dendrite of pyramidal neurons and as a result have less of an

influence on pyramidal firing (DeFelipe 2002).

Interneurons are further sub-grouped by their expression of neuropeptides (somatostatin and

cholecystokinin) and calcium-binding proteins (calbindin and parvalbumin). Calcium binding

proteins include calbindin, which is abundant and expressed in double bouquet cells, than

parvalbumin, which is expressed in only 25% of interneurons, predominantly in basket and

chandelier cells (DeFelipe 2002). Parvalbumin-expressing cells are fast-spiking and

consequently have high temporal control over pyramidal neuron firing, playing an essential role

in the modulation of cortical oscillations that mediate cognition (DeFelipe 2002).

1.15.2 GABAA Receptors  

GABAA receptors are heterooligomeric and made up from a combination of five subunits from

a possible sixteen (α1-6, β1-3, γ1-3 (with two splice variants, γ2Long and γ2Short), δ, ε, and θ)

(Macdonald and Olsen 1994). This diversity in GABAA subunits suggests that there are many

different subtypes of GABAA receptors in the brain. GABAA receptors are mainly found in the

frontal cortex, granule cell layers of the cerebellum, olfactory bulb and thalamic medial

geniculate (Bowery, Hudson et al. 1987). These receptors are ligand-gated chloride channels and

when activated cause an influx of chloride (Cl−) ions that hyperpolarize the neuron (Bowery and

Smart 2006). These receptors are fast acting and contribute to the early part of the inhibitory

inhibitory post synaptic potential (IPSP) with a short synaptic time constant between 10 to 25ms

(McCormick 1989).

Page 39: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

25  

1.15.3 GABAB Receptors  

Unlike GABAA receptors, GABAB receptors are metabotropic receptors. These receptors are a

heterodimer with two subunits, GABAB1 and GABAB2. GABAB receptors are coupled to second

messenger system that activates a G-protein that inhibits adenylyl cyclase, reducing cAMP

production and phosphorylation (Bowery 1993). GABAB receptors also activate nearby K+

channels that hyperpolarize the neuron by inhibiting Ca2+ channels (Bowery 1993) (McCormick

1989). These receptors are abundant in the thalamic nuclei, cerebellum, and dorsal horn of the

spinal cord (Bowery, Hudson et al. 1987). In contrast to GABAA receptors which are mainly

postsynaptic, GABAB receptors are located on both presynaptic and postsynaptic neurons.

Presynaptic GABAB receptors are autoreceptors and regulate GABA release by preventing Ca2+

entry. Postsynaptic GABAB receptors hyperpolarize the neuron and mediate the late part of the

IPSP with a long synaptic time constant between 50 to 200ms (Karlsson and Olpe 1989;

McCormick 1989).

1.16 GABAergic Activity in Modulating Long-term Potentiation  

GABA neurotransmission plays a pivotal role in modulating LTP. For example, it can facilitate

LTP by decreasing the release of GABA by inhibiting presynaptic voltage-gated calcium channels

via GABAB receptor-mediated auto-inhibition. (Mott, Lewis et al. 1990; Davies, Starkey et al.

1991). In fact, in rodents, the deletion of these auto-receptors impaired the induction of LTP (Vigot,

Barbieri et al. 2006). GABA can also impair LTP through activation of postsynaptic GABAB

receptors, by hyperpolarizing the neuron and making LTP induction more difficult (Olpe and

Karlsson 1990; Olpe, Worner et al. 1993). This hyperpolarizing effect is also demonstrated through

GABAA receptor activation. For instance, in rat hippocampal slices, midazolam, a positive

Page 40: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

26  

allosteric modulator of the GABAA receptor, prevented the induction of LTP following theta burst

stimulation. This effect was reversed, by the GABAA receptor antagonist, bicuculline (Evans and

Viola-McCabe 1996), suggesting that GABAA action is critical for the regulation of LTP. In

contrast, the GABAB agonist, baclofen, reduced the population spike amplitude, but had no

significant effect on the induction of LTP, while the GABAB antagonist, phaclofen facilitated the

induction of LTP, suggesting that GABAB has a modulatory role on LTP (Olpe and Karlsson 1990).

Several human studies have assessed GABAergic activity on in vivo PAS-LTP from the motor

cortex. For example, the GABAB agonist, baclofen, impaired PAS-LTP (McDonnell, Orekhov et

al. 2007), potentially by hyperpolarizing the neuron. In contrast, diazepam and topiramate,

tiagabine, all had no significant effect on PAS-LTP (Heidegger, Krakow et al. 2010). However,

the activation of GABAA receptors prior to PAS using a TMS paradigm known as short interval

cortical inhibition (SICI) impaired PAS-LTP (Elahi, Gunraj et al. 2012). This suggests that SICI

may have blocked the induction of PAS-LTP via depotentiation mechanisms. As such these studies

indicate that GABAergic activity plays an important role in the regulation of cortical plasticity in

the human motor cortex.

1.17 GABAergic Activity in Schizophrenia  

It has been proposed that altered GABAergic neurotransmission, particularly in the frontal

lobes, is associated with cognitive symptoms of schizophrenia (Coyle 2004) (Hashimoto, Arion

et al. 2008; Tse, Piantadosi et al. 2015). This hypothesis was first postulated by Roberts based on

the inhibitory role that GABA has in the central nervous system and how a reduction can lead to

excessive neuronal excitation (Roberts and Frankel 1950). Several post-mortem studies have

since provided support for this hypothesis. For instance, reduced density of GABAergic

Page 41: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

27  

interneurons has been shown in the PFC and anterior cingulate (Benes, McSparren et al. 1991). It

may be that only a subset of these neurons is affected, as the density of GABA cells that express

only the NMDA NR2A subunit have been shown to be reduced in anterior cingulate of patients,

demonstrating impaired glutamate-GABA interaction (Woo, Walsh et al. 2004). Further, reduced

levels of GABA have also been shown in the thalamus, nucleus accumbens and amygdala (Perry,

Kish et al. 1979; Blum and Mann 2002). This reduction may reflect altered GAD expression, the

enzyme responsible for the production of GABA, which has also been reported in the DLPFC

(Akbarian and Huang 2006; Curley, Arion et al. 2011), amygdala, hippocampus, nucleus

acumens and putamen (Bird, Spokes et al. 1977). This reduction is predominately in fast-spiking

parvalbumin GABAergic interneurons (Hashimoto, Volk et al. 2003) and shown to be

independent of antipsychotic use, suggesting that this effect is inherent to the disorder (Volk,

Austin et al. 2000). Given that these fast-spiking neurons play an essential role in the generation

of gamma oscillations, which are vital for cognitive function, then abnormalities may underlie

cognitive deficits seen in this population (Sohal, Zhang et al. 2009; Carlen, Meletis et al. 2012).

Furthermore, position emission tomography (PET) studies have revealed abnormal GABAA and

GABAB activity in patients. GABAA activity is elevated in both the PFC and hippocampus, two

regions important for cognitive function, in which abnormalities may lead to impairments

(Rudolph and Mohler 2014). Such alteration may reflect a compensatory upregulation of

GABAA receptors as a result of impaired inhibitory input onto pyramidal cells due to reduced

inhibitory interneurons, or GABA release (Nestler and Hyman 2010). On the other hand,

GABAB expression has been shown to be reduced in the hippocampus and temporal regions

(Mizukami, Sasaki et al. 2000; Mizukami, Ishikawa et al. 2002). Similar abnormalities have also

Page 42: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

28  

been reported in patients with the use of TMS paradigms known as long-interval cortical

inhibition (LICI) and cortical silent period (CSP), which measure GABAB neurotransmission,

and SICI, a measure for GABAA neurotransmission (these findings are discussed in detail below)

(Daskalakis, Christensen et al. 2002; Farzan, Barr et al. 2010). Intriguingly, it should be

mentioned that benzodiazepines have not been successful for cognitive or negative symptoms

but, baclofen, a GABAB agonist, improves cognition in animal models of schizophrenia,

suggesting that GABAB receptors may play a bigger role in cognitive deficits (Carpenter,

Buchanan et al. 1999; Hashimoto, Arion et al. 2008).Together, the evidence suggests that

GABAergic activity including, interneuron density, GAD and GABA levels are impaired in

schizophrenia. Thus, cognitive dysfunction in schizophrenia may be related to abnormal

GABAergic neurotransmission in the DLPFC, with GABAB receptors having a prominent role.

In conclusion, these diverse findings highlight that not one neurotransmitter alone can account

for cognitive symptoms in schizophrenia. Cognitive symptoms associated with schizophrenia

likely arise from dysfunctions within each of these neurotransmitter systems. It is clear however

that many unknowns still exist regarding the pathophysiology and etiology of this disorder and

continued research studies are necessary.

1.18 Transcranial Magnetic Stimulation

In 1985 Anthony Barker and his team developed a brain stimulation device known today as TMS.

It is a noninvasive tool used to examine the functioning and interconnections of the brain

(Kobayashi and Pascual-Leone 2003). The circuitry of the TMS machine is composed of four main

parts: the power source, the capacitor, a thyristor switch that closes the circuit and a coil. TMS

functions by periodic discharges of electrical energy that travels from the TMS machine to the coil

Page 43: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

29  

(Hallett 2000). When the switch is closed the capacitor stores the electrical energy, and when

sufficient energy is stored the switch opens and the current flows to the coil. Essentially, when the

current is zero, all the energy is in the capacitor, and when the current is at a maximum, the energy

is in the coil. When the coil is placed on the scalp, the changing electrical current induces a

transient magnetic field of about 2.5 Tesla, which is perpendicular to the plane of the TMS coil.

This magnetic field penetrates the scalp painlessly and unimpeded to induce a secondary electric

field in the brain, via the principle of electromagnetic induction (Barker, Jalinous et al. 1985). The

human brain being a conductive substance allows for a flow of electric current. The effect on the

brain is depolarization of neurons, not due to the magnetic field, but rather by the secondary electric

field produced in the brain. (Thielscher and Kammer 2004).

1.18.1 TMS Coils

Different coil shapes can be utilized depending on the degree of precision and stimulation depth.

There are primarily two types, a circular or figure-8 configuration.(Hallett 2000) The circular

shape is typically 8 to 15 cm in diameter and produces an antiparallel circular flow of opposite

direction in the brain underneath. The outer edges of the coil have the greatest induced current,

but the magnetic field produced is concentrated directly at the center of the coil. The circular coil

lacks the ability to focus on a single place in the brain, as the radius of the field applied is quite

large.

On the other hand, the figure 8 coil, resembling the number “8”, is more focal as it consists of

two coils placed side by side to create a junction. This concept is based on the mechanism of

electromagnetic induction, which states that when two loops of wire are in close proximity, the

changing primary current in one of the coils, and the resultant changing magnetic field generates

Page 44: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

30  

an electric field and consequently a secondary current of the opposite direction in the other coil.

Due to the opposite direction of flow, where they meet creates a concentration of current.

1.18.2 Potential TMS Risks  

TMS has no significant health risk to healthy participants. Studies designed to systematically

evaluate health effects have not reported changes in blood pressure, heart rate, serum cortisol, serum

prolactin, cerebral blood flow (Rossi, Hallett et al. 2009). The FDA has concluded that stimulation

at <1 Hz carries only a slight risk of in inducing a seizure and is therefore classified as a device

with no significant risk.

Seizures in Patients with Neurological Abnormalities

To date no seizures have been reported in healthy participants receiving single-pulse TMS, nor

has an evaluation in serum prolactin levels associated with limbic after discharges been found in

normal controls receiving single-pulse TMS. Nonetheless, seizures have been reported in recent

stroke patients who were receiving single-pulse TMS for clinical evaluation purposes. To ensure

the participant’s safety, safety guidelines for TMS that minimize this possible seizure risk

including careful assessments of seizure vulnerability and history are assessed during the

eligibility assessments.

Headache and Scalp Pain

The most commonly reported side effect of TMS is a headache (~5%). Participants may also

experience some mild discomfort under the coil due to the contraction of facial muscles and

stimulation of nerves on the scalp. If the subject is discomforted by a headache, it is usually

managed with acetaminophen (Tylenol, 500 mg).

Page 45: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

31  

Magnetic Effects

Human tissue is virtually non-conductive to magnetic fields. The peak magnetic field strength of

the stimulator is approximately 2T. Exposure to static magnetic fields is considered safe up to 2T

in the context of a clinical MRI. The total time of exposure to the magnetic field in a TMS study

is usually brief compared to a clinical MRI.

1.18.3 TMS Activation  

The current through the coil being parallel to the surface of the scalp strongly activates

horizontally-oriented interneurons and transynaptically activates pyramidal neurons rather than

directly. This activation area is several square centimeters (ie.15 mA/cm2) with a limited depth

(ie. 2.5cm), which depends on the stimulation intensity. When an above threshold intensity, a

TMS pulse that is delivered to the motor cortex depolarizes the neurons underneath the coil,

which in turn activates spinal neurons, and ultimately activates the peripheral muscle of interest.

This muscle activation is referred to as motor evoked potentials (MEPs), which can be measured

using electromyography (EMG) (Day, Dressler et al. 1989).

1.19 Transcranial Magnetic Stimulation and Electromyography  

TMS combined with surface EMG allows for the exploration of the corticospinal tract in vivo.

Stimulation of the scalp over the motor cortex by a single TMS pulse produces a corresponding

contralateral MEP, which is non-invasively measured by EMG. Muscles at rest do not produce

detectable EMG signals, however, when activated EMG can detect the summation of several

superimposed motor unit action potentials over the muscle of interest. Several important factors,

Page 46: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

32  

including the shape of the magnetic coil, the intensity of the pulse, number of pulses and the

interstimulus interval separating the pulses influence the effect that the TMS pulse has on MEP

activity.

1.20 Paired Associative Stimulation  

PAS is a non-invasive TMS paradigm used to assess LTP-like activity from the human cortex.

PAS involves the pairing of a weak electrical PNS to the median nerve with a strong TMS pulse

to the contralateral cortex (Stefan, Kunesch et al. 2000). Conventionally, PAS is administered

over the motor cortex (M1) with a 21.5 to 25ms time interval between the peripheral and cortical

stimulation and is referred to as PAS-25. This ~25 ms delay is important as it allows for the two

stimuli to arrive simultaneously in the cortex (Stefan, Kunesch et al. 2000). This combination

reflects associative plasticity and spike-timing dependent plasticity (Dan and Poo 2006).

Repetitive PAS stimulations result in increased cortical excitability known as LTP-like plasticity

(Stefan, Kunesch et al. 2000). This increase in cortical excitability from the motor cortex is

captured as an increase in MEP amplitude (Stefan, Kunesch et al. 2000). The ratio of change in

MEP amplitude before and after PAS-25 indicates the degree of potentiation. Potentiation of

MEP is greatest when ~25ms interval is used between the peripheral and cortical stimulation,

and with longer time intervals between the two being ineffective (Stefan, Kunesch et al. 2000).

Although PAS-25 is conventionally performed in the motor cortex, it can also be used to induce

plasticity in other regions of the cortex, with changes in cortical excitability measured through

electroencephalogram (EEG) (Rajji, Sun et al. 2013) (Figure 1.) . The magnitude of cortical

excitability is a neurological index that is similar to MEP amplitude, which is known as cortical

evoked activity (CEA). Recently, PAS has been induced and measured from the DLPFC. CEA

Page 47: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

33  

was greatly increased Post-PAS when compared to Pre-PAS. This effect was focal and localized

to the left frontal brain region and greatest in electrodes overlying the DLPFC (Rajji, Sun et al.

2013).

Figure 1. PAS in the motor Vs PAS in the DLPFC. This figure shows how PAS is performed

in the motor and in the DLPFC using TM-EEG

 

 

1.21 Electroencephalogram  

EEG is a non-invasive device that records in vivo cortical electrical activity from the surface of

the scalp over a period of time (Swartz and Goldensohn 1998). It uses several metal-based

electrodes that are placed on the scalp that are filled with a conductive saline solution (Buzsáki

2006). This conductive gel reduces impedance, as it has a salt content of 3-10%. EEG readings

are derived from a summation of the electrical activity mainly from the pyramidal neurons

directly below the electrode as their axons run parallel to one another while their dendrites run

perpendicular to the cortical surface. Other neurons such as interneurons and glial cells

Page 48: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

34  

minimally contribute to the EEG signal because these neurons are not perpendicular to the

cortical surface.

Collectively these pyramidal neurons create an ionic current that the EEG picks up as a voltage

difference across low resistance extracellular space, namely, the distance between the brain and

the scalp. This current results from the movement of ions (Na+, K+, Ca2+ and Cl-) through various

kinds of channels (i.e. voltage-gated, ligand-gated, ion-dependent gated, and second-messenger

gated)(Buzsáki 2006). This electrical signal is processed through the use of three different types

of electrodes, known as the active, reference and ground electrodes. The active electrode is

compared to the reference electrode and the difference in voltage between these two electrodes is

transmitted over time. The ground electrode is needed for obtaining differential voltage by

subtracting the recorded measures from the active and reference points. This detected weak

signal is then amplified typically by a factor of 10,000 which is transmitted to a computer that

displays traces of electrical activities, showing EEG waves. When combined with TMS, EEG

can assess cortical activity known CEA. This technique is reliable and has been used to assess

activity from the motor (Ilmoniemi, Virtanen et al. 1997; Paus, Sipila et al. 2001; Bonato,

Miniussi et al. 2006) and prefrontal cortices (Daskalakis, Farzan et al. 2008; Sun, Farzan et al.

2016).

1.21.1 Cortical Oscillations  

An EEG signal is composed of several brain frequencies known as cortical oscillations. These

oscillations are suggested to be generated by the movement of ions through various kinds of

channels (Buzsáki 2006). As such, a change in the voltage, release of neurotransmitters, or a

Page 49: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

35  

change in ion concentration can all change the state of these channels (i.e. open versus closed)

and give rise to oscillatory activity (Buzsáki 2006).

Cortical oscillations are categorized into five conventional groups based on their oscillating

frequency: alpha, beta, theta, delta and gamma (Buzsáki 2006). Alpha waves have a frequency

between 8 to 12Hz, with a large amplitude of approximately 50V peak to peak, and

predominately observed in the occipital region of the brain. These waves are evident when the

eyes are closed and in a purely relaxed state. Beta waves have a frequency range between 12 to

30Hz and generally associated with movement. In particular, beta waves increase when

movement is resisted or voluntary suppressed, but also occur when one is alert, actively

concentrating or anxious thinking. These waves are also evident during REM or deep sleep.

Delta waves have a frequency between 0 to 4Hz and are characterized by a slow wave and occur

in deep sleep. Theta waves have a frequency range of 4 to7Hz and are present during the light

stages of sleep, typically the earliest stage of sleep. Finally, gamma waves have the highest

frequency range of 30 to 80Hz and present during times of high concentration and cognitive

function. The precise mechanism involved in the generation of gamma oscillations are not fully

understood. Although GABAA receptors have been proposed to contribute to their generation,

while GABAB receptors play a role in the modulation of these oscillations (Whittington, Traub et

al. 1995).

1.22 EEG Artifacts and Independent Component Analysis (ICA)  

EEG signals that are detected but that do not originate from cortical activity are called artifacts.

These artifacts can be separated into either biological or environmental noise. Some

environmental artifacts come from lights and electronic devices, and can be avoided. On the

Page 50: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

36  

other hand, biological artifacts are more difficult to avoid, which include eye movement,

blinking, muscle twitches and heart beats (Yuval-Greenberg, Tomer et al. 2008; Rogasch,

Thomson et al. 2014). These artifacts, however, can be teased out using independent component

analysis (ICA), a common technique used to remove artifacts from EEG recordings (Rogasch,

Thomson et al. 2014). Essentially, ICA assumes that each of the several components teased out

from the signal is independent of one another and that removing one component has no effect on

the others. This technique allows for accurate and precise removal of artifacts without affecting

brain related components (Rogasch, Thomson et al. 2014).

1.23 Cortical Inhibition (CI)

Synaptic plasticity may also be a corollary of CI since mechanisms mediating plasticity include

both cortical excitation and inhibition (Schieber and Hibbard 1993). CI has been defined as a

neurophysiological process by which inhibitory interneurons selectively suppress the activity of

pyramidal neurons, modulating and regulating excitatory activity (Daskalakis, Fitzgerald et al.

2007). TMS can be used to measure and index both cortical inhibition and excitation. CI consists

of two phases, a fast IPSP followed by a slow IPSP (Davies, Davies et al. 1990). Fast IPSPs are

mediated by GABAA receptor activation, whereas slow IPSPs are mediated by GABAB receptor

activation. (Sanger, Garg et al. 2001). Three TMS paradigms are commonly used to measure CI,

these are known as LICI, CSP, and SICI.

1.23.1 Long Interval cortical Inhibition  

LICI is a paired-pulse TMS paradigm that consists of a suprathreshold conditioning pulse (i.e.

120% of the RMT) followed by a suprathreshold unconditioned testing pulse (i.e. 120% of the

RMT) at a long interstimulus interval (e.g. 50 to 100 ms) (Valls-Sole, Pascual-Leone et al. 1992).

Page 51: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

37  

The conditioning stimulus primes the test pulse and leads to inhibition of test MEP (Figure 2.)

This effect is usually expressed by a ratio of conditioned MEP amplitude divided by

unconditioned test MEP amplitude. Further, LICI can be assessed directly from the cortex

through the combination of TMS with EEG (Daskalakis, Farzan et al. 2008; Premoli, Rivolta et

al. 2014). This method has been shown to be reliable with high test-retest and intraclass

correlation coefficient > 0.38 (Farzan, Barr et al. 2010).

Several pharmacological evidence proposes that LICI reflects GABAB receptor activation.

First, the GABAB agonist, baclofen potentiates LICI (McDonnell, Orekhov et al. 2006). Second,

LICI is optimal when the conditioning stimulus precedes the TS by 100 to 150ms (Sanger, Garg

et al. 2001), which is comparable to the time course of the GABAB receptor activation, which

has been shown to typically peak around 150 to 200ms post-stimulus(McCormick 1989). Third,

LICI is evoked by a high-intensity suprathreshold conditioning pulse, which is consistent with

the finding that GABAB receptor activation has a high activation threshold (Deisz 1999; Sanger,

Garg et al. 2001).

1.23.2 Cortical Silent Period  

Another TMS measure that indexes GABAB receptor-mediated inhibition is CSP (Cantello,

Gianelli et al. 1992). CSP is measured during voluntary muscle contraction (e.g., 20% of

maximum contraction). A suprathreshold intensity TMS pulse (110% to 160% of the RMT) is

delivered to the contralateral motor cortex causing a temporary interruption of voluntary muscle

activity (Figure 2.). CSP is determined by the duration from the onset of muscle activity to the

return of voluntary muscle activity (Day, Dressler et al. 1989). It is this duration of “silent

period” that provides a measure of GABAB inhibition (Cantello, Gianelli et al. 1992). Although

Page 52: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

38  

spinal inhibition contributes to the early part of CSP (50 to75ms), such as Renshaw inhibition,

the latter part is of supraspinal mechanism and mediated by cortical inhibitory interneurons

(Fuhr, Agostino et al. 1991; Chen, Lozano et al. 1999).

Converging lines of evidence suggest that CSP is mediated through GABAB activity. First, the

intrathecal administration of the GABAB agonist, baclofen, increases CSP duration(Siebner,

Dressnandt et al. 1998). Second, there is a strong correlation (Pearson’s r=0.90, p<0.001)

between LICI and CSP in the motor cortex, suggesting a common mechanism (Farzan, Barr et al.

2010). Third, similar to LICI, CSP is evoked by a high-intensity pulse, which is consistent with

the finding that GABAB receptor activation has a high activation threshold. Lastly, the time

course of CSP duration is similar to the duration of GABAB receptor activation, approximately

150 to 200ms post-stimulus (McCormick 1989; Siebner, Dressnandt et al. 1998).

1.23.3 Short Interval Cortical Inhibition  

SICI is a paired-pulse TMS paradigm. It consists of a subthreshold conditioning pulse (i.e. 80%

of RMT) followed by a suprathreshold test pulse with a short interstimulus interval of 1 to 5ms

(Kujirai, Caramia et al. 1993; Ziemann 1999). The conditioning pulse leads to an inhibition of

the test MEP amplitude. This effect is expressed by a ratio of conditioned divided by

unconditioned test MEP amplitude (Kujirai, Caramia et al. 1993; Ziemann 1999). A lack of

change in spinal reflexes suggests that SICI is due to synaptic interactions occurring cortically

rather than spinally (Kujirai, Caramia et al. 1993). Studies propose that SICI is mediated by short

lasting IPSPs (Kujirai, Caramia et al. 1993). Further, SICI has been pharmacologically enhanced

using GABAA acting agents , such as lorazepam, suggesting that this type of inhibition is

mediated through GABAA activation (Ziemann, Lonnecker et al. 1996). Also, SICI activity

Page 53: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

39  

displays a similar time course to GABAA receptor activation, with a synaptic time constant of

approximately 10 to 25ms (Wang and Buzsaki 1996).

Figure 2. Cortical Inhibition Measures. This image illustrates SICI, CSP and LICI, three common measures used to assess CI in the motor cortex.

1.24 Cortical Excitation

1.24.1 Resting Motor Threshold  

TMS can also be used to examine cortical excitability through paradigms that include, resting

motor threshold and intracortical facilitation (ICF). Resting motor threshold is defined as the

minimum stimulus intensity that elicits an MEP of >50mV in at least 5 out of 10 trials in a

relaxed target muscle (Kujirai, Caramia et al. 1993). It is a global measure of corticospinal

excitability and depends on glutamatergic synaptic excitability mediated mainly through fast

Page 54: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

40  

acting AMPA receptors (Paulus, Classen et al. 2008). This measure is also dependent on voltage-

gated sodium channels, as drugs that block these channels such as carbamazepine, lamotrigine,

and losigamone, increase RMT (Ziemann, Lonnecker et al. 1996).

1.24.2 Intracortical Facilitation  

ICF is a paired-pulse TMS paradigm that assesses cortical excitability. It consists of a

conditioning stimuli followed by a test stimulus with an interstimulus interval of 7ms to 20ms

(Nakamura, Kitagawa et al. 1997). It has been proposed that ICF is mediated by NMDA

neurotransmission based on several findings (Nakamura, Kitagawa et al. 1997). For example, the

latency of onset of NMDA-mediated EPSP is approximately 10ms, which is consistent with the

time course of ICF (Kujirai, Caramia et al. 1993; Ziemann, Lonnecker et al. 1996). Also,

pharmacological studies have shown that NMDA receptor antagonists such as dextromethorphan

and memantine decrease ICF (Ziemann, Lonnecker et al. 1996; Schwenkreis, Witscher et al.

1999).

1.25 Pharmaco-TMS Experiments  

Several pharmaco-TMS experiments have shown that cortical inhibition and excitation can be

manipulated after a single dose of a central nervous system (CNS) active drug that influence

neuromodulators including, acetylcholine and dopamine, and neurotransmitters including GABA

and glutamate. As such, in the next section, these findings will be discussed.

Page 55: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

41  

1.25.1 GABAergic Activity

GABAA Activity

Several TMS studies have looked at the effects of GABA on CI. With regards to GABAA

activity, GABAA activating agents, benzodiazepines, lorazepam (Ziemann, Lonnecker et al.

1996; Teo, Terranova et al. 2009) and diazepam increased SICI(Di Lazzaro, Pilato et al. 2005;

Di Lazzaro, Pilato et al. 2007), and CSP (Inghilleri, Berardelli et al. 1996; Ziemann, Lonnecker

et al. 1996; Kimiskidis, Papagiannopoulos et al. 2006), but reduced ICF (Ziemann, Lonnecker et

al. 1996; Mohammadi, Krampfl et al. 2006). In contrast, zolpidem, a benzodiazepine with low

affinity for the GABAA receptor, because it is selective for the GABAA-alpha1 receptor,

enhanced LICI (Mohammadi, Krampfl et al. 2006) but did not affect SICI (Di Lazzaro, Pilato et

al. 2006; Di Lazzaro, Pilato et al. 2007). Similarly, ethanol, which binds to the α6

GABAA receptor subunit increased SICI, enhanced CSP, and reduced ICF (Olsen, Hanchar et al.

2007). In contrast, baclofen, a GABAB receptor agonist decreased SICI (McDonnell, Orekhov et

al. 2006), presumably through presynaptic GABAB autoreceptors (Daskalakis, Christensen et al.

2002).

GABAB Activity

With regards to GABAB activity, the GABAB receptor agonist, baclofen has inconsistent effects

on SICI (Ziemann, Lonnecker et al. 1996; Ziemann, Tergau et al. 1998; McDonnell, Orekhov et

al. 2006), but increases LICI (McDonnell, Orekhov et al. 2006) and CSP duration (Siebner,

Dressnandt et al. 1998; Stetkarova and Kofler 2013). These findings suggest that the effects of

baclofen are mediated through GABAB neurotransmission. Further, increasing GABA levels by

blocking GABA reuptake with tiagabine, resulted in a dose-dependent increase in CSP duration,

Page 56: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

42  

predominately through the activation of GABAB receptors (Thompson and Gahwiler 1992) and

an increase in SICI (Werhahn, Kunesch et al. 1999). Additionally, inhibiting GABA

transaminase with vigabatrin (Pierantozzi, Marciani et al. 2004), or possibly enhancing GABA

levels using gabapentin (Ziemann, Lonnecker et al. 1996) both enhanced inhibition assessed by

CSP, SICI, LICI and/or decreased ICF.

1.25. 2 Glutamatergic Activity

Several studies have looked at the effects of NMDA antagonists on CI using TMS.

Dextromethorphan (Ziemann, Chen et al. 1998) and memantine (Schwenkreis, Witscher et al.

1999), which are NMDA antagonists, both increased CI assessed through SICI and decreased

excitation assessed through ICF. Riluzole and amantadine, which are also anti-glutamatergic

drugs, showed similar results of suppressing cortical excitation (Schwenkreis, Liepert et al. 2000;

Reis, John et al. 2006).

1.25.3 Dopaminergic Activity

Several studies have looked at the effects of dopamine on CI using TMS. Dopamine can either

directly increase inhibition by acting on cortical pyramidal neurons (Gao, Wang et al. 2003) or

indirectly through GABAergic interneurons (Tseng and O'Donnell 2004; Floyer-Lea,

Wylezinska et al. 2006). As such, dopamine agonists, bromocriptine (Ziemann, Tergau et al.

1997), cabergoline (Korchounov, Ilic et al. 2007) and pergolide (Ziemann, Bruns et al. 1996)

have been shown to increase SICI and CSP (Ziemann, Bruns et al. 1996) and decrease ICF

(Korchounov, Ilic et al. 2007), while dopamine antagonists, such as haloperidol has been shown

to decrease inhibition (Ziemann, Tergau et al. 1997) or have no significant(Daskalakis,

Christensen et al. 2003). Similarly, L-DOPA, a dopamine precursor, prolonged CSP duration

Page 57: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

43  

(Priori, Berardelli et al. 1994). Also, methylphenidate and amphetamine, agents which increase

dopamine by blocking dopamine transporters have been shown to decrease SICI (Ilic,

Korchounov et al. 2003; Khoshbouei, Sen et al. 2004) and increase ICF (Kirschner, Moll et al.

2003; Moll, Heinrich et al. 2003; Gilbert, Ridel et al. 2006).

1.25.4 Cholinergic Activity

Very few studies have assessed the effects of cholinergic activity. One study found that the

acetylcholine esterase inhibitor tacrine decreases SICI and increases ICF (Korchounov, Ilic et al.

2005). While another study that assessed the effects of rivastigmine on cortical excitability

reported an enhancement (Langguth, Bauer et al. 2007). Finally, a different study found that the

M1/M2 antagonist atropine decreases SICI and increases ICF (Liepert, Schardt et al. 2001), while

another study found that scopolamine had no significant effect (Di Lazzaro, Oliviero et al. 2000).

In conclusion, TMS provides a quantitative way to indirectly measure CI from the cortex. These

responses have been shown to be altered by CNS drugs that affect neurotransmitters and

neuromodulators. While there has been considerable work exploring the effects of these drugs on

TMS responses, most of it has been done by using only TMS without EEG and from the motor

cortex with results demonstrated from MEP activity. By combining TMS with EEG, the influence

of these drugs can be measured directly from the cortex with potentially greater clinical relevance.

1.26. Abnormal Cortical Inhibition in Schizophrenia  

Several lines of evidence suggest that CI is impaired in patients with schizophrenia and

implicated in the pathophysiology of the disorder (Lewis, Pierri et al. 1999; Radhu, Garcia

Dominguez et al. 2015) (Daskalakis, Christensen et al. 2002; Wobrock, Kadovic et al. 2007).

First, a reduction in SICI amplitude and CSP duration has been shown in first-episode patients

Page 58: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

44  

with limited exposure to antipsychotics, which may be due to compensatory mechanisms

(Wobrock, Schneider-Axmann et al. 2009; Hasan, Wobrock et al. 2012). In contrast, in patients

diagnosed with schizophrenia both SICI and CSP were shown to be reduced (Fitzgerald, Brown

et al. 2002; Pascual-Leone, Manoach et al. 2002). Second, medication may alleviate such

impairments as only unmedicated patients showed a reduction in SICI amplitude and in CSP

duration, while medicated patients did not (Daskalakis, Christensen et al. 2002). Third,

clozapine-treated patients showed a longer CSP duration compared to healthy participants and

unmedicated patients with schizophrenia, which may be related to the potentiation of GABAB

receptor neurotransmission (Daskalakis, Farzan et al. 2008; Liu, Fitzgerald et al. 2009). Fourth,

reduced SICI has been shown to be correlated with the severity of psychotic symptoms

(Daskalakis, Farzan et al. 2008). Further investigations have shown that SICI is inversely

correlated with positive symptoms, while CSP is inversely associated with negative symptoms,

suggesting the involvement of GABAA and GABAB neurotransmission in positive and negative

symptoms, respectively (Liu, Fitzgerald et al. 2009). Lastly, LICI is reduced in the DLPFC of

patients and this reduction was seen only in schizophrenia, and not in obsessive-compulsive

disorder (OCD), a psychiatric disorder with similar characteristics (Radhu, Garcia Dominguez et

al. 2015) Thus, the evidence illustrates that CI deficits are specific to patients with schizophrenia

and are not a generalized to similar disorders of severe psychopathology.

 

Page 59: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

45  

1.27 Pharmacology of the Drugs Used in this Dissertation

1.27.1 Baclofen  

Baclofen, a GABAB agonist is primarily used for the treatment of spasticity including cerebral

palsy and multiple sclerosis. Once baclofen binds to GABAB receptors, it opens nearby

potassium channels, which slightly hyperpolarizes the neuron. When a 10mg dose of baclofen is

administered, the smallest dose available on the market, the bioavailability recorded is 74% and a

plasma protein binding of 30%. The median peak time for baclofen is one hour (McDonnell,

Orekhov et al. 2007), while its half-life is 4 to 6.54 hours, with complete elimination within 72

hours (Faigle et al. 1972). The drug is predominately (85%) eliminated in urine/feces unchanged

and 15% metabolized by deamination.

1.27. 2 Dextromethorphan  

Dextromethorphan is primarily a cough suppressant of the morphine class and found in some

pain medications. It is a noncompetitive NMDA antagonist that works by blocking Ca2+ ion

channels that would normally depolarize the neuron (Church, Lodge et al. 1985; Linn, Long et

al. 2014). When orally administered the drug is quickly absorbed by the GI tract and permeable

to the blood-brain barrier with a bioavailability of 11%. Maximal plasma concentration is

reached within 3 hours with a half-life of approximately 2 to 4 hours (Ziemann, Chen et al.

1998). Dextromethorphan is converted into dextrorphan, its metabolite, by O-demethylation and

eliminated through the hepatic system with CYP2D6 playing a major role, while CYP3A4 and

CYP3A5 have a minor role and excretion is mainly renal.

Page 60: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

46  

1.27.3 Levodopa  

Levodopa (L-DOPA) is a dopaminergic agent used to increase dopamine concentrations in the

treatment of Parkinson's disease and dopamine-responsive dystonia. Dopamine is unable to pass

through the blood-brain barrier due to size restrictions. L-DOPA, a smaller amino acid, and

dopamine precursor, however, is able to pass through the blood-brain barrier. For this reason, L-

DOPA is administered instead of dopamine. L-DOPA is then converted into dopamine by

the enzyme aromatic L-amino acid decarboxylase and pyridoxal phosphate (vitamin B6), which

acts as a cofactor for this reaction. Often, L-DOPA is combined with carbidopa, an inhibitor of

the enzyme that would normally decarboxylase L-DOPA into dopamine in the peripheral system.

This inhibition enhances the amount of L-DOPA that reaches the brain. Upon oral

administration, L-DOPA is absorbed by the GI tract via an active transport system and reaches

peak concentration after 0.5 to 2 hours (Crevoisier, Hoevels et al. 1987; Kuo, Paulus et al. 2008).

Its half-life is approximately one hour, but in combination with a DOPA-decarboxylase inhibitor

it can reach 1.5 to 2 hours. In the young, the combination of 100 mg L-DOPA and 25 mg

carbidopa reaches a bioavailability of 41%, while in the elderly it reaches 86%. (Okereke 2002).

The consumption of food also plays a factor as it affects its movement through the system, with

low protein diets contributing to greater rates of absorption (Eriksson, Granerus et al. 1988).

Elimination of L-DOPA and its metabolites are mainly renal (70-80%).

1.27.4 Rivastigmine  

Rivastigmine is a cholinergic agent used in the treatment of mild to moderate dementia of

Alzheimer's or Parkinson's disease. It is an acetylcholinesterase inhibitor that renders the enzyme

inactive, so it is unable to break down acetylcholine to choline and acetate, increasing its

Page 61: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

47  

availability for neurotransmission (Polinsky 1998). The drug can be administered orally or by a

transdermal patch. When a 3 mg dose is given orally the drug is quickly absorbed and permeable

to the blood-brain barrier with a bioavailability of about 40%, and plasma protein binding of

40% (Polinsky 1998; Jann, Shirley et al. 2002). Maximal plasma concentration is reached within

2 hours (Kuo, Grosch et al. 2007) with a half-life of approximately one hour, but effects on the

brain can last up to 10 hours. Elimination bypasses the hepatic system and cytochrome P450, and

fully out of the system after 24 hours of intake primarily through the urine, with less than 1%

found in feces (Polinsky 1998).

1.28 Potential Risks Associated with Experimental Drugs

a) Carbidopa and Levodopa:

2-10%- dyskinesia, nausea, hallucinations, confusions, dizziness

b) Baclofen

>10%: drowsiness, headache, vertigo, dizziness, trouble sleeping, slurred speech, ataxia-

lack of coordination of muscles, hypotonia- low muscle tone, neuromuscular and skeletal

weakness

1%-10%: low blood pressure, fatigue, confusions, headache, rash, nausea, constipation,

polyuria-excessive urination

Currently, there are no reported cases of severe side effects following a single oral dose

of baclofen within the daily dosage range (40mg to 80 mg). Previous studies using single

oral dose of baclofen (50 mg) (McDonnell, Orekhov et al. 2006; McDonnell, Orekhov et

Page 62: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

48  

al. 2007) did report some sedation and fatigue among the participants but without any

consequence

c) Rivastigmine

2-10%: nausea, vomiting, loss of appetite, dizziness, abdominal pain, fatigue

d) Dextromethorphan

>10%: diarrhea

1-5%: cough, vomiting, peripheral edema, asthenia- lack of muscle strength.

 

 

 

Page 63: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

49  

2. Objectives, Hypotheses and Participants

2.1 Objectives

The objective of the first paper was to assess studies that used proton magnetic resonance

spectroscopy (1H MRS), positron emission tomography (PET) and single-photon emission

computed tomography (SPECT) imaging techniques to measure glutamate, dopamine and

GABA levels in drug-naïve and drug-free patients with schizophreia. The main aim of this paper

was to provide evidence for abnormal dopaminergic, GABAergic and glutamatergic

neurotransmission in antipsychotic-naïve/free patients with schizophrenia compared with healthy

controls, and to build a model illustrating how these abnormalities could lead to impaired LTP in

patients with schizophrenia and consequently cognitive deficits.

The objective of the second paper was to assess the effects of rivastigmine, an acetyl

cholinesterase inhibitor, L-DOPA, a dopamine precursor, baclofen, a GABAB receptor agonist,

and dextromethorphan, a NMDA receptor antagonist on PAS-induced LTP in the DLPFC using a

double-blind randomized controlled design. This was achieved by assessing the effects of each

drug to a placebo agent. LTP was assessed by comparing pre-PAS and post-PAS (0, 15, 30, and

60 mins post PAS) CEA using TMS-EEG.

The objective of the third study was to assess the effects of the aforementioned agents on LICI

from DLPFC stimulation. This was done on a separate day from the PAS experiment but in the

same participants who took part in the first study using a double-blind randomized controlled

design. LICI was measured at pre-drug and post-drug and then the change was compared to

placebo.

Page 64: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

50  

2.2. Hypothesis  

1) 50 mg baclofen will impair LTP and enhance LICI in the DLFPC when compared to a placebo

agent.

2) 100 mg L-DOPA will enhance LTP and enhance LICI in the DLFPC when compared to a

placebo agent.

3) 3 mg rivastigmine will enhance LTP and reduce LICI in the DLFPC when compared to a

placebo agent.

4) 150 mg dextromethorphan will block LTP and enhance LICI in the DLFPC when compared to

a placebo agent.

2.3 Participants

Participants were recruited through advertisements posted at the Center for Addiction and Mental

Health, University of Toronto, from our recruitment database, and Craigslist, a classified

website.

 

Inclusion Criteria

1. Age of 18-55 years

2. Non-smoker

Page 65: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

51  

3. Males and females, females with potential childbearing must have a negative urine

pregnancy test.

4. Speak English

5. Willingness to provide informed consent and is competent.

6. Free of psychopathology based on the Personality Assessment Screener (PAS)

7. Right handedness

Exclusion Criteria

1. Past or current history of drug abuse disorder, illicit drug use was determined by a

positive urine drug screen

2. History of a medical or neurological disorder that affects CNS (such as, traumatic brain

injury, stroke, Parkinson).

3. Current or past history of seizures

4. Any metal implant or dentures

5. Electroconvulsive Therapy (ECT) within 6 months prior to study participation

6. Any of the following; breastfeeding, immediate post-myocardial infarction, life-

threatening arrhythmias, angina pectoris

7. Psychotropic medication

8. no acute/chronic medication during or up to 2 weeks before participating in the study

 

Page 66: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

52  

Chapter 3

3. Imaging-based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional

Long-Term Potentiation

Contents of this chapter have been reprinted by permission from Schizophrenia Bulletin

Bahar Salavati, Tarek K. Rajji, Rae Price, Yinming Sun, Ariel Graff-Guerrero, Zafiris J. Daskalakis. Imaging-based Neurochemistry in Schizophrenia: A Systematic Review and Implications for Dysfunctional Long-Term Potentiation. Schizophrenia Bulletin (2015) 41 (1): 44-56.doi: 10.1093/schbul/sbu132

 

Page 67: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

53  

3.1 Abstract

Cognitive deficits are commonly observed in patients with schizophrenia. Converging lines of

evidence suggest that these deficits are associated with impaired long-term potentiation (LTP). In

our systematic review, this hypothesis is evaluated using neuroimaging literature focused on

proton magnetic resonance spectroscopy (1H MRS), positron emission tomography (PET) and

single-photon emission computed tomography (SPECT). The review provides evidence for

abnormal dopaminergic, GABAergic and glutamatergic neurotransmission in antipsychotic-

naïve/free patients with schizophrenia compared with healthy controls. The review concludes

with a model illustrating how these abnormalities could lead to impaired LTP in patients with

schizophrenia and consequently cognitive deficits.

Page 68: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

54  

3.2 Introduction  

Schizophrenia is a psychiatric disorder that affects 1% of the world population (Ross, Margolis

et al. 2006) (Freedman 2003). Cognitive deficits such as learning and memory impairments are

considered core features of the illness. (Rajji, Ismail et al. 2009; van Os and Kapur 2009). LTP is

a key determinant of learning and memory function (Lynch 2004) and may be a key

neurophysiological mechanism underlying cognitive impairment in schizophrenia.

LTP is defined as an activity dependent long-lasting enhancement in synaptic efficacy (Citri and

Malenka 2008). LTP is typically dependent on the glutamatergic NMDA receptor (Coan and

Collingridge 1987) (Errington, Lynch et al. 1987). Glutamate activates NMDA receptors

allowing Ca+2 entry, which in turn acts on calmodulin-dependent protein kinases (CaM Kinases)

II and IV and leads to the upregulation of AMPA receptors (Miyamoto 2006).

LTP is modulated by the dopaminergic (Frey, Schroeder et al. 1990) and GABAergic systems

(Lopez-Gil, Babot et al. 2007) (Lewis and Moghaddam 2006). Dopaminergic modulation of LTP

depends on the type of receptors. Dopamine D1 receptor activation enhances LTP (Bailey,

Andrews et al. 2000) (Huang and Kandel 1995), while dopamine D2/3 receptor activation

suppresses NMDA activity and GABA activity (Chen, Ito et al. 1996) (Tseng and O'Donnell

2004) GABAergic modulation of LTP also depends on the subtype of GABA receptor.

Antagonism of GABAA receptor facilitates LTP (Ruiz, Campanac et al. 2010). Activation of

GABAB receptor modulates GABAA receptor through presynaptic auto-inhibition of interneurons

which facilitates LTP (Davies, Starkey et al. 1991) (Deisz 1999).

A number of imaging studies using proton magnetic resonance spectroscopy (1H MRS), positron

emission tomography (PET) and single-photon emission computed tomography (SPECT)

Page 69: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

55  

assessed these systems (glutamatergic, dopaminergic and GABAergic) in patients. To date, there

has been one meta-analysis, and one review paper on glutamate 1H MRS studies (Marsman, van

den Heuvel et al. 2013; Poels, Kegeles et al. 2014) two meta-analyses on dopamine PET and

SPECT studies (Laruelle 1998; Howes, Kambeitz et al. 2012) and one narrative review on

imaging studies assessing dopamine, serotonin, GABA and glutamate systems in schizophrenia

(Soares and Innis 1999). This last review was performed more than a decade ago and included

patient with- and without exposure to antipsychotic treatment. Thus, our aim was to perform a

systematic review of imaging studies assessing these three neurotransmitter systems, focusing

only on antipsychotic-naïve or antipsychotic-free patients with schizophrenia. Assessing this

subgroup helps to disentangle changes in neurochemistry related to illness compared to changes

related to medications. Differences between medicated and unmedicated patients are also

highlighted throughout the review only for comparison purposes. Lastly, we present a model

linking these systems to abnormal LTP and cognitive deficits associated with schizophrenia.

3.3 Methods  

A literature search was performed on November 18, 2013, using PUBMED with no date limits

and the following terms were used: schizo* AND drug naiv* OR antipsychotic naiv* OR

untreat* OR unmedicat* OR never treat* OR neuroleptic free OR antipsychotic free OR first

episod* AND glutamate OR GABA OR dopamine. The inclusion criteria were determined a

priori and were (1) in-vivo human studies, (2) imaging studies and (3) studies including

antipsychotic-free and/or antipsychotic-naïve patients with schizophrenia or schizoaffective

disorder. In total 2,383 publications were identified. Articles were excluded after reviewing titles

and abstracts, leaving 63 studies. Considering there was only a few studies for GABA we

Page 70: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

56  

summarized the finding and findings for dopamine and glutamate were separated into two tables,

one for dopamine, and glutamate (see Table 1, and 2 in the appendix).

3.4 Results  

Our search identified 16 studies on the glutamatergic system, 44 studies on the dopaminergic

system and three studies on the GABAergic system.

3.4.1 Glutamatergic System  

Several 1H MRS studies and one SPECT study demonstrated altered glutamatergic activity in

antipsychotic-naïve or antipsychotic-free patients. Changes were reported in the concentrations

of glutamate, glutamine, a precursor of glutamate (Bradford and Thomas 1969) and/or GLX, a

combination of both. We summarize the findings below and have chosen to divide these findings

based on various regions of the brain due to intrinsic variations that exist in the healthy brain

(Sailasuta, Ernst et al. 2008).

Medial Prefrontal Cortex (MPFC)

Two studies assessed glutamatergic activity in the MPFC of antipsychotic-free/naïve patients

with schizophrenia compared with healthy controls. One of these studies reported a 30%

increase in GLX levels of nine antipsychotic-naïve and seven antipsychotic-free patients (M=11,

F=5) (mean age 32 years) compared with 22 healthy controls (M=14, F=8) and 16 medicated

patients (M=11, F=5) (Kegeles, Mao et al. 2012). The authors proposed that antipsychotics may

have normalized GLX levels in the MPFC of medicated patients. Elevated GLX levels were also

evident in the right MPFC of 20 adolescents (M=7, F=13) (mean age 16.4 years), those who are

at high-risk for developing schizophrenia by having a parent with schizophrenia (Tibbo,

Page 71: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

57  

Hanstock et al. 2004). Since glutamine concentration is 40-60% lower than that of glutamate

(Govindaraju, Young et al. 2000) (Jensen, Licata et al. 2009), it can be inferred that elevated

GLX levels mostly reflect elevated glutamate concentrations (Bradford, Ward et al. 1978)

(Kaiser, Schuff et al. 2005). These findings suggest that high-risk adolescents and young

patients with schizophrenia have elevated levels of glutamate in the MPFC early in the illness.

However, a study assessing both glutamine and glutamate levels independently reported an

increase in only glutamine levels in the MPFC of ten antipsychotic-naïve patients (M=8, F=2)

(Bartha, Williamson et al. 1997). The authors concluded that schizophrenia may be associated

with an abnormal conversion of glutamine to glutamate, resulting in elevated glutamine levels

(Bartha, Williamson et al. 1997). Alternatively, this finding may be explained by experimental

limitations. To accurately measure glutamate and glutamine levels separately, specialized 1H

MRS techniques (e.g. high magnetic field (>3T) with short echo and long acquisition time) or

editing techniques (e.g. J-editing) are necessary due to glutamine and glutamate’s analogous

signals (Magistretti and Pellerin 1999; Hurd, Sailasuta et al. 2004; Mullins, Chen et al. 2008). In

this study, a 1.5 T magnetic field without editing techniques was used, which could be unreliable

in distinguishing peaks arising from glutamine and glutamate independently, potentially

confounding the results. While glutamine level in antipsychotic-free/naive patients might be still

elusive, a meta-analysis including medicated and unmedicated patients indicated that glutamine

is higher in patients than healthy controls (Marsman, van den Heuvel et al. 2013).

In contrast, a study comparing glutamate levels in the MPFC of older 12 patients with

schizophrenia (M=7, F=5) (medication status unknown; mean age 49.5 years) and their

unaffected twin with healthy controls (M=12, F=9) found that both patients and their unaffected

twins had decreased glutamate levels (Lutkenhoff, van Erp et al. 2010). Taken together, these

Page 72: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

58  

studies suggest that patients have elevated glutamate levels in the MPFC early in their illness but

then experience a decline in glutamate concentrations as they age. This age-related change in

glutamate levels in schizophrenia was shown by a recent meta-analysis describing a drop below

healthy controls after the age of 35. Since some of the studies included in this meta-analysis

include medicated patients, medication effects cannot be ruled out and therefore little is known

about glutamate changes over the course of the illness in unmedicated patients(Marsman, van

den Heuvel et al. 2013).

Dorsolateral Prefrontal Cortex (DLPFC)

Four studies assessed the DLPFC of antipsychotic-free/naïve patients compared with healthy

controls. A study using a 3T MRS found no difference in GLX levels in the DLPFC of

antipsychotic-free patients (M=11, F=5) (Kegeles, Mao et al. 2012). This finding is in line with

other studies that reported similar results in antipsychotic-naïve patients (Ohrmann, Siegmund et

al. 2005) (Stanley, Williamson et al. 1996) (Ohrmann, Siegmund et al. 2007), high-risk

individuals (Yoo, Yeon et al. 2009) and childhood-onset patients (Seese, O'Neill et al. 2011).

However, a study that assessed 23 chronic antipsychotic-free patients using 1.5 T MRS found

significantly greater combination of glutamate and GABA levels in patients than healthy controls

(Choe, Kim et al. 1994). Inconsistent results may be explained by the differences in acquisition

and analysis techniques employed in these studies. In contrast, a decrease in GLX levels were

noted when 20 chronic medicated patients (M=14, F=6) were compared with 20 healthy controls

(M=13, F=7) (Ohrmann, Siegmund et al. 2007), suggesting either an aging or chronicity

(including chronic exposure to antipsychotics) effect. As such, further studies using more

specific 1H MRS acquisition and quantification techniques are required.

Page 73: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

59  

Thalamus

Three different studies comparing antipsychotic-naïve patients with healthy controls reported

elevated glutamine levels in the thalamus of patients (Theberge, Bartha et al. 2002; Theberge,

Williamson et al. 2007; Aoyama, Theberge et al. 2011). The first study assessed 21

antipsychotic-naïve patients (M=14, F=7) and reported elevated glutamine levels in the left

thalamus (Theberge, Bartha et al. 2002). In contrast, a follow-up study conducted in 21 chronic

medicated patients with schizophrenia (M=20, F=1) detected reduced glutamine levels in the left

thalamus of patients (Theberge, Al-Semaan et al. 2003). This finding was replicated and

extended in a cohort of 16 antipsychotic-naïve patients (M=14, F=2), which included 12 patients

from the earlier study (Theberge, Williamson et al. 2007). Baseline glutamine levels in the left

thalamus remained elevated until 30 months of antipsychotic treatment (Theberge, Williamson et

al. 2007). Another study also found high glutamine levels in antipsychotic-naïve patients

(M=14, F=3), which decreased over 80 months (Aoyama, Theberge et al. 2011). These findings

may suggest an aging or treatment effect. In contrast, another study detected no difference in

glutamine/glutamate (Gln/Glu) ratio between 14 (M=12, F=2) minimally treated patients and 10

healthy controls (M=12, F=2) (Bustillo, Rowland et al. 2010). Medication effects could have

played a role in this inconsistent finding, since these patients had some, albeit minimal exposure

to antipsychotics, lasting less than three weeks. On the other hand, glutamate levels were found

to be decreased in the thalamus of 27 high-risk adolescents (M=14, F=13) (Stone, Day et al.

2009). However, recently Tandon et al. (2013) reported increased GLX in the thalamus of 23

high-risk adolescents (M=10, F=13) (Tandon, Bolo et al. 2013).

Page 74: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

60  

These findings support a dysfunctional glutamate-glutamine cycle in the brains of patients. It is

postulated that an abnormal conversion of glutamine to glutamate would result in high glutamine

and low glutamate levels, consistent with the majority of the above-mentioned findings.

Basal Ganglia (BG)

Two studies assessed the BG in antipsychotic-naïve/free patients compared to healthy controls.

A study looking at the precommissural dorsal caudate (PCDC) of 14 antipsychotic-free patients

detected elevated glutamate/creatine (Glu/Cr) ratio, suggesting elevated glutamate levels (de la

Fuente-Sandoval, Favila et al. 2009). Another study that assessed the PCDC of first episodes

antipsychotic-free (N=18) (M=10, F=8) and ultra-high risk for psychosis patients (N=18) (M=14,

F=4) detected elevated glutamate levels in both groups (de la Fuente-Sandoval, Leon-Ortiz et al.

2011). A longitudinal study of 24 antipsychotic-naïve patients (M=13, F=11) reported elevated

glutamate in the PCDC of patients (de la Fuente-Sandoval, Leon-Ortiz et al. 2013). This study

also showed that after 4 weeks of exposure to antipsychotics, glutamate levels in PCDC

decreased to similar levels as controls. The same group followed 19 ultra-high-risk subjects for

two years and showed that transition to psychosis was associated with higher glutamate levels in

the PCDC. Another study including 23 ultra-high-risk subjects (M=13, F=10) reported increases

in GLX in the caudate nucleus (Tandon, Bolo et al. 2013). When 40 high-risk adolescents were

assessed, a gender effect was noted, that is, elevated glutamate and GLX levels were detected in

the BG of only male adolescents (N=18)(Keshavan, Dick et al. 2009). Overall, these results

suggest that high glutamate and GLX levels in the BG precede the onset of schizophrenia,

predict the onset of the first episode of psychosis and remain elevated until patients are treated

with antipsychotics.

Page 75: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

61  

Anterior Cingulate

Three publications reported increased glutamine levels in the anterior cingulate of high-risk

adolescents (mean age 16) or antipsychotic-naïve first-episode patients (mean age 21) (Theberge,

Bartha et al. 2002; Tibbo, Hanstock et al. 2004; Stone, Day et al. 2009). In contrast, a study

assessing the anterior cingulate of 17 antipsychotic-naïve patients found no difference in

glutamate or glutamine levels (Aoyama, Theberge et al. 2011). Another group reported

increased Gln/Glu ratio but did not find elevated glutamine levels in the anterior cingulate of 14

minimally treated patients (M=12, F=2) (mean age 27) (Bustillo, Rowland et al. 2010). A study

assessing chronic medicated patients found decreased glutamate and glutamine levels in the

anterior cingulate of patients (Theberge, Williamson et al. 2007). Overall, these findings suggest

that the levels of glutamine and glutamate are abnormal in the anterior cingulate of high-risk

adolescents and first-episode antipsychotic-naïve patients. Such findings suggest that the

glutamate-glutamine cycle may be dysfunctional in anterior cingulate, resulting in excessive

glutamine levels that decline as the disease progresses. The reason for the decline in glutamine

level is still elusive.

Occipital, Parietal and Hippocampal Regions

Several imaging studies have focused on glutamatergic activity in the occipital, parietal and

temporal regions of antipsychotic-naïve or antipsychotic-free patients. A study looking at the

hippocampus of 10 male patients (7 antipsychotic-free and 3 antipsychotic medicated) found

elevated GLX/Cho levels in patients (Kegeles, Shungu et al. 2000). It is important to note that

although in this study GLX is a combination of glutamate, glutamine, and GABA, the

contribution of GABA and glutamine are almost negligible. A recent study assessing 27 patients

(M=20, F=7) (11 antipsychotic -naïve and 16 antipsychotic -free) found elevated GLX in the

Page 76: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

62  

hippocampus of patients compared with healthy controls (Kraguljac, White et al. 2013). In

contrast, no differences in glutamate or glutamine were found in studies that assessed the medial

temporal lobes of 11 antipsychotic-naïve patients (M=9, F=2) (Bartha, al-Semaan et al. 1999), or

glutamate in 14 twins discordant for schizophrenia. (Lutkenhoff, van Erp et al. 2010). It is

important to note that the first study used a higher MRS field strength ( 3T) and a larger sample

size compared to the second study. No difference in GLX levels were reported when assessing

the temporal gyri of 28 youths with childhood-onset schizophrenia (M=15, F=13) (Seese, O'Neill

et al. 2011). Also, one study found elevated GLX levels in the inferior parietal lobe of only high-

risk male adolescents (M=18, F=22) (Keshavan, Dick et al. 2009). In keeping with the

glutamatergic dysfunction hypothesis, one SPECT study found reduced NMDA binding in the

medial temporal lobe of antipsychotic-free patients, but not in antipsychotic medicated patients

compared to healthy controls, suggesting that antipsychotic medication may have a normalizing

effect (Pilowsky, Bressan et al. 2006). Taken together, these studies suggest increased

glutamatergic activity in the occipital and parietal region and in the medial temporal lobes of

antipsychotic-naïve or antipsychotic-free patients when compared with healthy controls.

Cerebellum

When assessing the cerebellum, two studies did not find a difference in glutamatergic levels and

one reported increased glutamate and GLX. The first negative study included first episode

antipsychotic-free patient and looked at the Glu/Cr ratio (de la Fuente-Sandoval, Favila et al.

2009). The second negative study included 18 antipsychotic-naïve patients (M=14, F=4) and 18

patients with ultra-high risk for psychosis (M=14, F=4) (de la Fuente-Sandoval, Leon-Ortiz et al.

2011). In contrast, a third study, which included only 24 antipsychotic-naïve first episode

patients (M=13, F=11), reported increased glutamate and GLX levels. Interestingly, glutamate

Page 77: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

63  

levels normalized after 4 weeks of antipsychotic treatment and GLX remained increased (de la

Fuente-Sandoval, Leon-Ortiz et al. 2013). Glutamine could not be quantified to understand its

contribution to the GLX signal.

Summary of Glutamatergic System Findings

The above sections evaluated studies that assessed glutamate, glutamine or GLX levels in the

brains of antipsychotic-free or antipsychotic-naïve patients with schizophrenia and patients at

high-risk of psychosis compared with healthy controls. Overall, our findings revealed the

following: elevated GLX levels in the MPFC, parietal, anterior cingulate, thalamus, basal

ganglia, and occipital region; elevated glutamine levels in the MPFC, thalamus, and anterior

cingulate; elevated glutamate levels in the basal ganglia; decreased glutamate levels in the

thalamus; and no differences or uncertainty in glutamatergic metabolites in the DLPFC, temporal

and cerebellum regions. These results support the notion that the pathophysiology of

schizophrenia may stem from dysfunctional glutamate and glutamine neurotransmission.

3.4.2 Dopaminergic System  

Several PET and SPECT imaging studies assessed dopamine levels and receptors in different

regions of the brains of antipsychotic-naïve and antipsychotic-free patients with schizophrenia.

This section will review the literature pertaining to abnormalities in the dopamine D1 and D2/3

receptors because these dopamine receptors are highly relevant to LTP modulation(Gurden,

Takita et al. 2000; Granado, Ortiz et al. 2008; Xu and Yao 2010) as well as, dopamine synthesis,

and release.

Page 78: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

64  

Dopamine D1 Receptor Studies

Four studies assessed dopamine D1 receptor binding in the prefrontal cortex of patients. One of

these studies using the PET radiotracer [11C]-NNC112 reported greater dopamine D1 receptor

binding in seven antipsychotic-naïve and nine antipsychotic-free patients (M=13, F=3) (Abi-

Dargham 2002). In a follow-up study, an elevation in dopamine D1 receptor binding was

detected in the prefrontal cortex of only antipsychotic-naïve patients (N=12) (M=5, F=7), and not

in antipsychotic-free patients (N=13) (M=11, F=2) when compared with healthy controls (N=24)

(Abi-Dargham, Xu et al. 2012). On the contrary, studies using the radiotracer [11C]-SCH23390

reported decreased (Okubo, Suhara et al. 1997) or no change (Karlsson, Farde et al. 2002) in the

dopamine D1 receptor binding in the prefrontal cortex of antipsychotic-naïve or antipsychotic-

free patients. Discrepancies between studies might be accounted for by differences in

demographic, clinical characteristics, previous antipsychotic exposure and PET radiotracers

([11C]-NNC112versus [11C]-SCH23390). Dopamine depletion studies in rodents showed

increased [11C]-NNC112 binding and decreased [11C]-SCH23390 binding (Guo, Hwang et al.

2003), indicating opposite sensitivity for dopamine levels. In addition, 5-HT2A binding was

shown to contribute to the cortical binding of both radiotracers in non-human primates (Ekelund,

Slifstein et al. 2007) and in humans for [11C]-NNC112 only (Catafau, Searle et al. 2010). As

such, these limitations should be taken into consideration when evaluating the aforementioned

studies. Regarding other brain regions, no difference in dopamine D1 binding was found in the

striatal, limbic and thalamic regions when patients were compared with healthy controls.(Okubo,

Suhara et al. 1997; Abi-Dargham 2002; Abi-Dargham, Xu et al. 2012). Taken together, these

results illustrate inconsistent differences in dopamine D1 receptor binding in the DLPFC and no

Page 79: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

65  

difference in D1 receptor binding in the striatum, limbic and thalamic regions of the

antipsychotic-naïve/antipsychotic-free patient.

Dopamine D2/3 Receptor Studies

Striatum and Substantia Nigra

i) Studies without Pharmacological Challenges

Fifteen publications assessing dopamine D2/3 receptor binding reported no difference between

patients and healthy controls in the striatum (Farde, Wiesel et al. 1990; Martinot, Paillere-

Martinot et al. 1991; Hietala, Syvalahti et al. 1994; Pilowsky, Costa et al. 1994; Breier, Su et al.

1997; Knable, Egan et al. 1997; Okubo, Suhara et al. 1997; Abi-Dargham, Gil et al. 1998; Abi-

Dargham, Rodenhiser et al. 2000; Yang, Yu et al. 2004; Talvik, Nordstrom et al. 2006; Graff-

Guerrero, Mizrahi et al. 2009; Kessler, Woodward et al. 2009; Kegeles, Slifstein et al. 2010;

Schmitt, Dresel et al. 2012). In contrast, one study reported reduced D2/3 binding in 23 acutely ill

patients (M=19; F=4) compared with healthy controls (Schmitt, Meisenzahl et al. 2009). In the

above-mentioned studies, patients had in general mild to moderate symptoms. The mean scores

on the positive and negative symptom scale (PANSS) positive subscale ranged from 18 to 21.9

and on the brief psychiatric rating scale (BPRS) ranged from 28.8 to 60. One exception was a

study in which patients had a mean PANSS positive subscale score of 30.92 (Schmitt, Dresel et

al. 2012). In contrast, the publication showing reduced D2/3 binding in patients included patients

with severe symptoms (PANNS positive score=21.9; PANSS general score = 60.4; BPRS score=

73.6) (Schmitt, Meisenzahl et al. 2009). As such, lower dopamine D2/3 receptor binding may be a

result of greater endogenous dopamine concentrations which compete with the D2/3 receptor

ligand, resulting in reduced D2/3 binding (Abi-Dargham 2004). Thus, given that there is an

Page 80: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

66  

inverse correlation between severity of psychosis and D2/3 binding potential (Tuppurainen,

Kuikka et al. 2003), the differences in severity of patients’ symptoms may account for the

differences detected in D2/3 binding among these studies.

On the contrary, four studies reported increased D2/3 receptors binding in the striatal region.

(Tune, Wong et al. 1993; Pearlson, Wong et al. 1995; Corripio, Perez et al. 2006; Corripio,

Escarti et al. 2011). Corripio et al. (2011) found that D2/3 striatal/frontal binding ratio was

increased in 25 first-episode antipsychotic-naïve patients (compared with 12 healthy controls and

12 patients with a psychotic disorder different to schizophrenia using 123 I-IBZM SPECT

(Corripio, Escarti et al. 2011). Increased D2/3 receptor binding was also reported in 11 patients

(M=6, F=5) compared with 18 healthy controls (M=10, F=8) using 123 I-IBZM SPECT (Corripio,

Perez et al. 2006). This finding is in line with an earlier study that reported increased D2/3

receptor striatal binding in 25 antipsychotic-naïve and antipsychotic-free chronic patients (M=17,

F=8) (Tune, Wong et al. 1993). Notwithstanding, a meta-analysis by Laruelle reported

approximately 12% elevation in D2/3 receptor binding in antipsychotic-free patients with

schizophrenia compared to healthy controls (Laruelle 1998).

Studies that assessed the caudate or putamen independently reported inconsistent findings that

seemed to be influenced by the radiotracer. For instance, when [11C]-raclopride was used to

separately assess the caudate and putamen of 18 antipsychotic-naïve patients (M=10, F=8),

elevation in D2/3 receptor binding was not detected (Farde, Wiesel et al. 1990). In contrast, two

other studies that used [11C]-methylspiperone reported greater D2/3 receptor binding in the

caudate nucleus of ten antipsychotic-naïve and antipsychotic-free patients (M=8, F=2) (Wong,

Wagner et al. 1986) and 22 antipsychotic-naïve patients (M=13, F=9) (Wong, Singer et al. 1997).

The radiotracer[11C]-methylspiperone has been shown to be less sensitive to endogenous

Page 81: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

67  

dopamine and binds to dopamine D4 receptors unlike [11C]-raclopride (Seeman, Guan et al.

1993; Ishiwata, Hayakawa et al. 1999). Therefore, considering that [11C]-raclopride and [11C]-

methylspiperone have different pharmacological properties, it may be difficult to compare results

obtained with these two radiotracers. Nevertheless, a study comparing antipsychotic-free (N=16)

(M=13, F=3) and antipsychotic-naïve patients (N=12) (M=5, F=7) detected no difference in D2/3

receptor binding in the striatum between the two groups of patients (Lomena, Catafau et al.

2004).

Lastly, three studies employing the dopamine D2/3 receptor high-affinity radiotracers

[123I]epidepride (SPECT) (Tuppurainen, Kuikka et al. 2006) and [18F]fallypride (PET) (Kessler,

Woodward et al. 2009) and the agonist [11C]-(+)-PHNO (Graff-Guerrero, Mizrahi et al. 2009)

assessed the substantia nigra and reported inconsistent results. The study employing [123I]

epidepride detected decreased D2/3 receptor binding, the study employing [18F] fallypride

detected greater D2/3 receptor binding and the study employing [11C]-(+)-PHNO did not find any

difference in antipsychotic-free patients with schizophrenia in comparison with controls. The

reason for the discrepancy in results is still elusive and could be due to differences in the

radiotracers employed and/or differences in the characteristics of the clinical population. Thus,

the majority of the present results reveal no difference in D2/3 receptor binding in the striatum,

however, a meta-analysis reported an elevation in D2 receptors (Laruelle 1998) and the results in

the substantia nigra require further exploration.

ii) Studies assessing dopamine synthesis capacity

In addition to changes in the D2/3 receptor, several PET studies performed on antipsychotic-naïve

and antipsychotic-free patients reported increased dopamine synthesis capacity in the striatum.

Page 82: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

68  

Three studies found greater dopamine synthesis in the caudate nucleus and putamen of patients.

(Hietala, Nagren et al. 1999; Lindstrom, Gefvert et al. 1999; Nozaki, Kato et al. 2009).

Specifically, Nozaki et al. found significantly greater dopamine synthesis in only the left caudate

of 14 antipsychotic-naïve and four antipsychotic-free patients who were 3-months antipsychotic-

free (M=10, F=3) (Nozaki, Kato et al. 2009). Another study revealed increased dopamine

synthesis in the striatum of eight male antipsychotic-free/antipsychotic-naïve patients (N= 3

antipsychotic-naïve and N= 5 antipsychotic-free for at least 6 months) (Kumakura, Cumming et

al. 2007). This difference was nearly twofold, the greatest biochemical difference reported to

date. In contrast, one study found no difference between six untreated male patients (2

antipsychotic-naïve) and seven male healthy controls (Dao-Castellana, Paillere-Martinot et al.

1997). Contradictory findings may be explained by age, type of schizophrenia and gender, as

patients in this study were generally younger (mean age 26 years), more catatonic compared with

the other studies (30+ years), and consisted exclusively of male patients. Comparable results

were also evident in the high-risk individuals (N=30) (M=17, F=13) (Howes, Bose et al. 2011)

and dopamine synthesis in these individuals determined their clinical outcome three years later.

The psychotic transition group (N=9) had greater dopamine synthesis in the striatum (effect

size=1.18) compared with the healthy control (N=29) (M=20, F=9) and the non-transition group

(N=15). This finding is consistent with another study that reported elevated dopamine levels in

the striatum of high-risk individuals (Fusar-Poli, Howes et al. 2011). One study reported

significantly higher dopamine synthesis in only the putamen, with no difference found in the

caudate (Hietala, Syvalahti et al. 1995). Overall the evidence shows that patients with

schizophrenia and individuals at high-risk for psychosis have increased dopamine release in the

striatum and may be related to the illness severity.

Page 83: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

69  

iii) Studies under dopamine release conditions

To study dopamine release, investigators used the amphetamine challenge method, as

amphetamine has been shown to be linked to psychosis (Ellinwood, Sudilovsky et al. 1973).

These studies reported elevated dopamine release in the striatum of antipsychotic-free patients

(Abi-Dargham, Gil et al. 1998) (Laruelle, Abi-Dargham et al. 1996) (Laruelle, Abi-Dargham et

al. 1999) and a sample of antipsychotic-naïve and antipsychotic-free patients (Breier, Su et al.

1997). Overall, these results illustrate increased dopamine release in patients with schizophrenia.

iv) Studies under dopamine depletion conditions

To investigate indirectly the dopamine levels at the synaptic cleft, a few studies have used alpha-

methyl-para-tyrosine (AMPT) to inhibit transiently the synthesis of dopamine. The first study

compared 18 antipsychotic-naïve and antipsychotic-free patients (M=11, F=7) to 18 healthy

controls (M=11, F=7) (Abi-Dargham, Rodenhiser et al. 2000). They demonstrated that patients

have greater amounts of dopamine occupying the D2/3 receptors in the striatum. In a follow-up

study, the same group assessed only six antipsychotic-naïve patients (M=2, F=4) with

schizophrenia and demonstrated a greater increase in dopamine D2/3 binding in the striatum,

suggesting greater dopamine levels at the synaptic cleft in the striatum compared to 8 healthy

controls (M=6, F=2) (Abi-Dargham, van de Giessen et al. 2009).

Furthermore, another study that used [11C]-raclopride after dopamine depletion with AMPT

found greater D2/3 receptor binding in the PCDC of 18 antipsychotic-naïve and antipsychotic-free

patients (M=13, F=5) (Kegeles, Slifstein et al. 2010). It is important to note that among the 18

patients assessed in this study, twelve were chronically ill and previously medicated.

Page 84: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

70  

In summary, based on the presented evidence, antipsychotic-naive and antipsychotic-free

patients with schizophrenia present increased dopamine synthesis capacity, release after

amphetamine challenge and baseline dopamine levels in the striatum after dopamine depletion.

Thalamus

Nine studies assessed the thalamus, one of these studies using [18F] fallypride PET found

increased binding in six antipsychotic-naïve and 12 antipsychotic-free (M=14, F=7) (Kegeles,

Slifstein et al. 2010). Another study using the same technique assessing 15 antipsychotic-naïve

patients (M=10, F=5), however, reported reduced D2/3 receptor binding, with the greatest

difference in the left medial dorsal nucleus and left pulvinar (Buchsbaum, Christian et al. 2006).

Several other studies also reported decreased D2/3 receptor binding in the thalamus (Kessler,

Woodward et al. 2009) (Talvik, Nordstrom et al. 2006) (Abi-Dargham, van de Giessen et al.

2009) (Kegeles, Abi-Dargham et al. 2010). Talvik et al. demonstrated decreased D2/3 receptor

binding in the right medial thalamus (Talvik, Nordstrom et al. 2003); Yasuno et al., in the central

medial (Yasuno, Suhara et al. 2004) and posterior sub-region of the thalamus; and Kessler et al,

in the left medial thalamus (Kessler, Woodward et al. 2009). A later study by Talvik and

colleagues confirmed their earlier findings by demonstrating lower D2/3 receptor binding in the

right thalamus of patients compared with healthy controls, but they detected no difference in the

left thalamus (Talvik, Nordstrom et al. 2006). In contrast, four studies found no overall

difference in D2/3 receptor binding in the thalamus (Graff-Guerrero, Mizrahi et al. 2009)

(Tuppurainen, Kuikka et al. 2006) (Suhara, Okubo et al. 2002) (Glenthoj, Mackeprang et al.

2006). One assessed only 11 antipsychotic-naïve male patients using [11C] FLB 457 PET

(Suhara, Okubo et al. 2002)and the other assessed 25 antipsychotic-naïve patients (M=2, F=4)

using 123I-epidepride SPECT, the largest sample to date (Glenthoj, Mackeprang et al. 2006).

Page 85: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

71  

Although most of the evidence suggests reduced D2/3 receptor binding in the thalamus of patients

with schizophrenia, the only study that performed partial volume correction, found increased

D2/3 binding in this region (Kegeles, Slifstein et al. 2010). As such, inconsistency in findings

for the thalamus warrants further studies.

Temporal, Limbic and Frontal Regions

Studies comparing D2/3 receptor binding between patients and healthy controls found patients had

equal amounts of D2/3 receptors in the limbic, sensorimotor, temporal, and frontal regions

(Talvik, Nordstrom et al. 2003). In contrast, a study specifically assessing the amygdala,

cingulate gyrus, and temporal cortices reported reduced D2/3 receptor binding in these regions

(Buchsbaum, Christian et al. 2006). Furthermore, a study that assessed the anterior cingulate of

11 antipsychotic-naïve male patients reported a 12.5 % reduction in D2/3 binding in patients

(Suhara, Okubo et al. 2002). As such, discrepancies may be attributed to sample and sex

differences.

A study that assessed dopaminergic synthesis capacity in the limbic and temporal regions

reported elevated dopamine levels (Kumakura, Cumming et al. 2007). In this study, a 50%

increase in F-DOPA clearance was detected in the amygdala of eight male patients (Kumakura,

Cumming et al. 2007). Greater dopamine synthesis capacity was also detected in the MPFC of 12

patients (M=12, F=2) (Lindstrom, Gefvert et al. 1999). Thus, although further investigations are

needed, preliminary results demonstrate reduced D2/3 receptor binding and potentially elevated

dopaminergic synthesis capacity in temporal and limbic regions of patients with schizophrenia

compared with healthy controls.

Page 86: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

72  

In conclusion, evidence revealed no difference in D2/3 receptor binding, increased dopamine

synthesis capacity, increase dopamine release, increase dopamine occupying the D2/3 receptors in

the striatum, reduced D2/3 receptor binding in the thalamus and potentially increased dopamine

synthesis capacity in the temporal and limbic regions. Inconsistent results were reported in the

anterior cingulate and substantia nigra. The findings pertaining to D1 receptor binding were

inconsistent and further studies are needed to clarify inconclusive results.

3.4.3 GABAergic System  

Presently, only one study has compared GABA levels independently between antipsychotic-free

patients and healthy controls. The study reported elevated GABA concentrations in MPC of 32

patients (M=11, F=5) (Kegeles, Mao et al. 2012). This study, albeit preliminary, suggests the

involvement of the GABAergic anomalies in schizophrenia. MRS studies assessing medicated

patients compared with healthy controls reported increased GABA/Cr in the medial frontal and

parietooccipital regions (Benes, Todtenkopf et al. 2000), reduced GABA/Cr concentrations in the

left basal ganglia but no difference in the frontal or occipital-parietal regions of early-stage

patients with schizophrenia (Goto, Yoshimura et al. 2009), lower GABA/Cr levels in the

occipital region of patients (Yoon, Maddock et al. 2010), but no difference from the medial

prefrontal and left basal ganglia (Tayoshi, Nakataki et al. 2010), and increased GABA/Cr in

medial frontal and parietooccipital regions (Ongur, Prescot et al. 2010). Furthermore, as

suggested by a recent study, GABA levels were elevated in younger patients compared with

older patients with schizophrenia, suggesting an association between the stage of illness and

GABA levels (Rowland, Kontson et al. 2013).

Page 87: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

73  

3.5 Discussion  

A number of studies revealed abnormalities in the glutamatergic system in antipsychotic-naïve or

antipsychotic-free patients with schizophrenia. In brief, studies focusing on the glutamatergic

system demonstrated that among individuals at high-risk for psychosis or during the first episode

of schizophrenia, GLX, glutamine and glutamate levels are elevated in most regions of the brain.

In contrast, studies looking at patients who were older than 35 years of age or labeled as chronic

showed low GLX levels, which may be a medication effect. In addition, one study reported

decreased NMDA binding in the hippocampus of antipsychotic-free patients. (Pilowsky, Bressan

et al. 2006).

Studies focusing on the dopaminergic system demonstrated a decrease in the dopamine D2/3

receptor binding in the thalamus, an increase in dopamine synthesis capacity in the striatum,

enhanced dopamine release and increased dopamine at baseline. Lastly, one study reported

elevation of GABA levels in MPFC of antipsychotic-free patients. Below we describe a model

that could explain these various findings.

It has been proposed that at the onset of the disorder, hyperfunctioning NMDA receptors on

GABAergic interneurons lead to excessive release of glutamate from pyramidal neurons (Olney

and Farber 1995). Excessive glutamate levels lead to excitotoxicity-mediated neuronal death

(Rothstein 1995). As a precursor for glutamine, some of the glutamate is converted to glutamine

within astrocytes (Daikhin and Yudkoff 2000) and result in high levels glutamine as

demonstrated by in vivo imaging studies. Elevated glutamate levels may also overstimulate

dopaminergic neurons resulting in high levels of dopamine, as suggested by striatal studies and

yet to be confirmed in the cortex (Exposito, Del Arco et al. 1999) (Segovia, Del Arco et al.

Page 88: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

74  

1997). Further, given that glutamate is a precursor to GABA and that the current literature

suggests high levels of GABA early in the course of the illness, our model proposes that high

levels of GABA are driven by high levels of glutamate and that glutamate-to-GABA conversion

is intact. Another possible scenario is that excessive glutamatergic activity stimulates

interneurons to release more GABA. Finally, elevated GABA levels could be independent of

high glutamate levels as they could reflect abnormal GABA re-uptake by transporters. This

finding is supported by postmortem studies that reported reduced presynaptic GAT1 transporters

in patients lead to increased GABAergic transmission at the synapse due to diminished reuptake

(Menzies, Ooi et al. 2007). As a compensatory measure, post-synaptic GABAA receptors are up-

regulated, followed by the down-regulation of GAD67 and parvalbumin-positive interneurons

(Benes, Todtenkopf et al. 2000) (Lewis and Moghaddam 2006) (Benes, Vincent et al. 1992)

(Lisman, Coyle et al. 2008), eventually leading to reduced GABAergic activity. Irrespective of

the underlying mechanism, high levels of GABA could be contributing to the relative stability of

the excitation-inhibition system.

Dopamine effect on LTP facilitation depends on the concentration and activated sub-receptors.

Dopaminergic receptors are in close proximity to glutamatergic receptors and appear to have a

major role in synaptic modulation, by affecting the phosphorylation of glutamatergic NMDA and

AMPA receptors (Chase and Oh 2000). The relationship between dopamine levels and LTP

facilitation is reported as an inverted “U” shape dose response curve (Seamans and Yang 2004;

Monte-Silva, Liebetanz et al. 2010). Low levels of dopamine preferentially activate presynaptic

D2/3 receptors, which reduces the release of dopamine and essentially LTP facilitation. On the

other hand, high levels equally activate postsynaptic D1 and D2/3 receptors, counteracting each

other’s effect. However, at optimal dopamine levels, D1 postsynaptic receptors are stimulated

Page 89: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

75  

and LTP is facilitated. That is, insufficient or excessive dopamine levels impair LTP facilitation

and optimal facilitation is achieved at moderate concentrations. Thus, high levels of dopamine in

the striatum and potentially in the cortex of patients with schizophrenia likely result in impaired

LTP because excessive dopamine may lead to the up-regulation of the D2/3 receptors (Wang, Pei

et al. 2010) or the functional sensitisation of the D2/3 receptors (Seeman, Weinshenker et al.

2005). Presynaptic D2/3 receptors on interneurons enable LTP facilitation by suppressing

GABAergic inhibition on pyramidal neurons (Xu and Yao 2010). Low levels of dopamine in the

cortex can also result in impaired LTP. When D2/3 receptors are hyperfunctioning,

understimulated pyramidal neurons are not sufficiently suppressed, thereby leading to excessive

excitation. When D1 receptors are stimulated, LTP activity is facilitated and resting

glutamatergic neurons increase their production of neurotransmitters and receptors by

stimulating the CAMP/ protein-kinase-A (PKA) pathway (Gurden, Takita et al. 2000; Matsuda,

Marzo et al. 2006). As such, dopamine regulates both glutamatergic excitatory and GABAergic

inhibitory circuits (Wigstrom and Gustafsson 1983) and the balanced concentration of dopamine

and interplay between excitation and inhibition facilitates the induction of LTP (Homayoun and

Moghaddam 2007). Several studies have demonstrated in vivo evidence for impaired LTP in

patients with schizophrenia. Using transcranial direct current stimulation, Hasan et al (2011)

showed that multi-episode patients had reduced LTP-like plasticity compared to healthy controls

and recent-onset patients. (Hasan, Nitsche et al. 2011). LTP impairments have also been

revealed in the motor cortex and dorsolateral prefrontal cortex of patients using paired

associative stimulation.(Frantseva, Fitzgerald et al. 2008; Rajji 2014) LTP plasticity was also

shown to be impaired in both medicated and unmedicated patients using transcranial magnetic

stimulation (Fitzgerald, Brown et al. 2004; Daskalakis, Christensen et al. 2008). Lastly,

Page 90: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

76  

impaired LTP has been demonstrated in the visual cortex using high-frequency stimulation

(Cavus, Reinhart et al. 2012).

3.6 Limitations  

First, discrepancies in findings may be accounted for by the difference in patient population,

such as sex. Not all the studies included in this review assessed antipsychotic-naïve patients, as

some assessed antipsychotic-free; therefore, the effects of antipsychotics cannot be completely

discounted, as studies in animals suggest that even minimal exposure to antipsychotics can

modulate glutamatergic activity (Lopez-Gil, Babot et al. 2007). Second, the interpretations of

GABA and GLX measurements present another limitation. The validity of early 1H-MRS studies

may be less compared with recent studies, which employed better 1H-MRS technology including

acquisition and quantification that allows the separation of overlapping resonance signals arising

from glutamate, glutamine, and GABA. Third, MRS is capable of detecting the total

concentration of a neurochemical and currently cannot distinguish between intracellular and

extracellular glutamate, glutamine or GABA (Stagg, Bachtiar et al. 2011). However, one study

showed a relationship between MRS-derived measures of GABA and glutamate and behavior,

suggesting that what is measured by MRS is associated with neurotransmission (Stagg, Bachtiar

et al. 2011). Fourth, discrepancies among PET studies may have resulted from the differences in

the selectivity and affinity of the radiotracers used. For instance, [11C]-N-methylspiperone

(NMSP) binds to D2/3 receptors and 5-HT2 serotonin receptors in vivo and has an affinity for

dopamine D4 receptors in vitro (Seeman, Guan et al. 1993). The increase in D2/3 binding

detected with this tracer may include the binding of serotonin receptors, which are not detected

using other ligands (Frost, Smith et al. 1987). Also, not all radioligands have the same affinity

Page 91: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

77  

for D2/3 receptors, presenting a major limitation when comparing one study to another. Lastly,

since the sample size in most of the studies was small and heterogeneous, larger homogenous

samples are needed to verify such findings. Therefore, future studies using better 1H-MRS

technology, more selective PET ligands and large homogenous samples are necessary in order to

verify these observations.

3.7 Conclusion  

LTP is a neuronal mechanism mediating learning and memory. This review presented evidence

highlighting abnormal glutamatergic, dopaminergic and GABAergic systems in antipsychotic-

naïve and antipsychotic-free patients with schizophrenia. As these systems are essential for LTP

facilitation, cognitive impairments associated with schizophrenia may be explained by impaired

LTP formation. This proposed model does not negate that these same systems could be

mediating other dimensions of schizophrenia, e.g. positive and negative symptoms, and not

necessarily through LTP impairments. Lastly, it is important to note that medicated patients also

experience cognitive deficits and that understanding the neurochemical abnormalities underlying

these deficits among these patients could lead to better remediation interventions.

Page 92: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

78  

Figure 3. Neurochemical Model. Hypoactive NMDA receptor causes downstream hyper

glutamatergic activity, which leads to the conversion of glutamate to glutamine by the enzyme

glutaminase, as such increasing glutamine levels (Lisman, Coyle et al. 2008). Glutamine is a

molecule which cannot exert neurotoxic effects (Rowland, Bustillo et al. 2005). To balance out

excitatory activity with inhibitory activity, glutamate is converted into GABA, the main

inhibitory neurotransmitter. Extracellular dopamine is regulated by NMDA receptors located on

the dopaminergic neuron. Hypoactive NMDA receptors on cortico-brainstem pathway reduce

inhibition of tonic dopamine neurons of the mesocortical pathway, which leads to increase in DA

release.(Javitt 2007; Lisman, Coyle et al. 2008). To attenuate the dopamine release, D2/3 receptor

density is upregulated.

Page 93: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

79  

Figure 4. Neurochemicals and Receptors in Patients with Schizophrenia Relative to

Healthy Controls in Different Brain Regions. * Evidence is based on one study

 

 

Page 94: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

80  

Chapter 4.

4. Pharmacological Modulation of Long-term Potentiation in the Dorsolateral Prefrontal Cortex

Bahar Salavati, Zafiris J. Daskalakis, Reza Zomorrodi, Daniel M. Blumberger, Robert Chen,Bruce G. Pollock, Tarek K. Rajji,

Page 95: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

81  

4.1 Abstract  

Synaptic long-term potentiation (LTP) depends on glutamatergic neurotransmission and is

modulated by cholinergic, dopaminergic, and GABAergic inputs. Paired Associative Stimulation

(PAS) is a neurostimulation paradigm that assesses LTP-like activity (PAS-induced LTP) in the

dorsolateral prefrontal cortex (DLPFC) in vivo. We conducted a hypothesis-driven

pharmacological study to assess the role of cholinergic, dopaminergic, GABAergic, and

glutamatergic neurotransmission on PAS-induced LTP in the DLPFC in vivo. We hypothesized

that increasing dopaminergic tone with L-DOPA and cholinergic tone with rivastigmine will

enhance PAS-induced LTP while increasing GABAergic tone with baclofen and inhibiting

glutamatergic neurotransmission with dextromethorphan will reduce it. In this randomized

controlled, double-blind cross-over within-subject study, 12 healthy participants received five

sessions of PAS to the DLPFC in a random order, each preceded by the administration of placebo

or one of the four active drugs. As predicted, L-DOPA and rivastigmine enhanced PAS-induced

LTP in the DLPFC and dextromethorphan inhibited it compared to placebo. In contrast, baclofen

did not have a significant effect. This study demonstrates for the first time the role of the

dopaminergic, cholinergic, and glutamatergic neurotransmission in DLPFC neuroplasticity. It also

provides a novel approach to study DLPFC neuroplasticity and its modulation in patients with

DLPFC dysfunction.

Page 96: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

82  

4.2 Introduction  

Neuroplasticity refers to the ability of the brain to change and adapt in response to experiences

(Pascual-Leone, Amedi et al. 2005). Long-term potentiation (LTP) is a synaptic form of

neuroplasticity that is considered to be fundamental for learning and memory (Collingridge and

Bliss 1995). The dorsolateral prefrontal cortex (DLPFC) is critical to several cognitive functions

including learning and memory (Fuster 2008). Further, abnormalities in the DLPFC structure and

function are observed in various brain disorders including Alzheimer’s disease (Kaufman, Pratt et

al. 2010), depression (Koenigs and Grafman 2009), and schizophrenia (Callicott, Bertolino et al.

2000). Thus, studying LTP and its modulation in the DLPFC could advance knowledge of DLPFC

function and lead to the development of effective cognitive interventions for these brain disorders.

Paired associative stimulation (PAS) is a neurostimulation paradigm that induces in vivo LTP-like

activity in the human cortex (Stefan, Kunesch et al. 2000; Rajji, Sun et al. 2013). PAS simulates a

spike-timing dependent plasticity protocol, resulting in the potentiation of cortical output in

response to single-pulse transcranial magnetic stimulation (TMS). Using well-established methods

of combining TMS with electroencephalography (EEG), PAS has been shown to result in LTP-

like activity in the human DLPFC as captured by the potentiation of TMS-induced cortical evoked

activity over the DLPFC (Rajji, Sun et al. 2013). PAS-induced LTP has also been shown to be

impaired in several brain disorders, e.g. Alzheimer’s disease (Battaglia, Wang et al. 2007),

depression (Player, Taylor et al. 2013), and schizophrenia (Frantseva, Fitzgerald et al. 2008).

Synaptic LTP depends on glutamatergic neurotransmission (Luscher and Malenka 2012)  and is

modulated by cholinergic (Picciotto, Higley et al. 2012), dopaminergic (Tritsch and Sabatini 2012)

and GABAergic (Nugent and Kauer 2008) neurotransmission. A few studies assessed the

Page 97: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

83  

pharmacological modulation of PAS in humans, with PAS applied to the motor cortex. In one

study, baclofen (50 mg), which increases GABAergic tone, decreased PAS-induced LTP

(McDonnell, Orekhov et al. 2007). In a second study, dextromethorphan (150 mg), which blocks

NMDA glutamatergic receptors, decreased PAS-induced LTP (Stefan, Kunesch et al. 2002). In a

third study, L-DOPA (100 mg), which increases dopaminergic tone, increased LTP (Kuo, Paulus

et al. 2008; Thirugnanasambandam, Grundey et al. 2011). In a fourth study, rivastigmine (3 mg),

which increases cholinergic tone, enhanced PAS-induced LTP (Kuo, Grosch et al. 2007).

To date, no study has assessed the pharmacological modulation of PAS-induced plasticity in the

DLPFC. Further, no study assessed all of these drugs in the same participants and not all of the

above studies were double-blind or randomized. Thus, we conducted the first pharmacological

modulation study of DLPFC plasticity in vivo using PAS-EEG and a double-blind randomized

controlled within-subject design that included all of the above four drugs. We hypothesized that,

compared to placebo, L-DOPA and rivastigmine would increase PAS-induced LTP, while

baclofen and dextromethorphan would decrease it.

4.3 Participants and Methods

4.3.1 Overall Study Design  

This was a double-blind randomized controlled within-subject crossover study. Each participant

received five sessions of PAS in a random order, each preceded by the administration of placebo

or one of the four active drugs, and separated by at least one week to minimize drug interference

and carryover effects. The time of each drug administration before PAS was based on the time of

its plasma peak level, i.e. 1 hour for baclofen, 3 hours for dextromethorphan, 1 hour for L-DOPA,

Page 98: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

84  

and 2 hours for rivastigmine. Placebo was randomly given to each participant at 1, 2 or 3 hours

prior to the administration of PAS. The doses of the drugs (Baclofen 50 mg, dextromethorphan

150 mg, L-DOPA 100 mg, and rivastigmine 3 mg) were based on the previous studies

demonstrating effects at similar doses on PAS-induced LTP in the motor cortex. Across the

participants, the sequences of drug administration were counterbalanced. The administrator of the

experiments and participants were blind to drug assignment. All data processing and analyses were

also completed under blind condition.

4.3.2 Participants  

Participants were females and males; aged 18 to 55 years because cortical neuroplasticity as

measured using neurophysiologic methods starts to decline around age 50 (Muller-Dahlhaus,

Orekhov et al. 2008); non-smokers, not diagnosed with any neurologic or psychiatric disorder;

right-handed to ensure homogeneity in hemisphere dominance; had no contraindication to TMS

(Rossi, Hallett et al. 2009) or MRI; and provided written informed consent. The study was

approved by the Centre for Addiction and Mental Health Research Ethics Board.

4.3.3 Locating and Co-Registering the DLPFC  

The left DLPFC is located at the junction of the middle and anterior third of the middle frontal

gyrus (Talairach Coordinates (x, y, z) = (-50, 30, 36)), which corresponds to the posterior region

of Brodmann area 9 and the superior section of area 46. Following previously published methods

localization of the DLPFC was achieved through neuronavigation techniques using the MINIBIRD

system (Ascension Technologies) and each participant’s T1- weighted MRI with fiducial markers

placed on the nasion, inion, left and right tragus and vertex (Rajji, Sun et al. 2013).

Page 99: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

85  

4.3.4 Electromyography (EMG) Recordings from the Motor Cortex and TMS-EEG in the DLPFC  

Following established methods, we used a 7-cm figure-eight coil and a Magstim 200 stimulator

(The Magstim Company, Whitland, UK) to determine the participant’s resting motor threshold

(RMT) (defined as the minimum stimulus intensity that elicits a motor evoked potential (MEP) of

more than 50mV in 5 of 10 trials) (Rajji, Sun et al. 2013). MEP activity was measured through

EMG recordings from the right abductor pollicis brevis muscle. The RMT was then adjusted to a

suprathreshold intensity with mean peak-to-peak MEP amplitude of ~1 mV over 20 trials, which

corresponded to approximately 120% of the RMT. This intensity referred to as SI1mV was then

used to deliver 100 single TMS pulses at 0.1 Hz to the scalp over the DLPFC throughout the PAS

experiment. We acquired EEG through a 64-channel Synamps 2 (Neuroscan Inc.) EEG

system. All electrodes (Ag/AgCl ring electrodes) impedance were ≤5 kΩ and referenced to an

electrode positioned posterior to Cz electrode. In addition, EEG signals were recorded using DC

and a low pass filter, anti-aliasing filter, of 200 Hz, at 20 kHz sampling rate, which was shown to

avoid saturation of amplifiers and minimize TMS-related artifact (Figure 4).

Page 100: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

86  

Figure 5. Experimental design. This image illustrates one session of the PAS protocol

Page 101: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

87  

4.3.5 PAS to the DLFPC  

PAS consisted of repetitive simultaneous pairing of peripheral nerve stimulation (PNS) to the

median nerve followed 25 ms later by a transracial magnetic stimulation (TMS) pulse to the scalp

over the DLPFC. There were 180 paired pulses delivered over a 30 min period at 0.1 Hz. This

paradigm has been shown to induce LTP-like activity over the DLPFC in healthy individuals

(Rajji, Sun et al. 2013). PNS was delivered at 300% of the sensory threshold, defined as the

minimum intensity that the participant perceives sensation. Given that attention has been shown

to affect the level of potentiation following PAS (Stefan, Wycislo et al. 2004), participants were

asked to maintain attention by looking at their wrist and continuously counting the total number

of PAS pulses delivered. Before PAS, 100 single pulses TMS was delivered to the left DLPFC

while recording EEG using Scan 4.1 (Compumedics, USA) to generate cortical evoked activity

(CEA) pre-PAS. Then the drug was given and at 1-3 hours post-drug administration PAS was

delivered. The time interval between drug administration and PAS was equal to the time of plasma

peak for each drug. After PAS, 100 single pulse TMS combined with EEG were delivered to the

left DLPFC to generate CEA at time 0, 15, 30, and 60 min post-PAS.

4.3.6 EEG Data Processing  

Using MATLAB (The MathWorks Inc. Natick, MA, USA), raw EEG recordings were first

downsampled from 20 to 1 kHz and then segmented from -1000 ms to + 2000 ms relative to the

onset of the TMS pulse. Epochs were then baseline corrected -500 ms to -110 ms with respect to

the pre-stimulus interval. To minimize TMS artifacts, the data was re-segmented from 25ms to

2000ms. Thereafter, the EEG data was digitally filtered using a second-order, Butterworth, zero-

phase shift 1-55 Hz band pass filter (24dB/Oct). EEG recordings from all five time points of the

Page 102: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

88  

study (pre and at time 0, 15, 30, and 60 min post-PAS) were then concatenated in order to apply

the same objective criteria for de-noising the data (Rajji, 2014). Then, an electrodes-by-trials

matrix of ones and zeros was created and assigned a value of zero if an epoch had the following:

1) amplitude larger than +/- 150 μV; 2) power spectrum that violated 1/f power law; or 3) standard

deviation 3 times larger than the average of all trials. An electrode was rejected if its corresponding

row had more than 60% of columns (trials) coded as zeros. An epoch was removed if its

corresponding column had more than 20% of rows (electrodes) coded as zeros. Next, independent

component analysis (ICA) (EEGLAB toolbox; Infomax algorithm) was performed to remove

remaining artifacts such as eye blink traces, muscle artifacts and other noise from the EEG data.

Finally, the data was re-referenced to the average, generating a clean signal devoid of noise for

each participant.

At each time point before and after PAS, CEA was calculated as the mean of the 100 rectified

areas under the curve (AUC) generated from the 100 TMS pulses and using the electrode under

the site of stimulation, i.e. over the left DLPFC. Each AUC was calculated using the interval

between 50 and 275 ms post-TMS pulse. The first interval cutoff (i.e. 50 ms) was chosen as it

represents the earliest artifact-free data, while the second interval cutoff (i.e., 275 ms) was chosen

because it represents the end of the window during which potentiation of CEA is still significant

post-PAS (Rajji, Sun et al. 2013).

4.3.7 Statistical Analysis  

To measure LTP-like activity over the DLPFC, mean CEA at each time point after PAS was

divided by mean CEA before PAS. This ratio represented potentiation of CEA at each of the time

Page 103: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

89  

points after PAS. Since the timing of maximum potentiation post-PAS varies among participants,

the maximum CEA ratio at any of these time points was selected for each participant. This

maximum CEA ratio for each drug condition represented PAS-induced LTP for each participant

under the influence of each drug.

All data was first checked for normality using the Kolmogorov–Smirnov test. To test our primary

hypotheses and assess whether there is a drug effect on PAS-induced LTP, a repeated measures

analysis of variance (rmANOVA) was conducted with the drug condition (placebo vs. baclofen

vs. dextromethorphan vs. L-DOPA vs. rivastigmine) as the repeated measure. This was followed

by a series of posthoc analyses, with Bonferroni correction, to compare PAS-induced LTP under

each of the active drug conditions to PAS-induced LTP under placebo.

To assess whether there is PAS-induced LTP under each drug condition, we ran a series of one-

sample t-tests to compare PAS-induced LTP under each drug condition to a test value of 1

representing no LTP. Bonferroni correction was also applied in this analysis.

4.4 Results  

Thirteen participants (4 females and 9 males) took part in this study. All participants completed all

sessions except for one participant who dropped out after only one of the five sessions and data

for this participant was not used. Participants’ demographics and basic neurophysiologic

characteristics are described in Table 3.

Page 104: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

90  

Table 3. Demographic and Basic Neurophysiologic Characteristics

Characteristic Mean (SD)

Age (years) 31.3 (10.5)

Gender (Female, %) 4 (25)

Education (years) 15.3 (2.3)

Resting Motor Threshold 49.0 (4.9)

SI1mV 61.5 (8.3)

Peripheral Nerve Stimulation Count*

Placebo

Baclofen

Dextromethorphan

L-DOPA

Rivastigmine

175.5 (9.6)

171.6 (11.2)

183.3 (22.3)

176.7 (6.0)

174.3(7.1)

*There was no significant drug effect on peripheral nerve stimulation count (F (1.65, 18.15) =

1.28, p = 0.30) and under each drug condition, the count did not differ significantly from the actual

number of peripheral nerve stimulations (i.e. 180) (p’s > 0.05).

SI1mV = Stimulation intensity with a mean peak-to-peak motor evoked potential amplitude of 1

mV over 20 trials; SD = standard deviation.

Page 105: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

91  

All outcome data was normally distributed. RmANOVA revealed that there was a drug effect on

PAS-induced LTP as measured from the electrode over the site of stimulation (F (4, 44) = 10.08,

p <0.001). Further, posthoc pairwise comparisons against placebo, with Bonferroni correction,

revealed that LTP was increased after the intake of L-DOPA (p =0.004) or rivastigmine (p =0.009),

and decreased after the intake of dextromethorphan (p =0.007). In contrast, there was no change

after the intake of baclofen (p =0.54) (Figures 6 and 7).

Page 106: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

92  

Figure 6. Effects of Drugs on DLPFC Neuroplasticity. Figure 6A: This figure illustrates the

effects of drugs (L-DOPA, baclofen, rivastigmine, dextromethorphan, and placebo on PAS-

induced LTP-like activity (PAS-induced LTP) expressed as a ratio of post-PAS CEA / Pre-PAS

CEA over the DLPFC (Ratio). The p-values refer to the comparisons between each active drug

and placebo. Error bars: +/-1 SE. Figure 6B: These topographical plots illustrate the effects of

drugs (L-DOPA, baclofen, rivastigmine, dextromethorphan, and placebo) on PAS-induced LTP-

like activity in the DLPFC. The value of 1 represents no LTP-like activity.

Page 107: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

93  

Figure 7. Event-Related Potentials (ERPs) Across All Conditions. This figure illustrates the

ERPs as captured from the electrode over the DLPFC before drug administration and following

placebo or one of the four active drugs. Each ERP represents the average across all participants,

and “Pre” represents the average across all time points of Pre-PAS conditions.

Page 108: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

94  

Finally, compared to a test value of 1 which represents no LTP, participants experienced PAS-

induced LTP under placebo, L-DOPA, and rivastigmine, but not under baclofen or

dextromethorphan condition, after Bonferroni corrections (Table 4).

Page 109: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

95  

Table 4: Potentiation over the Dorsolateral Prefrontal Cortex under each Drug Condition

Drug PAS-induced LTP

(SD)

t (df) p-value

Placebo 1.25 (0.14) 4.31 (11) 0.001

Baclofen 1.15 (0.52) 1.0 (11)

0.34

Dextromethorphan 0.95 (0.19)

-0.95 (11)

0.36

L-DOPA 1.64 (0.37) 6.0 (11) <0.001

Rivastigmine 1.63 (0.40)

5.36 (11)

<0.001

PAS-induced LTP = Paired Associative Stimulation (PAS)-induced Long-Term Potentiation

(LTP)-like activity as measured by Cortical Evoked Activity (CEA) post-drug/CEA pre-drug at

maximum LTP-like activity; SD = standard deviation; t(df) = one sample t-test (degrees of

freedom) with a test value of 1 which is equivalent of no LTP.

 

Page 110: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

96  

4.5 Discussion  

This study confirmed our hypotheses that L-DOPA and rivastigmine enhance neuroplasticity in

the DLPFC in vivo and that dextromethorphan suppresses it. It did not confirm the fourth

hypothesis that baclofen reduces DLPFC neuroplasticity compared to placebo although under

baclofen exposure participants did not experience significant DLPFC neuroplasticity compared to

baseline. To our knowledge, this is the first study to assess the pharmacological modulation of

DLPFC neuroplasticity in humans.

Our finding that L-DOPA enhanced DLPFC neuroplasticity is consistent with animal studies that

reported enhanced LTP in the prefrontal cortex following dopaminergic intervention (Otani 2003).

Dopaminergic neurons project from the ventral tegmental area to the prefrontal cortex. These

projections activate dopamine D1 receptors on prefrontal pyramidal neurons and facilitate NMDA

receptor activity (Seamans, Durstewitz et al. 2001; Wang and O'Donnell 2001). L-DOPA is a

dopamine precursor that is converted to dopamine, which activates these dopaminergic receptors

(Okereke 2002), resulting in enhanced LTP.

Our finding is also consistent with human studies that assessed dopaminergic modulation of PAS-

induced LTP in the motor cortex (Kuo, Paulus et al. 2008; Nitsche, Kuo et al. 2009; Korchounov

and Ziemann 2011; Thirugnanasambandam, Grundey et al. 2011; Kishore, Popa et al. 2014). In

the motor cortex, L-DOPA increases the magnitude and duration of PAS-induced LTP (Kuo,

Paulus et al. 2008). This effect was not affected by sulpiride (Ross, Heinlein et al. 2006; Nitsche,

Kuo et al. 2009), a D2 receptor antagonist, underlining the role of D1 receptors in L-DOPA

enhancement of PAS-induced LTP. Of note, ropinirole, a dopamine D3 receptor agonist also

Page 111: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

97  

enhanced PAS-induced LTP following an inverted U-shaped dose-response curve (Monte-Silva,

Kuo et al. 2009).

We also found that rivastigmine enhances DLPFC neuroplasticity. Rivastigmine increases

synaptic levels of acetylcholine by inhibiting acetylcholine esterase, allowing for longer

cholinergic receptors activation (Polinsky 1998). In animal and slice studies cholinergic activity

plays a pivotal role in LTP facilitation in the prefrontal cortex (Vidal and Changeux 1993). It has

been shown that cholinergic agonists enhance LTP (Blitzer, Gil et al. 1990; Brocher, Artola et al.

1992). This effect on LTP is thought to be mediated by a transient reduction in inhibitory

transmission, which in turn, lowers the threshold for NMDA receptor-dependent LTP (Metherate

and Ashe 1993; Letzkus, Wolff et al. 2011). In the human motor cortex, biperiden, a muscarinic

M1 receptor cholinergic antagonist suppressed (Korchounov and Ziemann 2011), while

rivastigmine enhanced PAS-induced LTP (Kuo, Grosch et al. 2007).

Our third and confirmed hypothesis was that dextromethorphan suppresses DLPFC

neuroplasticity. This finding is consistent with previous studies assessing the effects of

dextromethorphan on LTP in the slice, animal and human studies (Krug 1993; Stefan, Kunesch et

al. 2002). Dextromethorphan is a non-competitive NMDA receptor antagonist (Church, Lodge et

al. 1985). Thus, it is expected to suppress NMDA-receptor dependent LTP. Only one study

assessed the effects of dextromethorphan on PAS-induced LTP, which reported abolishment of

PAS-induced LTP plasticity in the motor cortex compared to placebo (Stefan, Kunesch et al.

2002). Our finding with dextromethorphan also provides evidence that PAS-induced LTP in the

DLPFC represents synaptic LTP by being dependent on functional NMDA receptors.

Page 112: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

98  

Contrary to our fourth hypothesis, we did not find a difference in PAS-induced LTP under baclofen

compared to placebo. However, we still found that under baclofen exposure, participants did not

experience significant PAS-induced LTP compared to baseline. Our hypothesis was based on a

study that assessed baclofen effects in the motor cortex and that included only five participants

(McDonnell, Orekhov et al. 2007). Thus, the discrepancy could be due to the different site of

plasticity and to the difference in power. Baclofen is a GABAB receptor agonist that, through the

promotion of inhibitory neurotransmission, could suppress PAS-induced LTP. However, through

presynaptic GABAB receptor, it could also lead to decreased release of GABA via GABAB

receptor-mediated autoinhibition (Jablensky 1997), thus, facilitating LTP. In mice, deletion of

GABAB autoreceptors leads to a failure in LTP expression (Vigot, Barbieri et al. 2006).

This study is limited by a relatively small sample size. However, the sample size was calculated

based on previously published literature in the motor cortex. Another limitation is that we did not

measure blood levels of the drugs to time the delivery of PAS. However, this limitation is mitigated

by our delivery of PAS based on published plasma levels peak values. Finally, this study assessed

the impact of a single dose on PAS-induced LTP. These medications are used chronically in

clinical settings. Thus, future studies should assess the effects of chronic exposure to these

medications in healthy individuals as well as patients with brain disorders associated with

abnormalities in these neurochemical systems.

4.6 Conclusion  

In conclusion, this is the first study investigating the pharmacological modulation of DLPFC

neuroplasticity in humans. The study confirmed our hypotheses that dopaminergic and cholinergic

neurotransmission enhance DLPFC neuroplasticity while suppressing glutamatergic

Page 113: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

99  

neurotransmission reduces it. Future studies should assess this modulation in clinical conditions to

better understand the pathophysiology underlying these conditions as well the mechanisms that

these drugs target in various brain disorders.

Page 114: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

100  

Chapter 5

5. Pharmacological Manipulation of Cortical Inhibition in the Dorsolateral Prefrontal Cortex

Bahar Salavati, Tarek K. Rajji, Reza Zomorrodi, Daniel M. Blumberger, Robert Chen, Bruce G. Pollock, Zafiris J. Daskalakis

Page 115: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

101  

5.1 Abstract  

Cortical inhibition (CI) occurs largely through GABA receptor mediated inhibitory

neurotransmission, which can be modulated by cholinergic, dopaminergic, and glutamatergic

inputs. Transcranial magnetic stimulation (TMS) can be used to index CI through a paradigm

known as long interval cortical inhibition (LICI). When TMS is combined with

electroencephalography (EEG), LICI can index GABA receptor mediated inhibitory

neurotransmission in the dorsolateral prefrontal cortex (DLPFC). We conducted a hypothesis-

driven pharmacological study to assess the role of cholinergic, dopaminergic, GABAergic, and

glutamatergic neurotransmission on LICI from the DLPFC using TMS-EEG. In this randomized

controlled, double-blind crossover within-subject study, 12 healthy participants received five

sessions of LICI to the DLPFC in a random order, each preceded by the administration of placebo

or one of the four active drugs. LICI was assessed after each drug administration and compared to

LICI after placebo. Relative to placebo, baclofen resulted in a significant increase in LICI, while

rivastigmine resulted in a significant decrease in LICI. Dextromethorphan and L-DOPA did not

result in a significant change in LICI relative to placebo. Our study confirms that LICI in the

DLPFC is largely mediated by GABAB receptor mediated inhibitory neurotransmission and also

suggests that cholinergic modulation decreases LICI in the DLPFC. Such findings may help guide

future work examining the neurophysiological impact of these neurotransmitters in healthy and

diseased states.

Page 116: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

102  

5.2 Introduction  

The dorsolateral prefrontal cortex (DLPFC) is a critical brain region that is involved in several

important domains of cognition including learning and memory (Fuster 2008). Abnormalities in

DLPFC structure and function are observed in various brain disorders including addiction (Naim-

Feil, Bradshaw et al. 2015), Alzheimer’s disease (Kaufman, Pratt et al. 2010), depression (Koenigs

and Grafman 2009), Parkinson’s disease (Ko, Antonelli et al. 2013), and schizophrenia (Goto,

Yang et al. 2010). GABA plays an important role in DLPFC function as it synchronizes the activity

of pyramidal neurons (Sederberg, Schulze-Bonhage et al. 2007). This synchronization is closely

related to GABA receptor function and shown to play a role in learning and memory (Heaney and

Kinney 2016). Thus, studying the mechanisms involved in GABA receptor mediated inhibitory

neurotransmission from the DLPFC could advance our knowledge of the mechanisms involved in

cognition while also helping to identify treatment for disorders in which the DLPFC has been

shown to be dysfunctional (e.g., depression, schizophrenia).

Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG) can be

used to assess in vivo GABA neurotransmission from the DLFPC through a paradigm known as

long-interval cortical inhibition (LICI) with high test-retest reliability (Farzan, Barr et al. 2010).

LICI is a paired-pulse inhibitory paradigm that consists of a suprathreshold conditioning stimulus

(CS), followed by a suprathreshold test stimulus at a long interstimulus intervals (e.g. 50 - 200 ms)

(Valls-Sole, Pascual-Leone et al. 1992).

There are several lines of evidence that suggest that LICI reflects GABAB receptor mediated

inhibitory neurotransmission. First, LICI reduces short interval cortical inhibition (SICI), a

Page 117: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

103  

GABAA receptor mediated inhibitory paradigm (Sanger, Garg et al. 2001). This is consistent with

the finding that presynaptic GABAB activation inhibits GABA release with a concomitant

reduction in GABAA receptor mediated inhibition (Werhahn, Kunesch et al. 1999; Werhahn,

Kunesch et al. 1999). Second, LICI is evoked with a superthreshold intensity CS, which produces

a long lasting inhibition (Valls-Sole, Pascual-Leone et al. 1992) supporting the finding that

GABAB receptor mediated inhibition has a greater activation threshold and longer inhibitory effect

(Sanger, Garg et al. 2001). Third, the administration of GABAB receptor agonist baclofen has been

shown to enhance LICI (McDonnell, Orekhov et al. 2006). Furthermore, LICI has been linked to

DLPFC function, as prefrontal LICI strength correlates with individual performance on a working

memory task (Rogasch, Daskalakis et al. 2015) and was found to be dysfunctional in disorders

including schizophrenia (Radhu, Garcia Dominguez et al. 2015) Parkinson’s (Chu, Wagle-Shukla

et al. 2009) and depression (Croarkin, Nakonezny et al. 2014).

Although LICI is closely linked to GABAB receptor mediated inhibitory neurotransmission, the

influence of other neurotransmitters cannot be excluded. The interaction between GABAergic with

dopaminergic, cholinergic and glutamatergic neurotransmission is complex. Dopamine facilitates

GABA release via dopamine D1 receptors and inhibits release via dopamine D2 receptors (Harsing

and Zigmond 1997). GABAergic activity is also enhanced through cholinergic nicotinic receptors

or muscarinic M3 receptors, but inhibited through muscarinic M4 receptors (Zhang and Warren

2002). Lastly, NMDA activation on GABAergic neurons enhances GABAergic activity, while

NMDA antagonism on glutamatergic neurons reduces excitatory drive on GABAergic neurons

resulting in decreased inhibition in the cortex (Olney, Newcomer et al. 1999)

Page 118: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

104  

The application of a single dose of a central nervous system (CNS) drug that acts on a specific

neurotransmitter or neuromodulator system have been used to understand TMS measures of

cortical inhibition and excitation. For instance CNS drugs, such as, baclofen, and

dextromethorphan have been used to increase and decrease GABAergic and glutamatergic tone,

respectively, while rivastigmine and L-DOPA have been used to increase cholinergic and

dopaminergic tone, respectively.

Several studies suggest that in vivo LICI from the motor cortex in healthy controls is enhanced by

increasing GABAergic tone, as GABAergic drugs such as, baclofen (McDonnell, Orekhov et al.

2006; Premoli, Rivolta et al. 2014) vigabatrin (Pierantozzi, Marciani et al. 2004) and tiagabine

(Werhahn, Kunesch et al. 1999) increased LICI, tiagabine possibly through GABAB activation due

to the increased availability of GABA in the synaptic cleft (Ziemann, Reis et al. 2015).

Nonetheless, the contribution of other neurotransmitters on LICI is unknown (Paulus, Classen et

al. 2008). A few studies have assessed the pharmacological modulation of these neurotransmitters

on in vivo cortical excitability in the motor cortex. Both dextromethorphan and L-DOPA decreased

cortical excitability (Priori, Berardelli et al. 1994; Ziemann, Chen et al. 1998), while rivastigmine

had no significant effect (Langguth, Bauer et al. 2007). One limitation of these findings is that

TMS was applied to the motor cortex as opposed to the DLPFC, the latter being a cortical region

whose physiological function is of considerable significance in attempting to understand

pathophysiology of severe psychiatric disorders.

To date, no study has assessed the pharmacological modulation of LICI from DLPFC stimulation.

Further, no study has assessed all of these drugs in the same participants using a double-blind

Page 119: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

105  

randomized controlled design. Thus, we conducted the first pharmacological modulation of

DLPFC LICI in vivo using TMS-EEG and a double-blind, randomized controlled within-subject

design that included all of the above four drugs. We hypothesized that, compared to placebo,

baclofen, L-DOPA and dextromethorphan and would increase LICI, while rivastigmine would

decrease it.

5.3 Methods and Participants

5.3.1 Overall Study Design  

This was a double-blinded randomized controlled within-subject crossover study. Each participant

received five sessions of LICI in a random order, each preceded by the administration of a placebo

or one of the four active drugs, and separated by at least one week to minimize drug interference

and carryover effects (Korchounov and Ziemann 2011). LICI was measured Pre and Post-Drug,

and Post-LICI was administered after the drug had reached plasma peak level (Table 5). The doses

of the drugs were based on the previous studies demonstrating effects at similar doses on LICI in

the motor cortex. Across the subjects, the sequences of drug administration were counterbalanced.

The administrator of the experiments and participants were blind to drug assignment. All data

processing and analyses were also completed under blind condition.

Page 120: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

106  

Figure 8. LICI Protocol. This figure illustrates one session of LICI

Page 121: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

107  

Table 5. Properties of Drugs

Drugs Main mechanism of action

Dose (mg) Plasma Peak (hr)

Baclofen GABA-B agonist 50 1

Dextromethorphan NMDA antagonist 150 3

L-DOPA Dopamine precursor 100 1

Rivastigmine Acetylcholine esterase inhibitor

3 2

Placebo -- -- 1, 2, or 3*

*Placebo was randomly given to each participant at 1, 2 or 3 hours prior to the administration of

5.3.2 Participants  

Participants were 4 females and 9 males; average age 31.3 (10.5) years; not diagnosed with any

medical problems; non-smokers, negative for urine toxicology screen for drugs of abuse; right-

handed to ensure homogeneity in hemisphere dominance; had no contraindication to TMS (Rossi,

Hallett et al. 2009) or MRI; and provided written informed consent. The study was conducted in

accordance with ethical standards of the responsible committee on human experimentation and

approved by the Centre for Addiction and Mental Health Research Ethics Board.

Page 122: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

108  

5.3.3 Locating and Co-Registering the DLPFC  

The left DLPFC is located at the junction of the middle and anterior third of the middle frontal

gyrus (Talairach Co-ordinates (x,y,z)= (-50, 30, 36)), which corresponds to the posterior region of

Brodmann area 9 and superior section of area 46 (Rusjan, Barr et al. 2010). Following previous

published methods the localization of the DLPFC was achieved through neuronavigation

techniques using the MINIBIRD system (Ascension Technologies) and each participant’s T1-

weighted MRI with fiducial markers placed on the nasion, inion, left and right tragus and vertex

(Daskalakis, Farzan et al. 2008).

 

5.3.4 TMS-EMG in the Motor Cortex and TMS-EEG in the DLPFC  

Following established methods, we used a 7-cm figure-eight coil and a Magstim 200 stimulator

(The Magstim Company, Whitland, UK) to determine the participant’s resting motor threshold

(RMT) (defined as the minimum stimulus intensity that elicits a motor evoked potential (MEP) of

more than 50mV in 5 of 10 trials) (Sun, Farzan et al. 2016). MEP activity was measured through

EMG recordings from the right abductor pollicis brevis muscle. The stimulus intensity was then

adjusted to a suprathreshold intensity with mean peak-to-peak MEP amplitude of ~1 mV over 20

trials, which corresponded to approximately 120% of the RMT. This intensity referred to as SI1mV

was then used to deliver 100 TMS pulses pre-drug (paired-pulse and single-pulse) with an

interstimulus of 5 seconds to the scalp over the DLPFC, and then again post-drug, to assess change.

LICI was delivered at the optimal interstimulus of 100 ms.

To evaluate TMS-induced cortical evoked potentials, we acquired EEG through a 64-channel

Synamps 2 EEG system. All electrodes (Ag/AgCl ring electrodes) impedance were ≤5 kΩ and

Page 123: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

109  

referenced to an electrode positioned posterior to Cz electrode. In addition, EEG signals were

recorded using DC and a low pass filter, anti-aliasing filter, of 200 Hz, at 20 kHz sampling rate,

which was shown to avoid saturation of amplifiers and minimize TMS-related artifact.

5.3.5 EEG Data Processing  

EEG data was analyzed using MATLAB (The MathWorks Inc. Natick, MA, USA) and a custom

script that was developed based on previous work (Sun, Farzan et al. 2016). The recorded EEG

data for both single-pulse and paired-pulse were first down sampled from 20 to 1 kHz and then

segmented from -1000 ms to + 2000 ms after the test TMS stimulus. Epochs were then baseline

corrected -500 ms to -110 ms with respect to the pre-stimulus interval. To minimize TMS artifacts,

the data was re-segmented from 25ms to 2000ms. Thereafter, the EEG data was digitally filtered

using a second order, Butterworth, zero-phase shift 1-55 Hz band pass filter (24dB/Oct). EEG

recordings from pre-LICI and post-LICI were then concatenated in order to apply the same

objective criteria for de-noising the data. Then, an electrodes-by-trials matrix of ones and zeros

was created and assigned a value of zero if an epoch had the following: 1) amplitude larger than

+/- 150 μV; 2) power spectrum that violated 1/f power law; or 3) standard deviation 3 times larger

than the average of all trials. An electrode was rejected if its corresponding row had more than

60% of columns (trials) coded as zeros. An epoch was removed if its corresponding column had

more than 20% of rows (electrodes) coded as zeros. Next, independent component analysis (ICA)

(EEGLAB toolbox; Infomax algorithm) was performed to remove remaining artifacts such as

eyeblink traces, muscle artifacts and other noise from the EEG data (Sun, Farzan et al. 2016).

Finally, the data was re-referenced to the average, generating a clean signal devoid of noise for

each participant.

Page 124: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

110  

5.3.6 LICI Quantification  

The modulating effects of the drugs on LICI were calculated by the following steps: (I)

determining the cortical evoked activity (CEA) by averaging 100 single-pulses, and 100 paired-

pulses. (II) Subtracting single-pulse CEA waveform from paired-pulse CEA (Sun, Farzan et al.

2016) (Premoli, Rivolta et al. 2014). (III) Calculating the area under the rectified waveform from

50-250ms post test stimulus for both single-pulse CEA and paired-pulse CEA. The first interval

(50ms) was chosen as it represents the earliest artifact-free data, while the second interval (250ms)

was chosen because it represents the end of GABAB inhibitory postsynaptic potential (Sun, Farzan

et al. 2016). To quantify LICI as a ratio, paired-pulse CEA was divided by single-pulse CEA.

Lastly, to capture the effects of LICI from the frontal brain region, the average value from the

following frontal electrodes were used: FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1, FZ, F2, F4, F6,

and F8. These frontal electrodes were selected for two main reasons. First, these electrodes are

the least influenced by muscle activity and TMS-related artifacts. Second, frontal electrodes show

the greatest and most consistent inhibitory response from DLPFC stimulation (Sun, Farzan et al.

2016)

Calculation for LICI:

Area under rectified curve (paired‐pulse) 

Area under rectified curve (single‐pulse)  LICI = 

Page 125: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

111  

5.3.7 Statistical Analysis  

All data was first checked for normality using the Kolmogorov–Smirnov test. To test our primary

hypotheses and assess whether there is a drug effect on LICI, a repeated measures analysis of

variance (rmANOVA) was conducted with the drug condition (placebo vs. baclofen vs.

dextromethorphan vs. L-DOPA vs. rivastigmine) as the repeated measure. This was followed by a

series of post-hoc analyses, to compare LICI under each of the active drug condition to LICI under

placebo.

 

5.4 Results  

Thirteen participants (4 females and 9 males) took part in this study. All participants completed all

sessions except for one participant who dropped out after only one of the five sessions and data

for this participant was not used. Participants’ demographics and basic neurophysiologic

characteristics are described in Table 6.

Page 126: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

112  

Table 6. Demographic and Neurophysiologic Characteristics

Characteristic Mean (SD)

Age (years) 31.3 (10.5)

Gender (Female, %) 4 (25)

Education (years) 15.3 (2.3)

Resting Motor Threshold (% stimulator

output)

49.0 (0.74)

SI1mV (% stimulator output) 61.7 (1.5)

* SI1mV = Stimulation intensity with a mean peak-to-peak motor evoked potential amplitude of

1 mV over 20 trials; SD = standard deviation.

All outcome data were normally distributed. rmANOVA revealed that there was a drug effect on

LICI (F (4,44)= 6.34, p <0.001). Further, post-hoc pairwise comparisons against placebo, revealed

that LICI was decreased after the intake of rivastigmine (p =0.009) and increased after baclofen (p

=0.038). In contrast, there was no significant change after the intake of L-DOPA (p =0.17) or

dextromethorphan (p =0.79) when compared with placebo. (Figures 9). The topography of all

DLPFC LICI values across all electrodes is shown in Figure 10.

Page 127: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

113  

Figure 9. Effects of Drugs on DLPFC LICI. This figure illustrates the effects of drugs (L-DOPA,

baclofen, rivastigmine, dextromethorphan, and placebo) on DLPFC LICI expressed as a change in

the ratio of Post-LICI from Pre-LICI CEA. The p-values refer to the comparisons between each

active drug and placebo. Error bars: +/-1SE.

Page 128: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

114  

Figure 10: Topographical plots of LICI. These topographical plots illustrate the effects of drugs

(L-DOPA, baclofen, rivastigmine, dextromethorphan (DMO), and placebo) on inhibition from

DLPFC stimulation. Rivastigmine significantly decreased and baclofen increased inhibition

compared to placebo, while L-DOPA and dextromethorphan did not. Increased inhibition is shown

as more red, while decreased inhibition is shown as more blue. LICI from DLPFC stimulation is

most prominent at frontal locations when plotted topographically across all electrodes.

  

 

Page 129: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

115  

Finally, compared Pre-LICI to Post-LICI, participants showed a significant difference under L-

DOPA, rivastigmine, and baclofen but not for dextromethorphan condition (Table 7).

Table 7. Pre-Drug vs Post-Drug LICI from stimulation to Dorsolateral Prefrontal Cortex

under each Drug Condition

Drug Pre-Drug

LICI

Post-Drug

LICI

t (df) p-value

Placebo 0.52 (0.14) 0.51(1.0) 0.48 (11) 0.64

Baclofen 0.63 (0.19) 0.53 (0.17) 3.14 (11)

0.009*

Dextromethorphan 0.62 (0.13)

0.62 (0.23) 0.85 (11)

0.93

L-DOPA 0.56 (0.14) 0.47 (0.12) 2.79 (11) 0.017*

Rivastigmine 0.47 (0.09)

0.61 (0.15) -2.79 (11)

0.018*

LICI= Long-Interval Cortical inhibition activity as measured by Cortical Evoked Activity (CEA)

Pre-Drug and Post-drug; SD = Standard Deviation; t (df) = Paired T-test (degrees of freedom)

Page 130: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

116  

5.5 Discussion  

This study confirmed our hypotheses that baclofen enhances and rivastigmine decreases LICI from

the DLPFC in vivo. It did not confirm our hypotheses that dextromethorphan and L-DOPA

decrease LICI compared to placebo. To our knowledge, this is the first study to assess the

pharmacological modulation of LICI from DLPFC stimulation in humans.

As hypothesized we found that baclofen enhanced LICI compared to placebo. Baclofen is a

GABAB receptor agonist (Faigle and Keberle 1972) that increases inhibition through the allosteric

modulation of GABAB receptor-mediated neurotransmission (Mann-Metzer and Yarom 2002).

This finding is consistent with animal studies that showed baclofen enhances inhibition in the

cortex (Porter and Nieves 2004). Our result also replicate and extend to TMS human studies that

assessed the effect of baclofen on LICI in the motor cortex (McDonnell, Orekhov et al. 2006;

Premoli, Rivolta et al. 2014).

Furthermore, in disorders where LICI has been shown to be dysfunctional (e.g., schizophrenia,

(Radhu, Garcia Dominguez et al. 2015), Parkinson’s (Chu, Wagle-Shukla et al. 2009) and

depression (Croarkin, Nakonezny et al. 2014), these findings suggest that drugs targeting the

GABAB receptor may reverse these deficits and even have a therapeutic role. As an example,

clozapine, which is one of the most effective treatments for schizophrenia, has been shown to

increase GABAB receptor mediated neurotransmission (Kaster, de Jesus et al. 2015). These results,

therefore, also suggest that measuring LICI in the DLPFC may be a possible treatment or

biomarker for schizophrenia.

Page 131: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

117  

We also found that rivastigmine reduces LICI from DLPFC stimulation. To the best of our

knowledge no study has examined the effects of rivastigmine on LICI. One study, however,

assessed the effects of rivastigmine on cortical excitability from the human motor cortex and

reported an enhancement of MEP amplitude after a single dose (Langguth, Bauer et al. 2007),

which supports our finding given that enhanced MEP indicates reduced cortical inhibition

(Bestmann and Krakauer 2015). These findings are also consistent with animal studies that

reported increased cortical excitation in the prefrontal cortex following cholinergic intervention

(Vidal and Changeux 1993) Lastly, Rivastigmine is known to enhance short afferent inhibition

(SAI), which is partly cholinergic mediated and SAI decreases LICI (Udupa, Ni et al. 2009),

further supporting our finding.

The prefrontal cortex receives glutamatergic inputs from the medial dorsal thalamus

(Groenewegen and Uylings 2000). These thalamo-cortical glutamatergic projections are

modulated by highly expressed presynaptic and postsynaptic cholinergic α7- nicotinic receptors

(Yang, Paspalas et al. 2013). Activation of these receptors increases glutamate release, which

results in reduced cortical inhibition (Parikh, Ji et al. 2010). Rivastigmine increases synaptic levels

of acetylcholine by inhibiting acetylcholine-esterase, allowing for longer cholinergic receptor

activation (Polinsky 1998). This subtype of the nicotinic receptors are also permeable to calcium,

which are important in facilitating NMDA activity and mediating LTP plasticity (Yang, Paspalas

et al. 2013). In fact, LTP in the motor cortex of healthy participants was enhanced following the

administration of rivastigmine (Kuo, Grosch et al. 2007). Furthermore, activation of α7 nicotinic

receptor has been shown to be essential for cognitive circuits in the DLPFC (Yang, Paspalas et al.

2013). Therefore, based on our observation and prior studies, rivastigmine may have pro-cognitive

Page 132: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

118  

effects by reducing cortical inhibition and, as a corollary, increasing neural plasticity (Ziemann,

Hallett et al. 1998).

Contrary to our hypothesis, we did not find a difference in LICI for L-DOPA compared to placebo.

However, we found that L-DOPA exposure enhanced LICI Pre-drug to Post-drug, but this was

only a trend when corrected for multiple comparisons, which may due to a limited sample size.

These findings are in line with animal studies that reported enhanced inhibition in the prefrontal

cortex following dopaminergic intervention (Kroner, Krimer et al. 2007; Towers and Hestrin

2008). In the prefrontal cortex, dopaminergic axons connect with fast spiking GABAergic neurons

(Sesack, Hawrylak et al. 1998). Dopamine increases the firing of these neurons through activation

of D1 receptors (Gorelova, Seamans et al. 2002). Given that D1 receptors are highly expressed in

the prefrontal cortex (Gaspar, Bloch et al. 1995), L-DOPA could have enhanced inhibition through

these receptors, however, considering that these dopaminergic effects are downstream and not

direct then smaller effects and effect sizes may be due to these indirect influences. Also, these

findings support TMS studies that reported increased cortical silent period (CSP) following L-

DOPA administration from the motor cortex (Ziemann, Tergau et al. 1997). These studies are

relevant given that CSP similar to LICI is mediated through GABAB neurotransmission.

We did not confirm our hypothesis that dextromethorphan would enhance LICI. No previous study

assessed the effect of dextromethorphan on LICI. As such our hypothesis was based on a study

that reported that dextromethorphan enhanced cortical inhibition and decreased excitation in the

motor cortex (Ziemann, Chen et al. 1998). This study, however, examined the effects of

dextromethorphan on SICI and not LICI. Although both SICI and LICI are cortical inhibitory

circuits, several studies have shown that LICI reduces SICI, suggesting that these two inhibitory

Page 133: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

119  

paradigms are mediated by different mechanisms (Sanger, Garg et al. 2001). Also,

dextromethorphan being a non-competitive NMDA receptor antagonist (Church, Lodge et al.

1985) can reduce cortical inhibition through activation of NMDA receptors on GABAergic

neurons or, enhance inhibition by acting on NMDA receptors on glutamatergic neurons (Olney,

Newcomer et al. 1999). Further, dextromethorphan also binds to other non-NMDA sites including,

opioid sigma binding sites (Musacchio, Klein et al. 1989), nicotinic receptors (Hernandez,

Bertolino et al. 2000) and calcium channels (Netzer, Pflimlin et al. 1993) and, therefore, is not a

direct NMDA antagonist, potentially explaining our observed effects on LICI. As such further

studies are needed to determine the effects of dextromethorphan on LICI.

This study is limited by a relatively small sample size but sample size was calculated based on

previous published studies. This small sample may have obscured finding smaller effects through

agents such as L-DOPA. Another limitation is that we did not measure blood levels of the drugs

to time the delivery of Post-LICI. However, this limitation was mitigated by delivering Post-LICI

based on published peak times of plasma levels. Finally, this study assessed the impact of a single

dose on LICI. These medications are used chronically in clinical settings. Thus, future studies

should assess the effects of longer exposure to these medications in healthy individuals as well as

patients with neuropsychiatric disorders associated with abnormalities in LICI.

In conclusion, this study confirmed our hypotheses that baclofen – a GABAergic agent- enhanced

LICI in the DLPFC while rivastigmine – a cholinergic agent - reduced it. Future studies should

assess this modulation in clinical conditions to better understand the pathophysiology underlying

these conditions as well the mechanisms that these drugs target in various brain disorders.

Page 134: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

120  

5.6 Conclusion  

In conclusion, this study confirmed our hypotheses that baclofen – a GABAergic agent- enhanced

LICI in the DLPFC while rivastigmine – a cholinergic agent - reduced it. Future studies should

assess this modulation in clinical conditions to better understand the pathophysiology underlying

these conditions as well the mechanisms that these drugs target in various brain disorders.

Page 135: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

121  

Chapter 6

6. Discussion

6.1 Summary of the Dissertation  

The introduction of this dissertation starts off by stating that there are currently no effective

treatments for cognitive deficits, which are the most debilitating symptoms of schizophrenia.

Next, it introduces the mechanisms behind two important cellular processes that mediate

cognition, LTP and CI, and how the main neurotransmitters (GABA and glutamate) and

neuromodulators (dopamine and acetylcholine) modulate these mechanisms. It further goes on to

explain how these mechanisms are dysfunctional in patients with schizophrenia and links this

abnormality to dysfunctional neurotransmitter and neuromodulator activity while looping it back

to aberrant cognition in schizophrenia.

The original research component of this dissertation consists of three components. The first

component is a systematic review that provides evidence for abnormal dopaminergic,

glutamatergic and GABAergic neurotransmission in drug-naïve and drug-free patients with

schizophrenia. The second component is a study that evaluates the impact of four CNS drugs that

affect the main neurotransmitters (dextromethorphan and baclofen) and neuromodulators (L-

DOPA and rivastigmine), on PAS-LTP from the DLPFC in healthy participants using a within-

subject, double-blinded, placebo-controlled design. The third and final component is a study that

assesses the impact of the aforementioned drugs on LICI from the DLPFC in the same healthy

participants who took part in the previous study using a within-subject, double-blinded, placebo-

controlled design

Page 136: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

122  

6.1.1 Summary of the First Paper  

The first paper provided the rationale for the second and third papers, linking abnormal

neurotransmission to dysfunctional plasticity measured by LTP in patients with schizophrenia.

This publication summarized all data pertaining to drug-naïve and drug-free patients focusing on

abnormal glutamatergic, dopaminergic and GABAergic neurotransmission assessed through

neuroimaging studies that used MRS, PET, and SPECT. The analysis pertaining to the

glutamatergic system showed elevated glutamatergic levels during the initial period of diagnosis,

which decreased as time progressed, suggesting that high levels of glutamatergic activity may be

responsible for the initial symptoms. Results pertaining to the dopaminergic system showed a

decrease in the dopamine D2/3 receptor binding in the thalamus, as well as, an increase in

dopamine synthesis, dopamine release, and dopamine at baseline in the striatum. Findings

pertaining to GABAergic activity were inconsistent, with one study reporting an elevation of

GABA levels in MPFC of antipsychotic-free patients. Finally, this paper concluded with a model

explaining and summarizing the various findings.

6.1.2 Summary of the Second Paper  

The second study evaluated the effects of four CNS drugs on PAS-LTP from the DLPFC of 12

healthy subjects, which was captured through the use of TMS-EEG. The main objective of this

study was to evaluate how these four CNS drugs compare to placebo and whether they potentiate

or inhibit PAS-LTP in the DLPFC. Our results showed that L-DOPA, and rivastigmine enhanced

LTP, and dextromethorphan blocked LTP when compared to placebo. No significant differences

were found between baclofen and placebo. Thus, our findings suggest that LTP in the DLPFC

Page 137: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

123  

can be facilitated by enhancing cholinergic and dopaminergic tone and abolished by blocking

NMDA receptors.

6.1.3 Summary of the Third Paper  

The last study included in this thesis assessed the effects of the same four CNS drugs used in the

earlier study on frontal LICI measured using TMS-EEG in the same 12 healthy subjects who

took part in the previous study. Although the same subjects took part in the study, the subjects

were tested on a different day than the first study. We found that baclofen and rivastigmine

significantly enhanced and reduced frontal LICI respectively, while dextromethorphan and L-

DOPA had no significant effect when compared to placebo. Also, under the influence of L-

DOPA, there was a trend effect of an increase in LICI after correcting for multiple comparisons

when Pre-LICI was compared to Post-LICI, which may be due to a small sample size, and

therefore warranting further investigation.

6.2 General Discussion

6.2.1 Glutamate  

The glutamate hypothesis of schizophrenia is based on the deficiency or defect of NMDA

receptors. These receptors have been shown to be reduced in the frontal cortex of patients

through both in vivo neuroimaging (Pilowsky, Bressan et al. 2006) and in vitro postmortem

studies (Akbarian, Sucher et al. 1996). It has been speculated that increased pyramidal activity

overwhelms the neural circuits with excessive glutamate, which leads to neurotoxicity and the

downregulation of NMDA receptors. In fact, several studies have reported enhanced GLX, a

measure of glutamine and glutamate levels in first episode drug-naïve patients during the initial

Page 138: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

124  

period of diagnosis, indicating an over-activity of the glutamatergic system (Salavati, Rajji et al.

2015).

Additionally, the blockade of NMDA receptors by antagonists such as PCP and ketamine have

been shown to have neurotoxic and psychotomimetic effects in healthy participants (Lahti,

Weiler et al. 2001; Javitt 2010). These drugs induce not only psychotic symptoms but also

cognitive symptoms, including memory and learning impairment. For this reason, in this study,

we evaluated the effects of dextromethorphan, an NMDA antagonist, on LTP in the DLPFC. We

demonstrated that dextromethorphan blocks the induction of LTP. This finding is expected given

that dextromethorphan prevents Ca2+ and Na+ from passing through NMDA channels, which

would abolish LTP. Our finding is also consistent with a study that assessed the effects of

dextromethorphan in the motor cortex using PAS (Stefan, Kunesch et al. 2002). It also supports

animal studies that showed that dextromethorphan (Krug, Matthies et al. 1993) and other NMDA

antagonists such as D-(-)2-amino-5-phosphonopentanoic acid (Davis, Butcher et al. 1992; Jay,

Burette et al. 1995) and MK 80l (Frankiewicz, Potier et al. 1996), abolish the induction of LTP.

Furthermore, our finding confirms the idea that PAS-LTP from the DLPFC is an NMDA

receptor-dependent process similar to cellular LTP.

Overall, these observations suggest that improper activation of NMDA receptors through

deficiency or defect may be involved in the manifestation of dysfunctional LTP seen in

schizophrenia. Based on these observations, conceivably, NMDA agonists may facilitate the

induction of LTP and have therapeutic implications. In fact, agents that directly or indirectly

activate NMDA receptors, such as glycine and D-cycloserine have been used as an adjunct or

Page 139: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

125  

antipsychotic replacement with promising results (Strzelecki and Rabe-Jablonska 2011;

McCullumsmith, Hammond et al. 2012). In one placebo-controlled study glycine administration

significantly improved negative symptoms (Heresco-Levy, Javitt et al. 1999). The effect of D-

cycloserine, a partial agonist of the glycine site, however, has been inconclusive, with

improvement in negative symptoms reported only in one study (Goff, Tsai et al. 1995).

Therefore, the approach of using an NMDA agonist although promising still remains

controversial and warrants further studies.

6.2.2 Dopamine  

Another widely considered neurochemical hypothesis of schizophrenia is the dopamine

hypothesis. This hypothesis postulates that positive symptoms of schizophrenia arise from hyper-

dopaminergic neurotransmission in the striatum, and hypodopaminergic activity in the PFC

contributes to negative and cognitive symptoms (Stahl 2007). Dopaminergic inputs to the PFC

play a major role in regulating working memory, planning, and attention, and for this reason,

dysfunctions have been postulated to underlie cognitive deficits associated with schizophrenia.

Also, as mentioned previously patients show a reduction in the expression of NMDA receptors in

the frontal cortex, and hypo-functioning of NMDA receptors reduces downstream dopamine

activity. Thus, in this case, LTP facilitation is not limited to the glutamatergic system, but also

the dopaminergic system.

A critical component of the effect of dopamine is its modulation of glutamatergic activity, which

can be different depending on which receptors are activated. Dopamine increases the excitation

of glutamatergic neurons via D1 receptors and inhibition via D2 receptors. To explore this

Page 140: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

126  

interaction in the DLPFC, we used PAS, an NMDA-mediated paradigm, in combination with L-

DOPA, a dopamine precursor. As expected, L-DOPA significantly enhanced PAS-LTP

compared to placebo. This finding is consistent with an animal study that assessed the effects of

L-DOPA on LTP induction in the frontal cortex (Otani, Daniel et al. 2003). Similar results were

also observed when PAS was applied to the motor cortex; 100 mg dose of L-DOPA significantly

enhanced the magnitude and duration of PAS-LTP (Kuo, Paulus et al. 2008). Also, in a different

study, PAS alone was ineffective in potentiating LTP in the elderly, but not when combined with

L-DOPA (Kishore, Popa et al. 2014), illustrating the potent effect that L-DOPA has on PAS-

LTP.

The modulatory effect by L-DOPA, however, follows an inverted-U shape concentration curve

and only a moderate dose (100mg) facilitates LTP, while concentrations that are too high

(200mg) or too low (25mg) hinder it (Thirugnanasambandam, Grundey et al. 2011). This

facilitation is presumed to be through pyramidal cell excitability via D1 receptors, given that 2mg

of cabergoline, a D2 agonist, had no significant effect on PAS- LTP (Korchounov and Ziemann

2011). Also, ropinirole, a D2 agonist, was found to hinder PAS-LTP and this effect was stronger

at a high (1.0mg) and a low (0.125mg) dose compared to a medium dose (0.5mg), suggesting an

inverted-U shape concentration curve (Monte-Silva, Kuo et al. 2009). Lastly, sulpiride (400mg),

a weak D2/D3 receptor antagonist, had no significant effect on PAS- LTP but the administration

of haloperidol (2.5mg), a strong D2 antagonist blocked PAS- LTP in the motor cortex

(Korchounov and Ziemann 2011). For these reasons, the enhancement in PAS-LTP through the

use of L-DOPA is assumed to be mainly through D1 receptor activation.

When D1 receptors are activated LTP is initiated and resting glutamatergic neurons increase their

activity (Gurden, Takita et al. 2000). As such, D1 receptors play a vital role in the facilitation of

Page 141: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

127  

LTP, specifically in the PFC, where there is a greater concentration of D1 receptors than D2

receptors (Hall, Sedvall et al. 1994). Interestingly, there is a reduction of D1 receptors in the PFC

of drug-naive and drug-free patients with schizophrenia, and this reduction has been associated

with poor performance on the Wisconsin Card Sorting Test(WCST), a cognitive test used to test

executive function (Okubo, Suhara et al. 1997). Thus, based on the aforementioned studies,

abnormal D1 receptor activation may contribute to dysfunctional LTP, which in turn may lead to

cognitive deficits seen in schizophrenia.

Furthermore, it is important to note, that this endogenous release of dopamine only serves as a

trigger for LTP in the presence of tonic/background dopamine and triggers LTD in its absence

(Matsuda, Marzo et al. 2006). In fact, there is a strong correlation between cortical dopamine

levels and cortical LTP amplitude (r = 0.8; P < 0.001), and a depletion of more than 50%

corresponds to a dramatic decrease in LTP induction (Gurden, Tassin et al. 1999). Also, it has

been shown that the pairing of dopamine with weak tetanic stimulation that would normally

induce LTD, instead induces LTP in the PFC slice (Matsuda, Marzo et al. 2006). These results

indicate that an appropriate level of tonic/background dopamine needs to present in order to

facilitate the induction of LTP. Several studies have shown that patients with schizophrenia have

low levels of dopamine in the frontal cortex (Brisch, Saniotis et al. 2014).Therefore this work in

combination with previous works demonstrates the importance of mesocortical dopamine for the

induction of LTP, which plays a vital role in cognition and abnormal levels may contribute to

impaired LTP reported in schizophrenia.

Page 142: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

128  

6.2.3 GABA  

The glutamatergic hypothesis pertaining to schizophrenia proposes that hypo-functioning of

NMDA receptors on GABAergic neurons leads to a reduction in activities of GABAergic

neurons, and in turn CI (Moghaddam and Javitt 2012). In fact, several studies have demonstrated

reduced CI in patients with schizophrenia (Rogasch, Daskalakis et al. 2014). This reduction has

also been observed in drug-naïve patients with schizophrenia (Hasan, Wobrock et al. 2012),

suggesting that this impairment is inherent to the illness rather than induced through

antipsychotic medication. Post-mortem studies suggest a subset of GABAergic interneurons,

known as parvalbumin (PV) interneurons in the PFC and hippocampus are the most affected

(Wulff, Ponomarenko et al. 2009). These interneurons are fast-spiking and as such play a critical

role in the generation of gamma oscillations via GABAA neurotransmission, and the modulation

of gamma oscillations via GABAB neurotransmission (Wulff, Ponomarenko et al. 2009; Buzsaki

and Wang 2012).

As mentioned in the introduction, there are several ways of measuring CI; however, LICI is the

only measure that has been used outside of the motor cortex. Recent studies have shown that

LICI is reduced in the DLPFC of patients with schizophrenia, the brain region greatly associated

with this disorder (Farzan, Barr et al. 2010; Radhu, Garcia Dominguez et al. 2015). For this

reason, we examined the pharmacological modulation of LICI from this region.

As expected we showed that baclofen increases LICI compared to placebo. LICI is a putative

measure of GABAB receptor activity as it is measured at ISIs between 50 and 200ms (Werhahn,

Kunesch et al. 1999; McDonnell, Orekhov et al. 2006). Baclofen is a GABAB receptor agonist,

Page 143: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

129  

which would explain the increase in LICI expression as it hyperpolarizes the neuron through K+

efflux and Ca+ blockage. Our result is consistent with a study that evaluated the effects of

baclofen on LICI using TMS-EEG from the motor cortex (Premoli, Rivolta et al. 2014). Our

finding also supports studies that evaluated the effect of baclofen from the animal PFC, and the

human motor cortex using TMS (McDonnell, Orekhov et al. 2006).

We also found that the acetylcholine esterase inhibitor, rivastigmine, reduces LICI. This effect

may be through the activation of nicotinic receptors on glutamatergic neurons, given that these

receptors are abundant in the PFC (Wallace and Bertrand 2013). To our knowledge, only one

study looked at the effect of rivastigmine on cortical activity using TMS. This study used the

same dose of 3mg on 16 subjects and found that MEP activity, a measure of brain excitability

increased for 7 days but stabilized after consistent intake (Langguth, Bauer et al. 2007). This

finding indirectly supports our result since increased excitation leads to reduced inhibition.

Lastly, we found a trending increase in LICI from Pre-LICI to Post-LICI under the influence L-

DOPA, which may be due to our small sample size.

We also assessed the influence of baclofen on PAS-LTP and found no significant effect. A

previous study found that PAS-LTP was blunted in the motor cortex by 50mg of baclofen

(McDonnell, Orekhov et al. 2007). This inconsistency in results may be due to our sample size,

which we do not assume is the case as the previous study only enrolled seven subjects, or due to

different brain regions being analyzed.

Page 144: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

130  

6.2.4 Nicotine  

Cholinergic inputs to the DLPFC have been shown to enhance attention and working memory.

The DLPFC is critical for these cognitive functions and also rich in the expression of

acetylcholine receptors (Wallace and Bertrand 2013). The specific effects of these receptors on

LTP remain elusive. Therefore, the present study was conducted to clarify the role of

acetylcholine receptors on LTP in vivo in the DLPFC using rivastigmine, which allows

acetylcholine to activate both the nicotinic and muscarinic receptors. Under rivastigmine

exposure LTP significantly increased when compared to placebo. Similar results were also

shown in animal studies (Blitzer, Gil et al. 1990; Vidal and Changeux 1993). Our finding is also

in line with a study that administered PAS to the motor cortex, whereby 3mg of rivastigmine

enhanced PAS-LTP relative to a placebo (Kuo, Grosch et al. 2007). Rivastigmine may facilitate

LTP by enhancing glutamatergic transmission. This is achieved either through the activation of

presynaptic alpha7 nicotinic receptors, enhancing Ca2+ influx leading to enhanced

neurotransmitter release or by postsynaptic alpha7 nicotinic receptors which enhance Ca2+ and

Na+ influx leading to neuronal depolarization and the enhancement of intracellular Ca2+.

Intracellular Ca2+ is a key determinant of plasticity and under conditions where glutamate can

activate NMDA receptors; LTP is induced.

Although our results are likely mediated by nicotinic receptor activity, it is important to note that

muscarinic activity also plays a role. While little is known about the muscarinic cholinergic

effects on prefrontal synapses, one study found that the muscarinic agonist, pilocarpine

potentiates the late phase of LTP in the PFC without affecting the early portion of LTP (20min)

(Lopes Aguiar, Romcy-Pereira et al. 2008). In contrast, 8mg of biperiden, an M1 muscarinic

Page 145: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

131  

receptor antagonist significantly reduces PAS-LTP in the motor cortex, suggesting that

muscarinic receptors play a greater role in inhibiting LTP rather than facilitating LTP

(Korchounov and Ziemann 2011). Thus, the cumulative findings of previous studies in

combination with our finding suggest that nicotinic receptor activation exerts a boosting effect

on LTP plasticity. Therefore, given that nicotinic receptors are pivotal for synaptic plasticity, and

important for learning, memory, and attention, then a loss or disruption of these receptors may

contribute to cognitive dysfunctions like those manifested in schizophrenia and other disorders

like Alzheimer's disease.

6.2.5 PAS as Therapeutic Tool  

In the recent years, there has been heightened interest in electrophysiological techniques to study

and induce plasticity. One of those techniques is PAS, which as mentioned in the introduction, is

a TMS paradigm that consists of a low frequency peripheral electrical nerve stimulation,

generally to the median nerve paired with TMS over the area of interest, conventionally the

motor cortex (Stefan, Kunesch et al. 2000). Repeated pairing, about 180 pulses of these two

associative stimuli over an extended period using an interstimulus of 25ms induces a plastic

change of increased excitability in the human cortex. This 25ms interval allows for both stimuli

to arrive synchronously at the cortex (Stefan, Kunesch et al. 2000).

The principle behind PAS is based on associative LTP and resembles spike timing dependent

plasticity, as the effective inter-stimulus interval lies within a restricted (milliseconds) range

(Stefan, Kunesch et al. 2000; Rajji, Sun et al. 2013). Both associative and spike timing dependent

Page 146: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

132  

plasticity are important cellular mechanisms that govern the induction of LTP, thus making PAS

an optimal tool for the exploration of in vivo LTP from the cortex of an intact brain as a whole,

in an awake state. This is a major advantage of PAS as opposed to cellular in vitro recordings

which focus on a small group of cells. This is important considering that functions associated

with LTP, such as learning and memory are hierarchical and distributed mechanisms linked with

different brain regions. Initially, in 2000, when Stefan et al first introduced PAS as a tool for

assessing LTP, explorations were assessed from the motor cortex, due to recordable muscle

contractions (Stefan, Kunesch et al. 2000). Since then PAS has been combined with EEG which

extends this exploration to other cortical regions including the frontal brain, which is important

for psychiatric research (Rajji, Sun et al. 2013).

There are several reasons as to why PAS is an optimal non-invasive LTP-inducing

neurostimulation technique when compared to other techniques (TBS, TDCS, and rTMS). First,

PAS has the ability to induce, instead of augmenting, focal, not widespread LTP (Stefan,

Kunesch et al. 2000). Second, PAS-LTP shares a number of physiological properties with

cellular LTP, which include, rapidly evolving (within 30min), persistent (minimum duration 30-

60min) beyond the period of stimulation, yet reversible, and topographically specific (Stefan,

Kunesch et al. 2000). Moreover, NMDA antagonist abolishes PAS-LTP, which further supports

the concept that PAS-LTP behaves in accordance with cellular LTP (Stefan, Kunesch et al.

2002). As such, PAS has tremendous potential as a therapeutic tool for restoring aberrant LTP in

motor and non-motor regions implicated in several neurological and psychiatric disorders.

Page 147: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

133  

6.3 Significance of this Work  

Studies exploring LTP and CI are conventionally limited to the hippocampus and to animals. To

the best of our knowledge, this is the only study that assessed the pharmacological manipulation

of LTP and CI from the DLPFC in humans, a critical brain region underlying higher order

cognition and which abnormalities are implicated in several disorders including schizophrenia.

The results from this project will not only help to clarify the functional neurobiology of LTP and

CI from the DLPFC but may also pave the way for the development of new treatments to help

treat complex cognitive impairments seen in schizophrenia, as well as, other psychiatric and

neurological disorders.

6.4 Limitations  

There are several limitations to this work which need to be discussed. The first limitation

pertains to EEG recordings as there are various sources of biological and environmental artifacts

that can contaminate brain signals captured through this method. These include face and scalp

muscle activity, eye activity such as movement and blink, as well as, TMS-related artifacts.

These artifacts, however, can be removed with minimal impact on brain activity using ICA.

Secondly, although we controlled for the most important confounding variables, being attention

and age, there are other variables that may influence the PAS response, such as, cortisol level

(Yuval-Greenberg, Tomer et al. 2008), and circadian cycle (Sale, Ridding et al. 2007), which

were not directly controlled. These variables, however, should not influence the data too much,

as all testing sessions started in the morning and ended in the evening. Third, although the

evidence shows that an interstimulus interval of 25ms used for PAS in the DLPFC is optimal, it

Page 148: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

134  

may be better to use an individualized PAS interstimulus interval by using the subject’s negative

potential occurring at 20ms, known as N20 (Yamada, Kayamori et al. 1984; Valeriani, Restuccia

et al. 2000). Previous studies have demonstrated that the N20 latency or N20+2ms used as the

PAS interstimulus interval results in better potentiation of LTP compared to the standardized

interval of 25ms (Ziemann, Ilic et al. 2004; Muller-Dahlhaus, Orekhov et al. 2008; Jung and

Ziemann 2009). This approach would also take into account an individual’s arm length, as

shorter arm length has been correlated with shorter sensory evoked potential (SEP) latencies in

response to median nerve stimulation (Poornima, Ali et al. 2013). This is important given men

typically have longer arms compared to women, as they are generally taller (Stetson, Albers et al.

1992). This individualized method would also control for age, as older individuals have a slower

conduction velocity compared to younger and generally have a longer SEP latency (Dorfman and

Bosley 1979; Stetson, Albers et al. 1992; Poornima, Ali et al. 2013). Fourth, plasma levels were

not obtained in this study, thus the bioavailability of the drugs could not be accurately accounted.

Also, the amount given was standardized and not based on the weight of the participant,

however, this should not affect the data too much, as none of the subjects were overweight.

Lastly, although we used a within-subject design, which allows for a heterogeneous sample, our

sample size may be too small to draw accurate conclusions.

6.5 Conclusion  

In conclusion, it has been proposed that cognitive deficits seen in schizophrenia are associated

with impaired LTP and CI. These mechanisms are modulated by various neurochemical systems,

particularly the cholinergic, dopaminergic, GABAergic, and glutamatergic systems. Over the

Page 149: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

135  

past few decades, several neurostimulation protocols have been developed to assess LTP and CI

in vivo. PAS and LICI are TMS based protocols that assess LTP and CI activity, respectively

from the human cortex. Combined with EEG, it can assess these activities in the DLPFC in

which LTP and CI are disrupted in several neurological and psychiatric disorders including

schizophrenia.

Using PAS-EEG and LICI-EEG we conducted the first pharmacological modulation study from

the DLPFC in vivo in a double-blind randomized controlled within-subject design. We used four

drugs that affect the above mentioned neurochemical systems: rivastigmine (cholinergic), L-

DOPA (dopaminergic), baclofen (GABAergic), and dextromethorphan (glutamatergic). In the

first arm of the study we tested four hypotheses, we hypothesized that, compared to placebo,

rivastigmine and L-DOPA would enhance PAS-LTP, while baclofen and dextromethorphan

would inhibit it. Our study confirmed three out of the four hypotheses (baclofen being the

exception). In the second arm of the study, we hypothesized that, compared to placebo;

rivastigmine would reduce LICI, while baclofen, L-DOPA, and dextromethorphan would

enhance it. Our study confirmed two out of the four hypotheses (rivastigmine and baclofen).

These results, therefore, provide compelling evidence for the role of these modulatory agents in

affecting LTP and CI in the DLPFC and support the pursuit of combining pharmacological and

neurostimulation interventions to enhance LTP and CI in several brain disorders including

schizophrenia.

Page 150: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

136  

6.6 Future Direction  

There are several future studies that could be conducted as an extension of this work. First,

although PAS-LTP is associated with learning in the motor and somatosensory cortex, it is

unclear as to whether PAS-LTP in the DLPFC is correlated with working memory performance,

as to date no study has been conducted to assess this correlation. One would, however, expect

that there is a strong correlation, given that LTP in the DLPFC and afferent pathways from the

hippocampus and amygdala have been suggested to play a prominent role in learning and

memory formation (Laroche, Jay et al. 1990; Laroche, Davis et al. 2000; Maroun and Richter-

Levin 2003).

Second, a study should assess the functional significance of the effect of these drugs on cognitive

function, such as working memory assessed through a cognitive test, such as the N-Back. This

would allow for a better link between neurophysiological findings and cognitive symptoms of

schizophrenia.

Third, structural differences in the DLPFC, i.e. cortical thickness and/or surface area, have been

shown to be associated with cognitive function. Two studies have examined the relationship

between potentiation and cortical thickness/surface, in healthy subjects. A correlation between

PAS-LTP and cortical thickness has been shown in the primary sensorimotor cortex of young

(Conde, Vollmann et al. 2012)and in older healthy individuals when assessing the motor

cortex(List, Kubke et al. 2013). However, to date, no studies have been conducted to evaluate the

relationship between cortical thickness or surface area and PAS-LTP in the DLPFC of healthy

participants.

Page 151: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

137  

Fourth, this study due to recruitment challenges included a limited sample of 12 healthy subjects;

potentially a replication study may recruit a larger sample to further assess if these effects are

reproducible. Lastly, future studies may attempt to use PAS as a therapeutic tool in restoring

impaired plasticity in neurologic and psychiatric disorders characterized by this dysfunction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 152: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

138  

Appendix

Table 1. Image Studies assessing the Glutamatergic Systems in Antipsychotic-Naïve/Antipsychotic-Free Patients with Schizophrenia

 

Publication  Subjects (n): Age mean ± 

(SD)  

 

Method

 

Findings 

Kragulijac, et 

al.,2013(Kraguljac, 

White et al. 2013) 

n=27 patients: 11 antipsychotic‐naïve, 16  antipsychotic‐free for at least two weeks (M=20, F=7) (32.63± 9.28)  

n=27 healthy controls (M=20, F=7) (32.89 ± 9.39) 

3‐T (1H) MRS was used for assess GLX levels from the hippocampus 

Elevation in GLX in the hippocampus of  antipsychotic‐free patients compared to healthy controls  

Kegeles, et. al., 

2012(Kegeles, 

Mao et al. 2012) 

n=32 patients: n=16 unmedicated patients, for a minimum of 14 days: (M=11, F=5) (32 ± 11 years) 

 n=16 medicated patients: (M=11, F=5) (32 ±10  years) 

n= 22 healthy controls: (M=14, F=8) (33 ± 8 years) 

3‐T (1H) MRS and the J‐edited spin‐echo difference method was used to assess GLX and GABA levels in the medial‐ and dorsolateral prefrontal cortex of unmedicated patients, medicated patients, and healthy controls 

30% elevations in GLX and GABA levels in MPFC of  unmedicated patients compared with  healthy controls, and medicated patients 

No difference was detected  in dorsolateral prefrontal cortex among the three groups 

There was a correlations between GABA and GLX levels  in both the  medial‐ and dorsolateral prefrontal cortex of patients and healthy controls   

 

Page 153: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

139  

Seese, et al., 2011 

(Seese, O'Neill et 

al. 2011) 

n=28 youth with childhood‐onset schizophrenia: (M=15, F=13) (14.1 ± 3.0 years)

n=34 healthy controls: (M=15, F=19) (11.5 ± 2.9 years) 

1.5 T (1H) MRS and short echo time was used to assess glutamatergic metabolites bilaterally in the inferior frontal, middle frontal, and superior temporal gyri of patients and healthy controls

No difference was detected in the regions specified between healthy controls and patients

Aoyama, et al., 

2011(Aoyama, 

Theberge et al. 

2011) 

n=17 antipsychotic‐naïve  patients: (M=14, F=3)  (27 ± 8  years) 

n=17 healthy controls: (M=13, F=4) (30 ±10  years) 

 

3 T (1H) MRS was used to assess glutamatergic metabolites in the left anterior cingulate and thalamus before medication, 10 and 80 months after treatment

Thalamic glutamate and glutamine levels decreased over 80 months

No difference was detected in the anterior cingulate

De la Fuente‐

Sandoval, et al., 

2011(de la 

Fuente‐Sandoval, 

Leon‐Ortiz et al. 

2011) 

n=18 antipsychotic‐naïve patients with prodromal symptoms ‐ considered to be at high‐risk for schizophrenia (M=14, F=4) (19.56 ± 3.46 years) 

n=18 antipsychotic‐naïve first‐episode patients: (M=10, F=8) (23.44 ± 4.93 

years) 

n=40 healthy controls: (M=28, F=12) (21.83 ± 4.47 years) 

 

 

3 T (1H) MRS was used  to assess glutamate level in the precommissural dorsal‐caudate and the cerebellar cortex in the three groups  

Greater glutamate levels were detected in the precommissural dorsal‐caudate in both the  high‐risk and  first‐episode groups compared with healthy controls 

No differences were detected between the three groups in the cerebellum 

 

Lutkenhoff, et al., 

2010(Lutkenhoff, 

van Erp et al. 

2010) 

n=12 co‐twins discordant for schizophrenia : (M=7, F=5) (49.5 ± 10 years) 

3T (1H) MRS was used to assess  the medial prefrontal gray matter, left prefrontal white matter and left hippocampus  

Glutamate levels were significantly lower in the medial prefrontal of patients with schizophrenia and unaffected co‐twin in 

Page 154: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

140  

n= 21 healthy twins: (M=12, F=9) (55.7 ± 3.8 years) 

n= 9 proband twin: (M=5, F=4) (48.8 ± 11.5 years) 

the cortex comparedwith healthy twins. 

 

No differences in glutamate levels  were detected in the left hippocampus  or  the left prefrontal white matter 

Bustillo, et al., 

2010(Bustillo, 

Rowland et al. 

2010) 

n= 14 minimally treated  (less than 3 weeks) patients with schizophrenia:    (M=12, F=2) (27.2 ± 8.9 years)

n=10 healthy controls: (M=8, F=2) (28.8± 9.7 years) 

 

4 T(1H) MRS proton echo planar spectroscopic imaging was used  to assess Gln/Glu ratio, N‐ acetylaspartic acid (NAA) and Inositol levels in  anterior cingulate and thalamus of patients and healthy controls  

No difference in Gln/Glu ratio was found between healthy controls  and  patients with schizophrenia  in the thalamus, but an elevation in Gln/Glu was detected in the   anterior cingulate  before treatment  

De la Fuente‐

Sandoval, et al., 

2009(de la 

Fuente‐Sandoval, 

Favila et al. 2009) 

n=14 antipsychotic‐free patients (N/A) 

n=14 healthy controls (N/A) 

(1H) MRS was assessed twice, once before treatment and another 6 weeks after treatment and were compared with  and healthy controls  

Glu/Cr levels were higher in the dorsal caudate nucleus in patients compared with healthy controls during the antipsychotic‐free period and after treatment  

No difference found in the cerebellum  

 

Theberge,  et al. 

2007 (Theberge, 

Williamson et al. 

2007) 

n=16 antipsychotic‐naïve patients before and after 10 months and 30 months of antipsychotic treatment: (M=14, F=2) (25 ± 8 years) 

n=16 controls on two occasions: 30 months apart: (M=14, F=2) (29 ±12 years)  and (32 ±12 years) 

4T (1H) MRS and MRI images were used to assess the anterior cingulate and thalamic glutamatergic metabolite levels as well as grey‐matter volumes of patients and controls  

Greater glutamine levels were detected in the anterior cingulate    and thalamus of antipsychotic‐naïve patients. 

Thalamic glutamine levels were reduced after 30 months of antipsychotic treatment  

No  correlation was found  between medication levels and glutamine levels  

Page 155: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

141  

 

Ohrmann, et al., 

2007(Ohrmann, 

Siegmund et al. 

2007) 

n =15 first‐episode antipsychotic‐naïve patients: (M=10, F=5) (27 ± 6.9 years 

n=20 chronic patients: (M=14, F=6) (30.3 ± 7.3 years) 

n=20 healthy controls (M=13, F=7)  (28.1 ±  6.5 years 

 

1.5 T (1H) MRS was used to assess  glutamatergic metabolites from the   dorsolateral prefrontal cortex of patients and healthy controls 

Patients with chronic schizophrenia had reduced levels of glutamate/glutamine in the  dorsolateral prefrontal cortex compared with first‐episode patients and healthy controls, while  no difference in GLX was detected in the  dorsolateral prefrontal cortex of first‐episode patients compared with healthy controls  

Ohrmann, et al., 

2005 (Ohrmann et 

al,. 2005) 

n=18 first‐episode antipsychotic‐naïve patients: (M=13, F=6) (29.3 ± 7.3 years)

n=21 chronic patients: (M=15, F=6) (29.7 ±7.4 years) 

n=21  healthy controls: (M=13, F=8) (28.0± 6.8 years) 

 

1.5 T (1H) MRS was used to assess  glutamatergic metabolites from the  dorsolateral prefrontal cortex of patients and healthy controls 

 

Chronic patients had significantly reduced levels of GLX, and N‐ acetylaspartic acid  (NAA) compared with healthy controls and first‐episode patients.  

 

Theberge, et al., 

2002(Theberge, 

Bartha et al. 

2002) 

n=21 antipsychotic‐naïve patients: (M=14, F=7) (26 ± 7 years) 

 n=21 healthy controls: (M=14, F=7) (26 

± 7 years) 

4T (1H) MRS was used to assess the left anterior cingulate and thalamus of patients and healthy controls   

Greater glutamine levels were detected  in both the left anterior cingulate and the left thalamus of patients compared with healthy controls 

Kegeles, et al., 

2000(Kegeles, 

Shungu et al. 

2000) 

n=10 male patients: ( 3 medicated and 7 antipsychotic‐free)  (28 ± 7 years) 

1.5 T (1H)MRS was used to assess  GLX and other glutamatergic metabolites from the medial temporal  lobe of patients and healthy controls  

Greater GLX/Cho levels were detected in the  right medial temporal lobe of patients compared with healthy controls 

Page 156: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

142  

n=10 male healthy controls (29 ± 5 years) 

Bartha, et al., 

1999(Bartha, al‐

Semaan et al. 

1999) 

 

n=11 antipsychotic‐naïve first‐episode patients: (M=9, F=2) (27.4 ± 6 7.7) 

n=11 healthy controls: (M=9, F=2) (25.9 ± 6 5.9 years) 

1.5T (1H)MRS was used to assess glutamate, glutamine and N‐ acetylaspartic acid (NAA) levels from the left (hippocampus) medial temporal lobe of patients and healthy controls  

No difference was detected in the hippocampus when patients were compared with healthy controls. 

Bartha, et al., 

1997(Bartha, 

Williamson et al. 

1997) 

n=10 antipsychotic‐naïve patients: (M=8, F=2) (24±5 years ) 

n=10 healthy controls: (M=8, F=2) (26.3±6.4 years ) 

1.5 T (1H)MRS was used to assess glutamate and glutamine from the medial prefrontal cortex of  patients and healthy controls 

Greater glutamine levels were detected  in the  medial prefrontal cortex of patients compared with healthy controls 

 

Stanley et al., 

1996(Stanley, 

Williamson et al. 

1996) 

n=29 patients with schizophrenia : n= 13 antipsychotic‐naïve  first‐episode patients (M=11, F=2) ; n=12 acute medicated patients (M=10, F=2); n=10 chronic medicated patients (M=11, F=1) 

n=24 male healthy controls 

1.5 T short echo (1H)MRS was used to assess glutamate and glutamine from the left  dorsolateral prefrontal cortex of  patients and healthy controls 

No difference in glutamate or glutamine  levels were detected in the  dorsolateral prefrontal cortex  of  antipsychotic‐naïve patients compared to healthy controls, however, glutamine levels were elevated in chronic patients compared with healthy controls  

 

 

 

 

 

Page 157: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

143  

Table 2: Image Studies Assessing Dopaminergic Systems in Antipsychotic-Naïve or Antipsychotic-Free Patients with Schizophrenia

 

Publication  Subjects (n): Sex: Age mean 

± (SD)  

 

Method

 

Findings 

Schmitt, et al., 

2012 (Schmitt, 

Dresel et al. 

2012) 

N=12 antipsychotic-naïve patients: (M=10, F=2) (27.57 ± 5.34 years)

N= 12 treated patients: (M=10, F=2) (26.41 ± 5.29 years)

N= 12 healthy controls: (M=9, F=3) (N/A)  

123I‐IBZM SPECT was used 

to assess  D2/3 receptor binding in the striatum of patients and  healthy controls 

No difference in  D2/3 binding was detected in striatum of  antipsychotic‐naive patients compared with  healthy controls, but a reduction was detected in treated patients  

Corripio, et 

al., 2011 

(Corripio, 

Escarti et al. 

2011) 

N=37 Antipsychotic-naïve first-episode patients: (28.3 ± 8.4 years): N=12 Non-schizophrenia: (Schizophreniform

        disorder N=3; 

Schizoaffective 

disorder N=2: 

Delusional 

Disorder: N=2; 

Brief Psychotic 

Disorder  

              N= 2; Bipolar 

Disorder n=2; 

Psychotic disorder 

N =1 ) : (M=26, 

F=11) (29.3± 9.2 

years) 

N=18 healthy controls: (M=10, F=8) (24.3 ± 5.3 years)

123I‐IBZM SPECT was used to assess D2/3 receptor binding in striatum, caudate and putamen of patients and  healthy controls 

D2/3 striatal/frontal binding  ratio was greater in patients with schizophrenia compared with healthy controls ,but  there was no difference between patients with schizophrenia and non‐schizophrenia  

Page 158: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

144  

Abi‐Dargham, 

et al., 

2011(Abi‐

Dargham, Xu 

et al. 2012) 

N=25 patients (12 antipsychotic-naïve: (M=5, F=7) (24.42 ± 4.81 years) and 13 antipsychotic-free: (M=11, F=2) (30.56 ± 10.21 years)

N=24 healthy controls antipsychotic-naive: (M=12, F=12) (25.42 ± 4.81 years)

N=24 healthy controls antipsychotic-free: (M=21, F=4) (30.34 ± 9.81 years)

[11C]NNC112 PET was used to assess D1 receptor  binding in  the  striatal subregions : associative striatum: dorsal and pre‐post commissural caudate and pre‐ post commissural putamen, the limbic striatum: the ventral striatum, the  sensorimotor striatum: post‐commissural putamen, the  cortical regions: the dorso‐ medial prefrontal cortex and the orbito‐frontal cortex of patients and healthy controls  

D1 receptor binding was greater in dorso‐, medial prefrontal cortex and the orbito‐frontal cortex of antipsychotic‐naïve patients compared with healthy controls , but no difference when antipsychotic‐free patients were compared with healthy controls  

 

Kegeles, et al., 

2010(Kegeles, 

Abi‐Dargham 

et al. 2010) 

N=18 untreated patients: 6 antipsychotic-naïve and 12 antipsychotic-free(minimum, 20 days; maximum, 300 days : (M=13, F=5) (29± 8 years)

N=18 healthy controls: (M=13, F=5) (29 ± 7 years)

[11C] raclopride PET was used to measure D2/3 

receptor binding in the ventral striatum ,precommissural dorsal caudate, precommissural dorsal 

  putamen,         

postcommissural 

 caudate,and 

postcommissural putamen 

of patients and healthy 

controls 

Greater D2/3 receptor binding in the associative striatum of patients: most pronounced in the precommissural  

No difference were detected in the other regions when patients were compared with healthy controls 

Kegeles et al., 

2010(Kegeles, 

Slifstein et al. 

2010) 

N=21 patients with schizophrenia: 5 antipsychotic-naïve, 15 antipsychotic-free (M=14, F=7) (31 ± 12)

N=22 healthy controls (M=17, F= 5) (26 ± 6)

[18F]fallypride PET was used to measure D2/3 receptor binding in the striatal:  postcommissural putamen, precommissural putamen, ventral striatum, precommissural dorsal caudate and extrastriatal regions :thalamus, amygdala, insula, midbrain, incus, hippocampus, temporal cortex and entorhinal cortex 

Greater D2/3 receptor binding in the postcommisural caudate and thalamus, and decrease D2/3 binding in the uncus 

Page 159: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

145  

Abi‐Dargham, 

et al., 

2009(Abi‐

Dargham, van 

de Giessen et 

al. 2009) 

N=6 first‐episode antipsychotic‐naïve patients: (M=2, F=4) (29 ± 6 years) 

N=8 healthy controls: (M=6; F=2) (28 ± 8 years)

123I‐IBZM SPECT was used under three conditions: baseline, after amphetamine administration and after dopamine depletion to assess striatal D2/3 receptor binding and dopamine release  

Greater D2/3 receptor binding and dopamine transmission were detected in the striatum of patients compared with healthy controls  

 

Graff, et al., 

2009(Graff‐

Guerrero, 

Mizrahi et al. 

2009) 

N=13 first episode patients, antipsychotic‐ free for at least 2 weeks (M=9, F=4) (26 ± 6 years) 

N=13 healthy controls (M=9, F=4) (27 ± 6 years) 

[11C]‐[+][PHNO] was used to assess D2/3 high receptor binding in the caudate, putamen, ventral striatum, globus pallidus, substantia niagra and anterior thalamus of patients and healthy controls  

No difference in D2/3 high receptor binding  was found in any of the regions when patients were compared to healthy controls 

Kessler, et al., 

2009(Kessler, 

Woodward et 

al. 2009) 

N=11 patients: 4 ‐naïve, 7 antipsychotic‐free: (M=6, F=5) (30+ 8 years) 

N=11 healthy controls: (M=5, F=6) ( 31.6 + 9.2 years) 

 

[18F] fallypride PET was used to assess D2/3 receptor binding in the caudate, putamen, ventral striatum, medial thalamus, posterior thalamus, substantia nigra, amygdale, temporal cortex, anterior cingulate, and hippocampus of patients and healthy controls  

Greater D2/3 receptor binding was detected bilaterally in the substantia nigra of patients 

Decreased D2/3 receptor binding was detected in the left medial thalamus of patients 

 

Nozaki, et al., 

2009(Nozaki, 

Kato et al. 

2009) 

N=18 patients: 

14  antipsychotic ‐naive and 4 antipsychotic‐free(3 months) patients: (M=10, 

F=8) ( 35.1± 9.5 years) 

N=20 healthy controls: (M=10, F=10) (35.6± 7.4 years) 

L‐[beta‐11C] DOPA PET was used to assess 

presynaptic dopamine synthesis in the prefrontal 

cortex, temporal cortex, 

anterior cingulate, 

parahippocampus, 

thalamus, caudate 

nucleus, and putamen of 

patients and healthy 

controls 

Greater 

dopamine synthesis was detected in the left caudate nucleus and thalamus, which positively correlated with overall symptom severity. 

Schmitt, et al., 

2009 (Schmitt, 

Meisenzahl et 

al. 2009) 

N=23 acutely ill first‐episode antipsychotic‐naïve patients: (M=19, F=4) (28.18± 6.23 years) 

123I–IBZM SPECT was used to assess D2/3 receptor binding in the striatum of patients and healthy controls  

Reduced D2/3 receptor binding was detected in patients compared with healthy controls 

 

Page 160: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

146  

N= 10 healthy controls: (M=5, F=5) (32.4± 12.73 years) 

Kumakura, et 

al. 

2007(Kumakur

a, Cumming et 

al. 2007) 

 

 

N=8 male patients:  3 antipsychotic‐naïve and 5 antipsychotic‐free for at least 6 months : (37.3 ± 6.3 years) 

N=15 healthy male controls: (37.3 ± 6.4 years)

 

[18F]fluorodopa [FDOPA] PET was used to assess  dopamine synthesis in the striatum of patients and healthy controls  

Greater synthesis and turnover of radiolabeled dopamine was detected in patients

[18F]fluorodopa was greater nearly twofold in striatum of patients

FDOPA clearance was increased by 20% in caudate and putamen and by 50% in amygdala and midbrain of the patients

FDOPA and its decarboxylated metabolites were reduced by one-third in the caudate nucleus and amygdala of patients compared to healthy controls

 

Page 161: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

147  

Buchsbaum, et al., 2006(Buchsbaum, Christian et al. 2006)

N=15 antipsychotic‐naïve patients: (M=10, F=5)  (28.5 ± 8.9 years)  

N=15 healthy controls: (M=9, F=6) (27.4 ± 7.9 years)

[18F] fallypride PET and MRI images were used to detect D2/3/D3 receptor binding in the thalamus, amygdala region, cingulate gyrus, and temporal cortices of patients and healthy controls

Reduced D2/3/D3 

receptor binding was detected in the thalamus; mostly in left medial dorsal nucleus and left pulvinar ,but also in amygdale, cingulated gyrus and temporal cortices of patients compared with healthy controls  

Corripio, et al., 2006 (Corripio, Perez et al. 2006) .  

N = 11 first-episode antipsychotic-naïve patients with schizophrenia: (M=6, F=5) (25.6 ± 4.5 years)

N=7 patients with non-schizophrenia (Schizophreniform, schizoaffective and bipolar): (M=4, F=3) (22.6 ± 3.4 years)

N = 18 control: (M=10, F=8) (24.2 ± 4.4 years) 

123I‐IBZM  SPECT was used to assess striatal D2/3 receptor binding of patients and controls 

Patients with schizophrenia showed greater D2/3 receptor binding-(striatal/occipital) then non-schizophrenia patients and healthy controls; D2/3

receptor binding at diagnosis predicted a high probability for developing schizophrenia after a 2-year follow-up

 

Talvik, et al., 

2006(Talvik, 

Nordstrom et 

al. 2006) 

N=18  antipsychotic‐naïve patients: (M=9, F=9) (16–50 years) 

N= 17 controls: (M=13, F=4) (17–50 years)

[11C] raclopride PET was used to assess D2/3 receptor binding in the putamen, caudate and thalamus of patients and healthy controls

No group differences were detected for D2/3 binding in the putamen or caudate, and there was no hemispheric difference for any region.  

D2/3  receptor binding was reduced in the right thalamus of patients compared with healthy controls, however did not reach statistical significance for the left thalamus 

Glenthoj, et 

al., 

N=25 antipsychotic‐

123I‐epidepride SPECT was used to measure D2/3/D3 

No difference was found in D2/3 

Page 162: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

148  

2006(Glenthoj

, Mackeprang 

et al. 2006) 

naïve patients: (M=17, F=8) (26.8 years) 

N=20 healthy controls: (M=13, F=7) ( 26.5 years) 

receptor binding  in the frontal, temporal, and  thalamic region of patients and controls 

receptor binding between patients and healthy controls in the any of the regions 

Patients, however, had greater D2/3 binding in the right compared to the left thalamus, whereas no hemispheric imbalance was detected in healthy  controls  

Binding values were greater  in male  (n=17) compared to female  patients (n=8) 

 

Tuppurainen, 

et al., 

2006(Tuppurai

nen, Kuikka et 

al. 2006) 

N= 6  antipsychotic ‐naive patients: (M=2, F=4) (33 ± 14 years) 

N=  7 healthy controls: (M=4, F=3) (31 ± 9 years) 

123I‐epidepride SPECT was used to assesses D2/3/D3 

receptor binding in the thalamus and midbrain of patients and healthy controls 

Reduced D2/3/D3 

receptor binding was found in the midbrain, substantia niagra, of patients compared with healthy controls  

No difference was detected in the thalamus between patients and healthy controls  

Lomena, et 

al., 

2004(Lomena, 

Catafau et al. 

2004) 

N=12  antipsychotic ‐naïve: (M=5, F=7)  (26 ± 6 years)  

N= 16 antipsychotic‐free after 7 days: (M=13, F=3)  (30 ± 9 years) 

123I‐IBZM SPECT was used to assess basal ganglia/ frontal cortex  D2/3  receptor binding ratio of antipsychotic‐naïve and antipsychotic‐free patients  

No difference in basal ganglia/frontal cortex  D2/3 receptor binding was detected  between antipsychotic‐naïve and antipsychotic‐free patients 

 

Yang, et al., 

2004(Yang, Yu 

et al. 2004) 

N=11 antipsychotic-naïve patients: (M=6, F=5) (25.4 ± 10.2 years)

N= 12 healthy controls: (M=9, F=3) (33.3 ± 12.9 years)

 

123I‐IBZM SPECT was used to assess 

striatal dopamine  D2/3/D3 receptor binding   

No difference in striatal D2/3/D3

receptor binding was detected between healthy controls and patients

Page 163: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

149  

Yasuno, et al., 

2004(Yasuno, 

Suhara et al. 

2004) 

N=10 antipsychotic -naive male patients: (29. ± 5 7.8 years)

N=19 healthy male controls : (29.6 ± 7.5 years) 

[11C]FLB457 PET was used to assess D2/3 receptor binding in subregions of the thalamus of patients and healthy controls

 

D2/3 receptor binding was reduced in the central medial and posterior subregions of the thalamus in patients compared with healthy controls.

Talvik, et al., 

2003 (Talvik, 

Nordstrom et 

al. 2003) 

N=9 antipsychotic-naïve patients: (M=3, F=6) (36 ± 12 years)

N=8 healthy controls: (M=4, F=4) (31 ± 12 years)

 

[11C]FLB 457 PET was used to assess D2/3/D3 receptor binding in the thalamus, anterior cingulate, frontal and temporal cortices of patients and healthy controls  

D2/3/D3 receptor binding was reduced in the medial  thalamus of patients compared with healthy controls  

No significance was detected in the anterior cingulated, frontal or temporal regions when patients were compared with healthy controls  

Abi‐Dargham, 

et al., 

2002(Abi‐

Dargham 

2002) 

N=16 patients: 7 antipsychotic-naïve and 9 antipsychotic-free for at least 21 days: (M=13, F=3) (33 ± 12 years)

N=16 healthy controls: (M=11, F=5) (34 ± 10 years)

[11C ]NNC 112 PET was used to assess D1 receptor binding in the dorso‐ medial prefrontal cortex subcortical regions: dorsal caudate, dorsal putamen, ventral striatum, thalamus, amygdale, and hippocampus of patients and healthy controls  

 

Greater D1 receptor binding was detected in the  dorsolateral prefrontal cortex of patients (in both antipsychotic‐naïve and antipsychotic‐free patients ) compared with healthy controls 

 

Suhara, et al., 

2002(Suhara, 

Okubo et al. 

2002) 

N=11 antipsychotic‐naïve male patients: (28.1 ±7.9 years)  

N=8 healthy controls: (27.3 ±6.2 years)  

 [11C] FLB 457 PET was used to assess  D2/3 receptor binding in the anterior cingulate, prefrontal cortex, temporal cortex, occipital cortex, hippocampus, and thalamus  of patients and healthy controls 

Reduced D2/3 receptor binding was detected in only the anterior cingulate of patients when compared with healthy controls  

Abi‐Dargham, 

et al., 

2000(Abi‐

Dargham, 

Rodenhiser et 

al. 2000) 

N=18  patients :8 antipsychotic‐naïve and 10   antipsychotic‐free: (M=11, F=7) (31 ± 8 years)  

SPECT was used to assess  D2/3 receptor binding in the striatum of patients and healthy controls before and during AMPT  dopamine depletion  

Greater D2/3 receptor binding and dopamine levels were found in patients compared with  healthy controls  

 

Page 164: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

150  

N= 18  healthy controls: (M=11, F=7) (31  ±8 years) 

Hietala, et al., 

1999(Hietala, 

Nagren et al. 

1999) 

N= 10 patients all antipsychotic‐naïve, but 6 had received occasional doses of benzodiazepine for sedation 2 weeks before the PET scan (M=4, F=6)  (29.8 ± 8.8 years) 

N= 13 healthy controls: (M=8, F=5) (30.4 ± 9.4 years) 

 PET with fluorodopa [FDOPA] was used to assess  dopamine synthesis in the striatum of patients and healthy controls  

Greater pre‐synaptic dopaminergic synthesis was detected  in patients compared with healthy controls, the increase was greater in  the putamen than caudate and was predominately greater in the left caudate  

Laruelle, et al., 

1999 (Laruelle 

et al. 1999) 

N=34 patients:        7  antipsychotic‐

naïve 

       and 27  

antipsychotic‐ free 

for at least 21 

days: (M=32, F=4) 

(40  ±9 years ) 

N=36  healthy controls (M=28, F=6) (40   ±9 years) 

1231‐IBZM SPECT and amphetamine were used to assess dopamine transmission in the striatum of patients and healthy controls 

Greater dopamine transmission was  detected in patients at the onset of illness and during periods of exacerbation, but not during periods of remission 

Lindström, et 

al., 

1999(Lindstro

m, Gefvert et 

al. 1999) 

N= 14 patients: 12 antipsychotic-naïve (1 antipsychotic-free for at least 10 years and 1 antipsychotic-free for at least 2 years): (M=12, F=2) (31 years)

N=10 healthy controls (M=8, F=2) (N/A) 

 [11C] L‐DOPA was used to assess L‐DOPA influx rate in the striatum of patients and healthy  controls  

Greater L-DOPA influx rate was detected in the caudate nucleus, putamen and in parts of medial prefrontal cortex (Brodmann 24) of patients compared with healthy controls

Abi‐Dargham, 

et al., 

1998(Abi‐

Dargham, Gil 

et al. 1998) 

N=15 antipsychotic‐free patients  (for a least 21 days): (M=12, F=3) (41 ±  9 years) 

123IBZM PET and   amphetamine were used to assess D2/3 receptor binding in the striatum of patients and healthy  controls 

No difference in D2/3 receptor binding was detected  in the striatum of patients when compared with healthy controls ; but increased dopamine 

Page 165: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

151  

N=15  healthy controls: (M=12, F=3) (40 ± 11 years) 

transmission was detected in patients when compared with healthy controls  

 

Breier, et al., 

1997(Breier, 

Su et al. 1997) 

N=11 patients: 6 antipsychotic-naïve and 5 antipsychotic -free, mean 7.2 days: (M=8, F=3) (32.4 6 ± 3.0 years)

N=12 healthy controls: (M=9, F=3) (29.2 6 ± 2.6 years)

[11C) raclopride PET and amphetamine were used to assess amphetamine-induced dopamine release in the striatum of patients and healthy controls

Greater dopamine synthesis, but no difference in striatal D2/3 receptor binding was detected in patients compared with healthy controls

Dao‐

Castellana, et 

al., 1997(Dao‐

Castellana, 

Paillere‐

Martinot et al. 

1997) 

N=6 male untreated patients: 2 antipsychotic-naïve (26 ± 9 years)

N=7 male healthy controls (25 ± 5 years)

[18F ]-DOPA PET was used to assess dopamine synthesis in the caudate and putamen of patients and healthy controls

No difference between patients and controls was found for Ki mean values

[18F]-DOPA uptake variability was higher in the caudate and putamen of patients compared with healthy controls

Knable, et al., 

1997(Knable, 

Egan et al. 

1997) 

N=21 patients (M=18, F=3) (38.5 ± 9 years)

N=16 healthy controls (M=11, F=5) ( 28.8  ± 7.8 years) 

 

123I-idobenzamide SPECT was used to assess D2/3 receptor binding

No difference was detected between the groups

Okubo, et al., 

1997 (Okubo 

et al. 1997) 

N=10 antipsychotic-naive male patients: (26.1 ± 3.8 years)

N=7 antipsychotic-free male patients: (29.2 ± 8.1years)

N=18 male healthy controls: (27.7 ± 5.6 years)

PET with [11C] SCH23390 and [ 11C]N-methylspiperone was used to assess D1 and D2/3 receptor binding ,respectively in prefrontal cortex of antipsychotic-naïve patients, antipsychotic-free patients and healthy controls

No difference was detected in both patient groups compared with healthy controls in the striatum, however D1 receptor binding was reduced in the prefrontal cortex

Page 166: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

152  

Wong, et 

al.,1997(Wong

, Singer et al. 

1997) 

N=22 patients with schizophrenia: antipsychotic-naïve patients: (M=13, F=9) 24 years)

N= 14 patients with bipolar: N= 7 with psychotic symptoms: (M=4, F=3) (41 ± 13 years); N=7 with non-psychotic symptoms: (M=5, F=2) (41 ± 14 years)

N=24 healthy controls: (M=19, F=5) (40 ± 22 years)

PET with  [11C]N‐methylspiperone was used to assess D2/3 

receptor binding in the caudate nucleus of patients and healthy controls 

D2/3 receptor binding was greater in the caudate nucleus of patients with psychotic symptoms

D2/3 receptor binding decreased with age and there was no difference between patients and controls

Laruelle, et al., 

1996(Laruelle, 

Abi‐Dargham 

et al. 1996) 

N=15 antipsychotic-free patients: (M=14, F=1) (42± 2)

N=15 healthy controls: (M=14, F=1) (41 ±2)

SPECT with 123I-IBZM and amphetamine were used to assess dopamine transmission of patients and healthy controls

Greater dopamine transmission in the striatum of patients compared with healthy controls

Hietala, et al., 

1995(Hietala, 

Syvalahti et al. 

1995) 

N= 7  patients:  all antipsychotic‐naïve but 5 had received occasional doses of benzodiazepine for sedation 2 weeks before PET: (M=4, F=3) (26± 7 years) 

N=8 healthy controls: (M=6, F=2) (26± 7 years)

PET with FDOPA was used to assess dopamine synthesis in the striatum of patients and healthy controls

Greater pre‐synaptic dopamine synthesis was detected in the striatum of  patients compared with healthy controls 

The increase was greater in putamen than the caudate and was predominately greater in the left caudate  

Nordstorm, et 

al., 

1995(Nordstro

m, Farde et al. 

1995) 

N= 7 antipsychotic‐naïve patients: (M=5, F=2) (28.4 ± 6.8 years) 

N=7 male healthy controls: (27.7 ± 6.8 years) 

 PET with [11C]N‐methylspiperone was used to assess D2/3 receptor binding  in the basal ganglia  of patients and healthy controls 

No difference  in D2/3 

receptor binding was detected in the basal ganglia of patients compared with healthy controls  

Pearlson, et 

al., 

N= 10 antipsychotic ‐naïve patients with 

PET was used to assess D2/3 receptor binding in patients with 

Greater D2/3 receptor binding was detected in  psychotic patients 

Page 167: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

153  

1995(Pearlson

, Wong et al. 

1995) 

schizophrenia :( M=6, F=4) (31 ± 11.4 years )  

N= 12 healthy controls:  (M=9, F=4) (28 ± 12.6 years ) 

N=14 patients with bipolar ( antipsychotic ‐ free for more than 6 months or antipsychotic‐naïve (N=11) :N= 7 bipolar with non‐psychosis: (M=4, F=3) (41 ± 13.4 years ); N=7 bipolar with psychosis: (M=5, F=2) (39.4 ± 13.9 years) 

 

schizophrenia, bipolar and healthy controls  

with bipolar disorder and 

              schizophrenic                     

patients                      

compared with 

healthy controls  

Greater D2/3 receptor binding was detected in schizophrenic patients and psychotic patients with bipolar disorder when compared with non‐psychotic patients 

.  

Hietala, et al., 

1994(Hietala, 

West et al. 

1994) 

N=13 antipsychotic‐free patients: (M=9, F=4) (26.8± 7.3 years) 

N=10 healthy controls: (M=6, F=4) (25.2± 6.8 years) 

Raclopride PET was used to assess D2/3 receptor binding in the striatum  of patients and healthy controls   

No difference in D2/3 

receptor binding or affinity was detected in the striatum of patient compared with healthy controls. 

Martinot, et 

al., 1994 

(Martinot, 

Paillere‐

Martinot et al. 

1994) 

 

 

N=10 young patients presenting with negative symptoms (8 antipsychotic‐naïve and 2 antipsychotic‐free for at least 4 months): (M=7, F=3) (26.8± 7.3 years) 

N=10 male healthy controls: (25.2± 6.8 years) 

 [76BR) Bromolisuride PET was used to assess striatal D2/3 receptor binding in the striatum of patients and healthy controls 

No difference in D2/3 

receptor binding was detected  in the striatum when patients were compared with healthy controls   

 

Pilowsky, et 

al.,1994(Pilow

N=20 patients : 17 never‐medicated and  3 antipsychotic‐

SPECT with 123I‐IBMZ was used to assess striatal D2/3 receptor binding in 

No difference in D2/3 receptor binding was detected  in the striatum when 

Page 168: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

154  

sky, Costa et 

al. 1994) 

free(>5 years): (M=11, F=9) (29 ±2.2 years) 

N=20 healthy controls: (M=11, F=9) ( 29 ± 3.3 years) 

 

the striatum of patients and healthy controls 

patients were compared with healthy controls   

 

Pearlson, et 

al., 

1993(Pearlson

, Tune et al. 

1993) 

N=13 late-onset antipsychotic-naïve patients: (M=3, F=10) (74 ± 13 years)

N= 17 healthy controls: (M=12, F=5) (39 ± 25years) 

PET was used to assess D2/3 receptor binding in patients and healthy controls

  

Late onset patients had greater D2/3 receptor binding compared with age and gender matched healthy controls.

 

Tune, et al., 

1993(Tune, 

Wong et al. 

1993) 

N=25 chronic patients: 18 antipsychotic-naïve and 7 antipsychotic-free: (M=17, F=8) (34.88 ± 7.08 years)

N=17 healthy controls (M=13, F=4) (39 ± 5.93 years

 

PET with [11 C]-N-methylspiperone was used to assess D2/3 receptor binding in striatum of patients and healthy controls

 

D2/3 receptor binding was greater in the striatum of patients compared with healthy controls; showed to decline with age

.

Martinot, et 

al., 

1991(Martinot

, Paillere‐

Martinot et al. 

1991) 

N=19 untreated patient: 10 antipsychotic-naïve and 9 antipsychotic-free for at least 6 months: (M=12, F=7) (23 ± 5 years)

N=14 male healthy controls: (23 ± 4 years)

[76BR] Bromospiperone PET was used to measure striatal to cerebellar radioactivity as an index of D2/3 receptor binding in patients and healthy controls

No difference in D2/3 receptor binding was detected  in the striatum of patients when  compared with healthy controls   

Farde, et 

al.,1990(Farde

, Wiesel et al. 

1990) 

N=18 first-episode antipsychotic-naïve patients: (M=10, F=8) (24.2 ± 3.3 years)

[11C]raclopride PET was used to assess D2/3 receptor binding

No difference in were detected in D2/3 receptor binding in the putamen or caudate nucleus

Greater binding was found in the left than

Page 169: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

155  

N=20 healthy controls: (M=10, F=10) (27.5 ± 4.9 years)

in the right putamen in patients but not in healthy controls

Martinot, et 

al., 

1990(Martinot

, Peron‐

Magnan et al. 

1990) 

N= 19 patients: 10  antipsychotic‐naïve; 9 antipsychotic‐free: (M=12) (22 ± 4 years) and (F=7) (24 ± 6 years) 

N=14 male healthy controls: (23 ± 4 years). 

[76BR] Bromolisuride PET was used to measure striatal to cerebellar radioactivity as an index of D2/3 receptor binding in patients and healthy controls

No difference was found between patients and healthy controls

Wong, et al., 

1986(Wong, 

Wagner et al. 

1986) 

N=10 antipsychotic-naïve patients: (M=8, F=2) (31.2 ± 3.6 years)

N=5 male antipsychotic-free patients: (26.8± 2.6 years)

N=11 healthy controls: (M=8, F=3) (24.3 ± 2 years)

[11 C]-N-methylspiperone PET was used to assess D2/3 receptor binding in caudate nucleus of patients and healthy controls

D2/3 receptor binding was greater in nucleus caudate of both the patient groups compared healthy controls

 

Page 170: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

156  

References

 Abi‐Dargham, A. (2002). "Recent evidence for dopamine abnormalities in schizophrenia." Eur Psychiatry 

17 Suppl 4: 341s‐347s. Abi‐Dargham, A. (2004). "Do we still believe in the dopamine hypothesis? New data bring new 

evidence." Int J Neuropsychopharmacol 7 Suppl 1: S1‐5. Abi‐Dargham, A., R. Gil, et al. (1998). "Increased striatal dopamine transmission in schizophrenia: 

confirmation in a second cohort." Am J Psychiatry 155(6): 761‐767. Abi‐Dargham, A., O. Mawlawi, et al. (2002). "Prefrontal dopamine D1 receptors and working memory in 

schizophrenia." J Neurosci 22(9): 3708‐3719. Abi‐Dargham, A., J. Rodenhiser, et al. (2000). "Increased baseline occupancy of D2 receptors by 

dopamine in schizophrenia." Proc Natl Acad Sci U S A 97(14): 8104‐8109. Abi‐Dargham, A., E. van de Giessen, et al. (2009). "Baseline and amphetamine‐stimulated dopamine 

activity are related in drug‐naive schizophrenic subjects." Biol Psychiatry 65(12): 1091‐1093. Abi‐Dargham, A., X. Xu, et al. (2012). "Increased prefrontal cortical D(1) receptors in drug naive patients 

with schizophrenia: a PET study with [(1)(1)C]NNC112." J Psychopharmacol 26(6): 794‐805. Ahlers, E., E. Hahn, et al. (2014). "Smoking improves divided attention in schizophrenia." 

Psychopharmacology (Berl) 231(19): 3871‐3877. Akbarian, S. and H. S. Huang (2006). "Molecular and cellular mechanisms of altered GAD1/GAD67 

expression in schizophrenia and related disorders." Brain Res Rev 52(2): 293‐304. Akbarian, S., N. J. Sucher, et al. (1996). "Selective alterations in gene expression for NMDA receptor 

subunits in prefrontal cortex of schizophrenics." J Neurosci 16(1): 19‐30. Albuquerque, E. X., E. F. Pereira, et al. (2009). "Mammalian nicotinic acetylcholine receptors: from 

structure to function." Physiol Rev 89(1): 73‐120. Albuquerque, E. X., E. F. Pereira, et al. (1997). "Nicotinic acetylcholine receptors on hippocampal 

neurons: distribution on the neuronal surface and modulation of receptor activity." J Recept Signal Transduct Res 17(1‐3): 243‐266. 

Amitai, Y. (2001). "Thalamocortical synaptic connections: efficacy, modulation, inhibition and plasticity." Rev Neurosci 12(2): 159‐173. 

Andreasen, N. C. and S. Olsen (1982). "Negative v positive schizophrenia. Definition and validation." Arch Gen Psychiatry 39(7): 789‐794. 

Aoyama, N., J. Theberge, et al. (2011). "Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia." Br J Psychiatry 198(6): 448‐456. 

Ascher, P. and L. Nowak (1988). "The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture." J Physiol 399: 247‐266. 

Auerbach, J. M. and M. Segal (1994). "A novel cholinergic induction of long‐term potentiation in rat hippocampus." J Neurophysiol 72(4): 2034‐2040. 

Bailey, C. P., N. Andrews, et al. (2000). "Prolonged changes in neurochemistry of dopamine neurones after chronic ethanol consumption." Pharmacol Biochem Behav 66(1): 153‐161. 

Barbey, A. K., M. Koenigs, et al. (2013). "Dorsolateral prefrontal contributions to human working memory." Cortex 49(5): 1195‐1205. 

Barker, A. T., R. Jalinous, et al. (1985). "Non‐invasive magnetic stimulation of human motor cortex." Lancet 1(8437): 1106‐1107. 

Bartha, R., Y. M. al‐Semaan, et al. (1999). "A short echo proton magnetic resonance spectroscopy study of the left mesial‐temporal lobe in first‐onset schizophrenic patients." Biol Psychiatry 45(11): 1403‐1411. 

Page 171: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

157  

Bartha, R., P. C. Williamson, et al. (1997). "Measurement of glutamate and glutamine in the medial prefrontal cortex of never‐treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy." Arch Gen Psychiatry 54(10): 959‐965. 

Bartha, R., P. C. Williamson, et al. (1997). "Measurement of glutamate and glutamine in the medial prefrontal cortex of never‐treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy." Archives of general psychiatry 54(10): 959‐965. 

Batsikadze, G., W. Paulus, et al. (2015). "Effect of the Nicotinic alpha4beta2‐receptor Partial Agonist Varenicline on Non‐invasive Brain Stimulation‐Induced Neuroplasticity in the Human Motor Cortex." Cereb Cortex 25(9): 3249‐3259. 

Battaglia, F., H. Y. Wang, et al. (2007). "Cortical plasticity in Alzheimer's disease in humans and rodents." Biological Psychiatry 62(12): 1405‐1412. 

Benes, F. M. and S. Berretta (2001). "GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder." Neuropsychopharmacology 25(1): 1‐27. 

Benes, F. M., J. McSparren, et al. (1991). "Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients." Arch Gen Psychiatry 48(11): 996‐1001. 

Benes, F. M., M. S. Todtenkopf, et al. (2000). "Glutamate decarboxylase(65)‐immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain." J Chem Neuroanat 20(3‐4): 259‐269. 

Benes, F. M., S. L. Vincent, et al. (1992). "Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics." J Neurosci 12(3): 924‐929. 

Bestmann, S. and J. W. Krakauer (2015). "The uses and interpretations of the motor‐evoked potential for understanding behaviour." Exp Brain Res 233(3): 679‐689. 

Bilder, R. M., R. S. Goldman, et al. (2000). "Neuropsychology of first‐episode schizophrenia: initial characterization and clinical correlates." Am J Psychiatry 157(4): 549‐559. 

Bird, E. D., E. G. Spokes, et al. (1977). "Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses." Lancet 2(8049): 1157‐1158. 

Bissiere, S., Y. Humeau, et al. (2003). "Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition." Nat Neurosci 6(6): 587‐592. 

Bliss, T. V. and T. Lomo (1973). "Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path." J Physiol 232(2): 331‐356. 

Blitzer, R. D., O. Gil, et al. (1990). "Cholinergic stimulation enhances long‐term potentiation in the CA1 region of rat hippocampus." Neurosci Lett 119(2): 207‐210. 

Blum, B. P. and J. J. Mann (2002). "The GABAergic system in schizophrenia." Int J Neuropsychopharmacol 5(2): 159‐179. 

Bonato, C., C. Miniussi, et al. (2006). "Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co‐registration study." Clin Neurophysiol 117(8): 1699‐1707. 

Bonsi, P., G. Martella, et al. (2008). "Loss of muscarinic autoreceptor function impairs long‐term depression but not long‐term potentiation in the striatum." J Neurosci 28(24): 6258‐6263. 

Bowery, N. G. (1993). "GABAB receptor pharmacology." Annu Rev Pharmacol Toxicol 33: 109‐147. Bowery, N. G., A. L. Hudson, et al. (1987). "GABAA and GABAB receptor site distribution in the rat central 

nervous system." Neuroscience 20(2): 365‐383. Bowery, N. G. and T. G. Smart (2006). "GABA and glycine as neurotransmitters: a brief history." Br J 

Pharmacol 147 Suppl 1: S109‐119. Bradford, H. F. and A. J. Thomas (1969). "Metabolism of glucose and glutamate by synaptosomes from 

mammalian cerebral cortex." J Neurochem 16(11): 1495‐1504. Bradford, H. F., H. K. Ward, et al. (1978). "Glutamine‐‐a major substrate for nerve endings." J Neurochem 

30(6): 1453‐1459. 

Page 172: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

158  

Breese, C. R., M. J. Lee, et al. (2000). "Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia." Neuropsychopharmacology 23(4): 351‐364. 

Breier, A., T. P. Su, et al. (1997). "Schizophrenia is associated with elevated amphetamine‐induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method." Proc Natl Acad Sci U S A 94(6): 2569‐2574. 

Brisch, R., A. Saniotis, et al. (2014). "The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue." Front Psychiatry 5: 47. 

Brocher, S., A. Artola, et al. (1992). "Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long‐term potentiation in slices of rat visual cortex." Brain Res 573(1): 27‐36. 

Brown, D. A. (2010). "Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms." J Mol Neurosci 41(3): 340‐346. 

Buchsbaum, M. S., B. T. Christian, et al. (2006). "D2/D3 dopamine receptor binding with [F‐18]fallypride in thalamus and cortex of patients with schizophrenia." Schizophr Res 85(1‐3): 232‐244. 

Burgard, E. C. and J. M. Sarvey (1990). "Muscarinic receptor activation facilitates the induction of long‐term potentiation (LTP) in the rat dentate gyrus." Neurosci Lett 116(1‐2): 34‐39. 

Bustillo, J. R., L. M. Rowland, et al. (2010). "1H‐MRS at 4 tesla in minimally treated early schizophrenia." Mol Psychiatry 15(6): 629‐636. 

Buzsáki (2006). Rhythms of the Brain. New York, NY, Oxford University Press. Buzsaki, G. and X. J. Wang (2012). "Mechanisms of gamma oscillations." Annu Rev Neurosci 35: 203‐225. Callicott, J. H., A. Bertolino, et al. (2000). "Physiological dysfunction of the dorsolateral prefrontal cortex 

in schizophrenia revisited." Cereb Cortex 10(11): 1078‐1092. Cantello, R., M. Gianelli, et al. (1992). "Magnetic brain stimulation: the silent period after the motor 

evoked potential." Neurology 42(10): 1951‐1959. Carlen, M., K. Meletis, et al. (2012). "A critical role for NMDA receptors in parvalbumin interneurons for 

gamma rhythm induction and behavior." Mol Psychiatry 17(5): 537‐548. Carpenter, W. T., Jr., R. W. Buchanan, et al. (1999). "Diazepam treatment of early signs of exacerbation 

in schizophrenia." Am J Psychiatry 156(2): 299‐303. Catafau, A. M., G. E. Searle, et al. (2010). "Imaging cortical dopamine D1 receptors using [11C]NNC112 

and ketanserin blockade of the 5‐HT 2A receptors." J Cereb Blood Flow Metab 30(5): 985‐993. Cavus, I., R. M. Reinhart, et al. (2012). "Impaired visual cortical plasticity in schizophrenia." Biol 

Psychiatry 71(6): 512‐520. Chase, T. N. and J. D. Oh (2000). "Striatal dopamine‐ and glutamate‐mediated dysregulation in 

experimental parkinsonism." Trends Neurosci 23(10 Suppl): S86‐91. Chen, R., A. M. Lozano, et al. (1999). "Mechanism of the silent period following transcranial magnetic 

stimulation. Evidence from epidural recordings." Exp Brain Res 128(4): 539‐542. Chen, Z., K. Ito, et al. (1996). "Roles of dopamine receptors in long‐term depression: enhancement via 

D1 receptors and inhibition via D2 receptors." Receptors Channels 4(1): 1‐8. Choe, B. Y., K. T. Kim, et al. (1994). "1H magnetic resonance spectroscopy characterization of neuronal 

dysfunction in drug‐naive, chronic schizophrenia." Acad Radiol 1(3): 211‐216. Chu, J., A. Wagle‐Shukla, et al. (2009). "Impaired presynaptic inhibition in the motor cortex in Parkinson 

disease." Neurology 72(9): 842‐849. Church, J., D. Lodge, et al. (1985). "Differential‐effects of dextromethorphan and levorphanol on the 

excitation of rat spinal neurons by amino‐acids." European Journal of Pharmacology 111(2): 185‐190. 

Church, J., D. Lodge, et al. (1985). "Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids." Eur J Pharmacol 111(2): 185‐190. 

Page 173: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

159  

Citri, A. and R. C. Malenka (2008). "Synaptic plasticity: multiple forms, functions, and mechanisms." Neuropsychopharmacology 33(1): 18‐41. 

Coan, E. J. and G. L. Collingridge (1987). "Characterization of an N‐methyl‐D‐aspartate receptor component of synaptic transmission in rat hippocampal slices." Neuroscience 22(1): 1‐8. 

Collingridge, G. L. and T. V. Bliss (1995). "Memories of NMDA receptors and LTP." Trends Neurosci 18(2): 54‐56. 

Collingridge, G. L., S. J. Kehl, et al. (1983). "Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus." J Physiol 334: 33‐46. 

Conde, V., H. Vollmann, et al. (2012). "Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation." Neuroimage 60(2): 864‐870. 

Cooke, S. F. and T. V. Bliss (2006). "Plasticity in the human central nervous system." Brain 129(Pt 7): 1659‐1673. 

Cooper, A. J. and I. M. Stanford (2001). "Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro." Neuropharmacology 41(1): 62‐71. 

Corripio, I., M. J. Escarti, et al. (2011). "Density of striatal D2 receptors in untreated first‐episode psychosis: an I123‐IBZM SPECT study." Eur Neuropsychopharmacol 21(12): 861‐866. 

Corripio, I., V. Perez, et al. (2006). "Striatal D2 receptor binding as a marker of prognosis and outcome in untreated first‐episode psychosis." Neuroimage 29(2): 662‐666. 

Couey, J. J., R. M. Meredith, et al. (2007). "Distributed network actions by nicotine increase the threshold for spike‐timing‐dependent plasticity in prefrontal cortex." Neuron 54(1): 73‐87. 

Coyle, J. T. (2004). "The GABA‐glutamate connection in schizophrenia: which is the proximate cause?" Biochem Pharmacol 68(8): 1507‐1514. 

Coyle, J. T. and G. Tsai (2004). "The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia." Psychopharmacology (Berl) 174(1): 32‐38. 

Crevoisier, C., B. Hoevels, et al. (1987). "Bioavailability of L‐dopa after Madopar HBS administration in healthy volunteers." Eur Neurol 27 Suppl 1: 36‐46. 

Croarkin, P. E., P. A. Nakonezny, et al. (2014). "Evidence for pretreatment LICI deficits among depressed children and adolescents with nonresponse to fluoxetine." Brain Stimul 7(2): 243‐251. 

Crook, J. M., E. Tomaskovic‐Crook, et al. (2000). "Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation." Biol Psychiatry 48(5): 381‐388. 

Crook, J. M., E. Tomaskovic‐Crook, et al. (2001). "Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment." Am J Psychiatry 158(6): 918‐925. 

Cullen, T. J., M. A. Walker, et al. (2006). "Anomalies of asymmetry of pyramidal cell density and structure in dorsolateral prefrontal cortex in schizophrenia." Br J Psychiatry 188: 26‐31. 

Curley, A. A., D. Arion, et al. (2011). "Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type‐specific features." Am J Psychiatry 168(9): 921‐929. 

Curtis, C. E. and M. D'Esposito (2003). "Persistent activity in the prefrontal cortex during working memory." Trends Cogn Sci 7(9): 415‐423. 

Daikhin, Y. and M. Yudkoff (2000). "Compartmentation of brain glutamate metabolism in neurons and glia." J Nutr 130(4S Suppl): 1026S‐1031S. 

Dan, Y. and M. M. Poo (2006). "Spike timing‐dependent plasticity: from synapse to perception." Physiol Rev 86(3): 1033‐1048. 

Dani, J. A. and D. Bertrand (2007). "Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system." Annu Rev Pharmacol Toxicol 47: 699‐729. 

Dao‐Castellana, M. H., M. L. Paillere‐Martinot, et al. (1997). "Presynaptic dopaminergic function in the striatum of schizophrenic patients." Schizophr Res 23(2): 167‐174. 

Page 174: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

160  

Dasari, S. and A. T. Gulledge (2011). "M1 and M4 receptors modulate hippocampal pyramidal neurons." J Neurophysiol 105(2): 779‐792. 

Daskalakis, Z. J., B. K. Christensen, et al. (2002). "Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation." Arch Gen Psychiatry 59(4): 347‐354. 

Daskalakis, Z. J., B. K. Christensen, et al. (2003). "Effect of antipsychotics on cortical inhibition using transcranial magnetic stimulation." Psychopharmacology (Berl) 170(3): 255‐262. 

Daskalakis, Z. J., B. K. Christensen, et al. (2008). "Dysfunctional neural plasticity in patients with schizophrenia." Arch Gen Psychiatry 65(4): 378‐385. 

Daskalakis, Z. J., B. K. Christensen, et al. (2002). "The mechanisms of interhemispheric inhibition in the human motor cortex." J Physiol 543(Pt 1): 317‐326. 

Daskalakis, Z. J., F. Farzan, et al. (2008). "Long‐interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS‐EEG study." Neuropsychopharmacology 33(12): 2860‐2869. 

Daskalakis, Z. J., P. B. Fitzgerald, et al. (2007). "The role of cortical inhibition in the pathophysiology and treatment of schizophrenia." Brain Res Rev 56(2): 427‐442. 

Davies, C. H., S. N. Davies, et al. (1990). "Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus." J Physiol 424: 513‐531. 

Davies, C. H., S. J. Starkey, et al. (1991). "GABA autoreceptors regulate the induction of LTP." Nature 349(6310): 609‐611. 

Davis, K. L., R. S. Kahn, et al. (1991). "Dopamine in schizophrenia: a review and reconceptualization." Am J Psychiatry 148(11): 1474‐1486. 

Davis, S., S. P. Butcher, et al. (1992). "The NMDA receptor antagonist D‐2‐amino‐5‐phosphonopentanoate (D‐AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro." J Neurosci 12(1): 21‐34. 

Day, B. L., D. Dressler, et al. (1989). "Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses." J Physiol 412: 449‐473. 

de la Fuente‐Sandoval, C., R. Favila, et al. (2009). "[Glutamate increase in the associative striatum in schizophrenia: a longitudinal magnetic resonance spectroscopy preliminary study]." Gac Med Mex 145(2): 109‐113. 

de la Fuente‐Sandoval, C., P. Leon‐Ortiz, et al. (2013). "Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first‐episode psychosis: a longitudinal proton magnetic resonance spectroscopy study." JAMA Psychiatry 70(10): 1057‐1066. 

de la Fuente‐Sandoval, C., P. Leon‐Ortiz, et al. (2011). "Higher levels of glutamate in the associative‐striatum of subjects with prodromal symptoms of schizophrenia and patients with first‐episode psychosis." Neuropsychopharmacology 36(9): 1781‐1791. 

Dean, B., J. M. Crook, et al. (1996). "The density of muscarinic M1 receptors is decreased in the caudate‐putamen of subjects with schizophrenia." Mol Psychiatry 1(1): 54‐58. 

DeFelipe, J. (2002). "Cortical interneurons: from Cajal to 2001." Prog Brain Res 136: 215‐238. Deisz, R. A. (1999). "GABA(B) receptor‐mediated effects in human and rat neocortical neurones in vitro." 

Neuropharmacology 38(11): 1755‐1766. Deisz, R. A. (1999). "The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions 

in neocortical neurons of the rat in vitro." Neuroscience 93(4): 1241‐1249. Di Lazzaro, V., A. Oliviero, et al. (2000). "Muscarinic receptor blockade has differential effects on the 

excitability of intracortical circuits in the human motor cortex." Exp Brain Res 135(4): 455‐461. Di Lazzaro, V., F. Pilato, et al. (2007). "Segregating two inhibitory circuits in human motor cortex at the 

level of GABAA receptor subtypes: a TMS study." Clin Neurophysiol 118(10): 2207‐2214. Di Lazzaro, V., F. Pilato, et al. (2006). "GABAA receptor subtype specific enhancement of inhibition in 

human motor cortex." J Physiol 575(Pt 3): 721‐726. 

Page 175: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

161  

Di Lazzaro, V., F. Pilato, et al. (2005). "Dissociated effects of diazepam and lorazepam on short‐latency afferent inhibition." J Physiol 569(Pt 1): 315‐323. 

Dorfman, L. J. and T. M. Bosley (1979). "Age‐related changes in peripheral and central nerve conduction in man." Neurology 29(1): 38‐44. 

Driesen, N. R., G. McCarthy, et al. (2013). "Relationship of resting brain hyperconnectivity and schizophrenia‐like symptoms produced by the NMDA receptor antagonist ketamine in humans." Mol Psychiatry 18(11): 1199‐1204. 

Durany, N., R. Zochling, et al. (2000). "Human post‐mortem striatal alpha4beta2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson's syndrome." Neurosci Lett 287(2): 109‐112. 

Eckenstein, F. and R. W. Baughman (1984). "Two types of cholinergic innervation in cortex, one co‐localized with vasoactive intestinal polypeptide." Nature 309(5964): 153‐155. 

Ekelund, J., M. Slifstein, et al. (2007). "In vivo DA D(1) receptor selectivity of NNC 112 and SCH 23390." Mol Imaging Biol 9(3): 117‐125. 

Elahi, B., C. Gunraj, et al. (2012). "Short‐interval intracortical inhibition blocks long‐term potentiation induced by paired associative stimulation." J Neurophysiol 107(7): 1935‐1941. 

Ellinwood, E. H., Jr., A. Sudilovsky, et al. (1973). "Evolving behavior in the clinical and experimental amphetamine (model) psychosis." Am J Psychiatry 130(10): 1088‐1093. 

Eriksson, T., A. K. Granerus, et al. (1988). "'On‐off' phenomenon in Parkinson's disease: relationship between dopa and other large neutral amino acids in plasma." Neurology 38(8): 1245‐1248. 

Errington, M. L., M. A. Lynch, et al. (1987). "Long‐term potentiation in the dentate gyrus: induction and increased glutamate release are blocked by D(‐)aminophosphonovalerate." Neuroscience 20(1): 279‐284. 

Esterlis, I., M. Ranganathan, et al. (2014). "In vivo evidence for beta2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia." Biol Psychiatry 76(6): 495‐502. 

Evans, M. S. and K. E. Viola‐McCabe (1996). "Midazolam inhibits long‐term potentiation through modulation of GABAA receptors." Neuropharmacology 35(3): 347‐357. 

Exposito, I., A. Del Arco, et al. (1999). "Endogenous dopamine increases extracellular concentrations of glutamate and GABA in striatum of the freely moving rat: involvement of D1 and D2 dopamine receptors." Neurochem Res 24(7): 849‐856. 

Faigle, J. W. and H. Keberle (1972). "The chemistry and kinetics of Lioresal." Postgrad Med J 48: Suppl 5:9‐13. 

Farde, L., F. A. Wiesel, et al. (1990). "D2 dopamine receptors in neuroleptic‐naive schizophrenic patients. A positron emission tomography study with [11C]raclopride." Arch Gen Psychiatry 47(3): 213‐219. 

Farzan, F., M. S. Barr, et al. (2010). "Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia." Brain 133(Pt 5): 1505‐1514. 

Farzan, F., M. S. Barr, et al. (2010). "Reliability of long‐interval cortical inhibition in healthy human subjects: a TMS‐EEG study." J Neurophysiol 104(3): 1339‐1346. 

Felder, C. C., A. C. Porter, et al. (2001). "Elucidating the role of muscarinic receptors in psychosis." Life Sci 68(22‐23): 2605‐2613. 

Ferreira, A. R., L. Furstenau, et al. (2003). "Role of hippocampal M1 and M4 muscarinic receptor subtypes in memory consolidation in the rat." Pharmacol Biochem Behav 74(2): 411‐415. 

Fitzgerald, P. B., T. L. Brown, et al. (2002). "A transcranial magnetic stimulation study of inhibitory deficits in the motor cortex in patients with schizophrenia." Psychiatry Res 114(1): 11‐22. 

Fitzgerald, P. B., T. L. Brown, et al. (2004). "Reduced plastic brain responses in schizophrenia: a transcranial magnetic stimulation study." Schizophr Res 71(1): 17‐26. 

Page 176: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

162  

Floyer‐Lea, A., M. Wylezinska, et al. (2006). "Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning." J Neurophysiol 95(3): 1639‐1644. 

Ford, J. M., B. J. Roach, et al. (2008). "Out‐of‐synch and out‐of‐sorts: dysfunction of motor‐sensory communication in schizophrenia." Biol Psychiatry 63(8): 736‐743. 

Frankiewicz, T., B. Potier, et al. (1996). "Effects of memantine and MK‐801 on NMDA‐induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices." Br J Pharmacol 117(4): 689‐697. 

Frantseva, M. V., P. B. Fitzgerald, et al. (2008). "Evidence for impaired long‐term potentiation in schizophrenia and its relationship to motor skill leaning." Cerebral Cortex 18(5): 990‐996. 

Frantseva, M. V., P. B. Fitzgerald, et al. (2008). "Evidence for impaired long‐term potentiation in schizophrenia and its relationship to motor skill learning." Cereb Cortex 18(5): 990‐996. 

Freedman, R. (2003). "Schizophrenia." N Engl J Med 349(18): 1738‐1749. Freedman, R., C. E. Adams, et al. (2000). "The alpha7‐nicotinic acetylcholine receptor and the pathology 

of hippocampal interneurons in schizophrenia." J Chem Neuroanat 20(3‐4): 299‐306. Freedman, R., M. Hall, et al. (1995). "Evidence in postmortem brain tissue for decreased numbers of 

hippocampal nicotinic receptors in schizophrenia." Biol Psychiatry 38(1): 22‐33. Frey, U., H. Schroeder, et al. (1990). "Dopaminergic antagonists prevent long‐term maintenance of 

posttetanic LTP in the CA1 region of rat hippocampal slices." Brain Res 522(1): 69‐75. Friston, K. J. (2002). "Dysfunctional connectivity in schizophrenia." World Psychiatry 1(2): 66‐71. Frost, J. J., A. C. Smith, et al. (1987). "In vivo binding of 3H‐N‐methylspiperone to dopamine and 

serotonin receptors." Life Sci 40(10): 987‐995. Fuhr, P., R. Agostino, et al. (1991). "Spinal motor neuron excitability during the silent period after 

cortical stimulation." Electroencephalogr Clin Neurophysiol 81(4): 257‐262. Fusar‐Poli, P., O. D. Howes, et al. (2011). "Abnormal prefrontal activation directly related to pre‐synaptic 

striatal dopamine dysfunction in people at clinical high risk for psychosis." Mol Psychiatry 16(1): 67‐75. 

Fuster ( 2008). The Prefrontal Cortex. Boston, Academic Press. Fuster, J. M. (1995). "Memory in the cortex of the primate." Biol Res 28(1): 59‐72. Gao, W. J., Y. Wang, et al. (2003). "Dopamine modulation of perisomatic and peridendritic inhibition in 

prefrontal cortex." J Neurosci 23(5): 1622‐1630. Gaspar, P., B. Bloch, et al. (1995). "D1 and D2 receptor gene expression in the rat frontal cortex: cellular 

localization in different classes of efferent neurons." Eur J Neurosci 7(5): 1050‐1063. Gilbert, D. L., K. R. Ridel, et al. (2006). "Comparison of the inhibitory and excitatory effects of ADHD 

medications methylphenidate and atomoxetine on motor cortex." Neuropsychopharmacology 31(2): 442‐449. 

Glenthoj, B. Y., T. Mackeprang, et al. (2006). "Frontal dopamine D(2/3) receptor binding in drug‐naive first‐episode schizophrenic patients correlates with positive psychotic symptoms and gender." Biol Psychiatry 60(6): 621‐629. 

Goff, D. C., G. Tsai, et al. (1995). "Dose‐finding trial of D‐cycloserine added to neuroleptics for negative symptoms in schizophrenia." Am J Psychiatry 152(8): 1213‐1215. 

Gorelova, N., J. K. Seamans, et al. (2002). "Mechanisms of dopamine activation of fast‐spiking interneurons that exert inhibition in rat prefrontal cortex." J Neurophysiol 88(6): 3150‐3166. 

Goto, N., R. Yoshimura, et al. (2009). "Reduction of brain gamma‐aminobutyric acid (GABA) concentrations in early‐stage schizophrenia patients: 3T Proton MRS study." Schizophr Res 112(1‐3): 192‐193. 

Goto, Y. and A. A. Grace (2006). "Alterations in medial prefrontal cortical activity and plasticity in rats with disruption of cortical development." Biol Psychiatry 60(11): 1259‐1267. 

Page 177: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

163  

Goto, Y., C. R. Yang, et al. (2010). "Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders." Biol Psychiatry 67(3): 199‐207. 

Gotti, C. and F. Clementi (2004). "Neuronal nicotinic receptors: from structure to pathology." Prog Neurobiol 74(6): 363‐396. 

Govindaraju, V., K. Young, et al. (2000). "Proton NMR chemical shifts and coupling constants for brain metabolites." NMR Biomed 13(3): 129‐153. 

Graff‐Guerrero, A., R. Mizrahi, et al. (2009). "The dopamine D2 receptors in high‐affinity state and D3 receptors in schizophrenia: a clinical [11C]‐(+)‐PHNO PET study." Neuropsychopharmacology 34(4): 1078‐1086. 

Graff‐Guerrero, A., R. Mizrahi, et al. (2009). "The dopamine D2 receptors in high‐affinity state and D3 receptors in schizophrenia: a clinical [11C]‐(+)‐PHNO PET study." Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34(4): 1078‐1086. 

Granado, N., O. Ortiz, et al. (2008). "D1 but not D5 dopamine receptors are critical for LTP, spatial learning, and LTP‐Induced arc and zif268 expression in the hippocampus." Cereb Cortex 18(1): 1‐12. 

Green, M. F. (1996). "What are the functional consequences of neurocognitive deficits in schizophrenia?" Am J Psychiatry 153(3): 321‐330. 

Groenewegen, H. J. and H. B. Uylings (2000). "The prefrontal cortex and the integration of sensory, limbic and autonomic information." Prog Brain Res 126: 3‐28. 

Guan, Z. Z., X. Zhang, et al. (1999). "Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain." Neuroreport 10(8): 1779‐1782. 

Gulledge, A. T., D. J. Bucci, et al. (2009). "M1 receptors mediate cholinergic modulation of excitability in neocortical pyramidal neurons." J Neurosci 29(31): 9888‐9902. 

Gulledge, A. T. and G. J. Stuart (2005). "Cholinergic inhibition of neocortical pyramidal neurons." J Neurosci 25(44): 10308‐10320. 

Guo, N., D. R. Hwang, et al. (2003). "Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia." Neuropsychopharmacology 28(9): 1703‐1711. 

Gurden, H., M. Takita, et al. (2000). "Essential role of D1 but not D2 receptors in the NMDA receptor‐dependent long‐term potentiation at hippocampal‐prefrontal cortex synapses in vivo." J Neurosci 20(22): RC106. 

Gurden, H., J. P. Tassin, et al. (1999). "Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal‐prefrontal cortex long‐term potentiation." Neuroscience 94(4): 1019‐1027. 

Hall, H., G. Sedvall, et al. (1994). "Distribution of D1‐ and D2‐dopamine receptors, and dopamine and its metabolites in the human brain." Neuropsychopharmacology 11(4): 245‐256. 

Hallett, M. (2000). "Transcranial magnetic stimulation and the human brain." Nature 406(6792): 147‐150. 

Harsing, L. G., Jr. and M. J. Zigmond (1997). "Influence of dopamine on GABA release in striatum: evidence for D1‐D2 interactions and non‐synaptic influences." Neuroscience 77(2): 419‐429. 

Hasan, A., M. A. Nitsche, et al. (2011). "Dysfunctional long‐term potentiation‐like plasticity in schizophrenia revealed by transcranial direct current stimulation." Behav Brain Res 224(1): 15‐22. 

Hasan, A., T. Wobrock, et al. (2012). "Deficient inhibitory cortical networks in antipsychotic‐naive subjects at risk of developing first‐episode psychosis and first‐episode schizophrenia patients: a cross‐sectional study." Biol Psychiatry 72(9): 744‐751. 

Hashimoto, T., D. Arion, et al. (2008). "Alterations in GABA‐related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia." Mol Psychiatry 13(2): 147‐161. 

Page 178: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

164  

Hashimoto, T., D. W. Volk, et al. (2003). "Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia." J Neurosci 23(15): 6315‐6326. 

Hayashi, Y., S. H. Shi, et al. (2000). "Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction." Science 287(5461): 2262‐2267. 

Heaney, C. F. and J. W. Kinney (2016). "Role of GABA(B) receptors in learning and memory and neurological disorders." Neurosci Biobehav Rev 63: 1‐28. 

Heidegger, T., K. Krakow, et al. (2010). "Effects of antiepileptic drugs on associative LTP‐like plasticity in human motor cortex." Eur J Neurosci 32(7): 1215‐1222. 

Heinrichs, R. W. and K. K. Zakzanis (1998). "Neurocognitive deficit in schizophrenia: a quantitative review of the evidence." Neuropsychology 12(3): 426‐445. 

Heresco‐Levy, U., D. C. Javitt, et al. (1999). "Efficacy of high‐dose glycine in the treatment of enduring negative symptoms of schizophrenia." Arch Gen Psychiatry 56(1): 29‐36. 

Hernandez, S. C., M. Bertolino, et al. (2000). "Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors." J Pharmacol Exp Ther 293(3): 962‐967. 

Herry, C., R. M. Vouimba, et al. (1999). "Plasticity in the mediodorsal thalamo‐prefrontal cortical transmission in behaving mice." J Neurophysiol 82(5): 2827‐2832. 

Hietala, J., K. Nagren, et al. (1999). "Measurement of striatal D2 dopamine receptor density and affinity with [11C]‐raclopride in vivo: a test‐retest analysis." J Cereb Blood Flow Metab 19(2): 210‐217. 

Hietala, J., E. Syvalahti, et al. (1994). "Striatal D2 dopamine receptor characteristics in neuroleptic‐naive schizophrenic patients studied with positron emission tomography." Arch Gen Psychiatry 51(2): 116‐123. 

Hietala, J., E. Syvalahti, et al. (1995). "Presynaptic dopamine function in striatum of neuroleptic‐naive schizophrenic patients." Lancet 346(8983): 1130‐1131. 

Hietala, J., C. West, et al. (1994). "Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence." Psychopharmacology (Berl) 116(3): 285‐290. 

Hirotsu, I., N. Hori, et al. (1989). "Effect of anticholinergic drug on long‐term potentiation in rat hippocampal slices." Brain Res 482(1): 194‐197. 

Homayoun, H. and B. Moghaddam (2007). "NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons." J Neurosci 27(43): 11496‐11500. 

Honore, T. (1989). "Excitatory amino acid receptor subtypes and specific antagonists." Med Res Rev 9(1): 1‐23. 

Howes, O. D., S. K. Bose, et al. (2011). "Dopamine synthesis capacity before onset of psychosis: a prospective [18F]‐DOPA PET imaging study." Am J Psychiatry 168(12): 1311‐1317. 

Howes, O. D., J. Kambeitz, et al. (2012). "The nature of dopamine dysfunction in schizophrenia and what this means for treatment." Arch Gen Psychiatry 69(8): 776‐786. 

Howes, O. D. and S. Kapur (2009). "The dopamine hypothesis of schizophrenia: version III‐‐the final common pathway." Schizophr Bull 35(3): 549‐562. 

Hu, X. T. and F. J. White (1997). "Dopamine enhances glutamate‐induced excitation of rat striatal neurons by cooperative activation of D1 and D2 class receptors." Neurosci Lett 224(1): 61‐65. 

Huang, Y. Y. and E. R. Kandel (1995). "D1/D5 receptor agonists induce a protein synthesis‐dependent late potentiation in the CA1 region of the hippocampus." Proc Natl Acad Sci U S A 92(7): 2446‐2450. 

Huang, Y. Y., E. Simpson, et al. (2004). "Genetic evidence for the bidirectional modulation of synaptic plasticity in the prefrontal cortex by D1 receptors." Proc Natl Acad Sci U S A 101(9): 3236‐3241. 

Humphries, C., A. Mortimer, et al. (1996). "NMDA receptor mRNA correlation with antemortem cognitive impairment in schizophrenia." Neuroreport 7(12): 2051‐2055. 

Hurd, R., N. Sailasuta, et al. (2004). "Measurement of brain glutamate using TE‐averaged PRESS at 3T." Magn Reson Med 51(3): 435‐440. 

Page 179: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

165  

Ilic, T. V., A. Korchounov, et al. (2003). "Methylphenidate facilitates and disinhibits the motor cortex in intact humans." Neuroreport 14(5): 773‐776. 

Ilmoniemi, R. J., J. Virtanen, et al. (1997). "Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity." Neuroreport 8(16): 3537‐3540. 

Inghilleri, M., A. Berardelli, et al. (1996). "Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans." Exp Brain Res 109(3): 467‐472. 

Ishiwata, K., N. Hayakawa, et al. (1999). "Comparison of three PET dopamine D2‐like receptor ligands, [11C]raclopride, [11C]nemonapride and [11C]N‐methylspiperone, in rats." Ann Nucl Med 13(3): 161‐167. 

Jablensky, A. (1997). "The 100‐year epidemiology of schizophrenia." Schizophr Res 28(2‐3): 111‐125. Jann, M. W., K. L. Shirley, et al. (2002). "Clinical pharmacokinetics and pharmacodynamics of 

cholinesterase inhibitors." Clin Pharmacokinet 41(10): 719‐739. Javitt, D. C. (2007). "Glutamate and schizophrenia: phencyclidine, N‐methyl‐D‐aspartate receptors, and 

dopamine‐glutamate interactions." Int Rev Neurobiol 78: 69‐108. Javitt, D. C. (2010). "Glutamatergic theories of schizophrenia." Isr J Psychiatry Relat Sci 47(1): 4‐16. Jay, T. M., F. Burette, et al. (1995). "NMDA receptor‐dependent long‐term potentiation in the 

hippocampal afferent fibre system to the prefrontal cortex in the rat." Eur J Neurosci 7(2): 247‐250. 

Jensen, J. E., S. C. Licata, et al. (2009). "Quantification of J‐resolved proton spectra in two‐dimensions with LCModel using GAMMA‐simulated basis sets at 4 Tesla." NMR Biomed 22(7): 762‐769. 

Jones, S., S. Sudweeks, et al. (1999). "Nicotinic receptors in the brain: correlating physiology with function." Trends Neurosci 22(12): 555‐561. 

Jung, P. and U. Ziemann (2009). "Homeostatic and nonhomeostatic modulation of learning in human motor cortex." J Neurosci 29(17): 5597‐5604. 

Kaiser, L. G., N. Schuff, et al. (2005). "Age‐related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T." Neurobiol Aging 26(5): 665‐672. 

Kaplan HI, S. B., Grebb JA (1994). Kaplan and Sadock's synopsis of psychiatry : 

behavioral sciences, clinical psychiatry., ed 7th Edition. Baltimore, Williams & 

Wilkins. Karlsson, G. and H. R. Olpe (1989). "Inhibitory processes in normal and epileptic‐like rat hippocampal 

slices: the role of GABAB receptors." Eur J Pharmacol 163(2‐3): 285‐290. Karlsson, P., L. Farde, et al. (2002). "PET study of D(1) dopamine receptor binding in neuroleptic‐naive 

patients with schizophrenia." Am J Psychiatry 159(5): 761‐767. Kaster, T. S., D. de Jesus, et al. (2015). "Clozapine potentiation of GABA mediated cortical inhibition in 

treatment resistant schizophrenia." Schizophr Res 165(2‐3): 157‐162. Kaufman, L. D., J. Pratt, et al. (2010). "Antisaccades: a probe into the dorsolateral prefrontal cortex in 

Alzheimer's disease. A critical review." J Alzheimers Dis 19(3): 781‐793. Kebabian, J. W. and D. B. Calne (1979). "Multiple receptors for dopamine." Nature 277(5692): 93‐96. Kegeles, L. S., A. Abi‐Dargham, et al. (2010). "Increased synaptic dopamine function in associative 

regions of the striatum in schizophrenia." Arch Gen Psychiatry 67(3): 231‐239. Kegeles, L. S., X. Mao, et al. (2012). "Elevated prefrontal cortex gamma‐aminobutyric acid and 

glutamate‐glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy." Arch Gen Psychiatry 69(5): 449‐459. 

Kegeles, L. S., D. C. Shungu, et al. (2000). "Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies." Psychiatry research 98(3): 163‐175. 

Page 180: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

166  

Kegeles, L. S., D. C. Shungu, et al. (2000). "Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies." Psychiatry Res 98(3): 163‐175. 

Kegeles, L. S., M. Slifstein, et al. (2010). "Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with [18F]fallypride positron emission tomography." Biological psychiatry 68(7): 634‐641. 

Kegeles, L. S., M. Slifstein, et al. (2010). "Striatal and extrastriatal dopamine D2/D3 receptors in schizophrenia evaluated with [18F]fallypride positron emission tomography." Biol Psychiatry 68(7): 634‐641. 

Keshavan, M. S., R. M. Dick, et al. (2009). "Striatal metabolic alterations in non‐psychotic adolescent offspring at risk for schizophrenia: a (1)H spectroscopy study." Schizophr Res 115(1): 88‐93. 

Kessler, R. M., N. D. Woodward, et al. (2009). "Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects." Biol Psychiatry 65(12): 1024‐1031. 

Khoshbouei, H., N. Sen, et al. (2004). "N‐terminal phosphorylation of the dopamine transporter is required for amphetamine‐induced efflux." PLoS Biol 2(3): E78. 

Kim, J. S., H. H. Kornhuber, et al. (1980). "Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia." Neurosci Lett 20(3): 379‐382. 

Kim, M. J., S. K. Chun, et al. (2003). "Long‐term potentiation in visual cortical projections to the medial prefrontal cortex of the rat." Neuroscience 120(1): 283‐289. 

Kimiskidis, V. K., S. Papagiannopoulos, et al. (2006). "Lorazepam‐induced effects on silent period and corticomotor excitability." Exp Brain Res 173(4): 603‐611. 

Kirschner, J., G. H. Moll, et al. (2003). "Methylphenidate enhances both intracortical inhibition and facilitation in healthy adults." Pharmacopsychiatry 36(2): 79‐82. 

Kishore, A., T. Popa, et al. (2014). "Age‐related decline in the responsiveness of motor cortex to plastic forces reverses with levodopa or cerebellar stimulation." Neurobiol Aging 35(11): 2541‐2551. 

Knable, M. B., M. F. Egan, et al. (1997). "Altered dopaminergic function and negative symptoms in drug‐free patients with schizophrenia. [123I]‐iodobenzamide SPECT study." Br J Psychiatry 171: 574‐577. 

Ko, J. H., F. Antonelli, et al. (2013). "Prefrontal dopaminergic receptor abnormalities and executive functions in Parkinson's disease." Hum Brain Mapp 34(7): 1591‐1604. 

Kobayashi, M. and A. Pascual‐Leone (2003). "Transcranial magnetic stimulation in neurology." Lancet Neurol 2(3): 145‐156. 

Koenigs, M. and J. Grafman (2009). "The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex." Behav Brain Res 201(2): 239‐243. 

Kolomiets, B., A. Marzo, et al. (2009). "Background dopamine concentration dependently facilitates long‐term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal‐regulated kinases." Cereb Cortex 19(11): 2708‐2718. 

Korchounov, A., T. V. Ilic, et al. (2005). "Modification of motor cortical excitability by an acetylcholinesterase inhibitor." Exp Brain Res 164(3): 399‐405. 

Korchounov, A., T. V. Ilic, et al. (2007). "TMS‐assisted neurophysiological profiling of the dopamine receptor agonist cabergoline in human motor cortex." J Neural Transm (Vienna) 114(2): 223‐229. 

Korchounov, A. and U. Ziemann (2011). "Neuromodulatory neurotransmitters influence LTP‐like plasticity in human cortex: a pharmaco‐TMS study." Neuropsychopharmacology 36(9): 1894‐1902. 

Kraguljac, N. V., D. M. White, et al. (2013). "Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia." JAMA Psychiatry 70(12): 1294‐1302. 

Page 181: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

167  

Krieger, S., S. Lis, et al. (2005). "Executive function and cognitive subprocesses in first‐episode, drug‐naive schizophrenia: an analysis of N‐back performance." Am J Psychiatry 162(6): 1206‐1208. 

Kroner, S., L. S. Krimer, et al. (2007). "Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type‐specific modulation of interneurons." Cereb Cortex 17(5): 1020‐1032. 

Krug, G. (1993). "[The molecular biology mechanism of action of benzodiazepine]." Anaesthesiol Reanim 18(1): 24‐30. 

Krug, M., R. Matthies, et al. (1993). "Non‐opioid antitussives and methadone differentially influence hippocampal long‐term potentiation in freely moving rats." Eur J Pharmacol 231(3): 355‐361. 

Kujirai, T., M. D. Caramia, et al. (1993). "Corticocortical inhibition in human motor cortex." J Physiol 471: 501‐519. 

Kumakura, Y., P. Cumming, et al. (2007). "Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study." J Neurosci 27(30): 8080‐8087. 

Kumakura, Y., P. Cumming, et al. (2007). "Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study." The Journal of neuroscience : the official journal of the Society for Neuroscience 27(30): 8080‐8087. 

Kuo, M. F., J. Grosch, et al. (2007). "Focusing effect of acetylcholine on neuroplasticity in the human motor cortex." Journal of Neuroscience 27(52): 14442‐14447. 

Kuo, M. F., J. Grosch, et al. (2007). "Focusing effect of acetylcholine on neuroplasticity in the human motor cortex." J Neurosci 27(52): 14442‐14447. 

Kuo, M. F., W. Paulus, et al. (2008). "Boosting focally‐induced brain plasticity by dopamine." Cereb Cortex 18(3): 648‐651. 

Lahti, A. C., M. A. Weiler, et al. (2001). "Effects of ketamine in normal and schizophrenic volunteers." Neuropsychopharmacology 25(4): 455‐467. 

Langguth, B., E. Bauer, et al. (2007). "Modulation of human motor cortex excitability by the cholinesterase inhibitor rivastigmine." Neurosci Lett 415(1): 40‐44. 

Laroche, S., S. Davis, et al. (2000). "Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation." Hippocampus 10(4): 438‐446. 

Laroche, S., T. M. Jay, et al. (1990). "Long‐term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region." Neurosci Lett 114(2): 184‐190. 

Larry. R Squire, D. B., Floyd E. Bloom, Sascha du Lac, Anirvan Ghosh and Nicholas C. Spitzer (2008). Fundamental Neuroscience,  Third Edition. San Diego Academic Press. 

Laruelle, M. (1998). "Imaging dopamine transmission in schizophrenia. A review and meta‐analysis." Q J Nucl Med 42(3): 211‐221. 

Laruelle, M., A. Abi‐Dargham, et al. (1999). "Increased dopamine transmission in schizophrenia: relationship to illness phases." Biol Psychiatry 46(1): 56‐72. 

Laruelle, M., A. Abi‐Dargham, et al. (1996). "Single photon emission computerized tomography imaging of amphetamine‐induced dopamine release in drug‐free schizophrenic subjects." Proc Natl Acad Sci U S A 93(17): 9235‐9240. 

Leonard, S., C. Adams, et al. (1996). "Nicotinic receptor function in schizophrenia." Schizophr Bull 22(3): 431‐445. 

Letzkus, J. J., S. B. Wolff, et al. (2011). "A disinhibitory microcircuit for associative fear learning in the auditory cortex." Nature 480(7377): 331‐335. 

Levey, A. I. (1993). "Immunological localization of m1‐m5 muscarinic acetylcholine receptors in peripheral tissues and brain." Life Sci 52(5‐6): 441‐448. 

Levey, A. I., C. A. Kitt, et al. (1991). "Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype‐specific antibodies." J Neurosci 11(10): 3218‐3226. 

Page 182: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

168  

Lewis, D. A. and B. Moghaddam (2006). "Cognitive dysfunction in schizophrenia: convergence of gamma‐aminobutyric acid and glutamate alterations." Arch Neurol 63(10): 1372‐1376. 

Lewis, D. A., J. N. Pierri, et al. (1999). "Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia." Biol Psychiatry 46(5): 616‐626. 

Lieberman, J. A., J. M. Kane, et al. (1987). "Provocative tests with psychostimulant drugs in schizophrenia." Psychopharmacology (Berl) 91(4): 415‐433. 

Liepert, J., S. Schardt, et al. (2001). "Orally administered atropine enhances motor cortex excitability: a transcranial magnetic stimulation study in human subjects." Neurosci Lett 300(3): 149‐152. 

Lindstrom, L. H., O. Gefvert, et al. (1999). "Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L‐(beta‐11C) DOPA and PET." Biol Psychiatry 46(5): 681‐688. 

Linn, K. A., M. T. Long, et al. (2014). ""Robo‐tripping": dextromethorphan abuse and its anesthetic implications." Anesth Pain Med 4(5): e20990. 

Lisman, J., H. Schulman, et al. (2002). "The molecular basis of CaMKII function in synaptic and behavioural memory." Nat Rev Neurosci 3(3): 175‐190. 

Lisman, J. E., J. T. Coyle, et al. (2008). "Circuit‐based framework for understanding neurotransmitter and risk gene interactions in schizophrenia." Trends Neurosci 31(5): 234‐242. 

List, J., J. C. Kubke, et al. (2013). "Relationship between excitability, plasticity and thickness of the motor cortex in older adults." Neuroimage 83: 809‐816. 

Liu, S. K., P. B. Fitzgerald, et al. (2009). "The relationship between cortical inhibition, antipsychotic treatment, and the symptoms of schizophrenia." Biol Psychiatry 65(6): 503‐509. 

Lomena, F., A. M. Catafau, et al. (2004). "Striatal dopamine D2 receptor density in neuroleptic‐naive and in neuroleptic‐free schizophrenic patients: an 123I‐IBZM‐SPECT study." Psychopharmacology (Berl) 172(2): 165‐169. 

Lopes Aguiar, C., R. N. Romcy‐Pereira, et al. (2008). "Muscarinic acetylcholine neurotransmission enhances the late‐phase of long‐term potentiation in the hippocampal‐prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems." Neuroscience 153(4): 1309‐1319. 

Lopez‐Gil, X., Z. Babot, et al. (2007). "Clozapine and haloperidol differently suppress the MK‐801‐increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat." Neuropsychopharmacology 32(10): 2087‐2097. 

Luby, E. D., B. D. Cohen, et al. (1959). "Study of a new schizophrenomimetic drug; sernyl." AMA Arch Neurol Psychiatry 81(3): 363‐369. 

Luscher, C. and R. C. Malenka (2012). "NMDA Receptor‐Dependent Long‐Term Potentiation and Long‐Term Depression (LTP/LTD)." Cold Spring Harbor Perspectives in Biology 4(6). 

Lussier, I. and E. Stip (2001). "Memory and attention deficits in drug naive patients with schizophrenia." Schizophr Res 48(1): 45‐55. 

Lutkenhoff, E. S., T. G. van Erp, et al. (2010). "Proton MRS in twin pairs discordant for schizophrenia." Mol Psychiatry 15(3): 308‐318. 

Lynch, M. A. (2004). "Long‐term potentiation and memory." Physiol Rev 84(1): 87‐136. Macdonald, R. L. and R. W. Olsen (1994). "GABAA receptor channels." Annu Rev Neurosci 17: 569‐602. Magistretti, P. J. and L. Pellerin (1999). "Cellular mechanisms of brain energy metabolism and their 

relevance to functional brain imaging." Philos Trans R Soc Lond B Biol Sci 354(1387): 1155‐1163. Malenka, R. C. (2003). "The long‐term potential of LTP." Nat Rev Neurosci 4(11): 923‐926. Malenka, R. C. (2003). "Synaptic plasticity and AMPA receptor trafficking." Ann N Y Acad Sci 1003: 1‐11. Malenka, R. C. and M. F. Bear (2004). "LTP and LTD: an embarrassment of riches." Neuron 44(1): 5‐21. Malinow, R., H. Schulman, et al. (1989). "Inhibition of postsynaptic PKC or CaMKII blocks induction but 

not expression of LTP." Science 245(4920): 862‐866. 

Page 183: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

169  

Mann‐Metzer, P. and Y. Yarom (2002). "Pre‐ and postsynaptic inhibition mediated by GABA(B) receptors in cerebellar inhibitory interneurons." J Neurophysiol 87(1): 183‐190. 

Manoach, D. S., D. Z. Press, et al. (1999). "Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI." Biol Psychiatry 45(9): 1128‐1137. 

Mansvelder, H. D. and D. S. McGehee (2000). "Long‐term potentiation of excitatory inputs to brain reward areas by nicotine." Neuron 27(2): 349‐357. 

Maroun, M. and G. Richter‐Levin (2003). "Exposure to acute stress blocks the induction of long‐term potentiation of the amygdala‐prefrontal cortex pathway in vivo." J Neurosci 23(11): 4406‐4409. 

Marsman, A., M. P. van den Heuvel, et al. (2013). "Glutamate in schizophrenia: a focused review and meta‐analysis of (1)H‐MRS studies." Schizophr Bull 39(1): 120‐129. 

Martinot, J. L., M. L. Paillere‐Martinot, et al. (1991). "The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br‐bromolisuride." The British journal of psychiatry : the journal of mental science 158: 346‐350. 

Martinot, J. L., M. L. Paillere‐Martinot, et al. (1991). "The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br‐bromolisuride." Br J Psychiatry 158: 346‐350. 

Martinot, J. L., M. L. Paillere‐Martinot, et al. (1994). "Central D2 receptors and negative symptoms of schizophrenia." Br J Psychiatry 164(1): 27‐34. 

Martinot, J. L., P. Peron‐Magnan, et al. (1990). "Striatal D2 dopaminergic receptors assessed with positron emission tomography and [76Br]bromospiperone in untreated schizophrenic patients." Am J Psychiatry 147(1): 44‐50. 

Matsuda, Y., A. Marzo, et al. (2006). "The presence of background dopamine signal converts long‐term synaptic depression to potentiation in rat prefrontal cortex." J Neurosci 26(18): 4803‐4810. 

Matsuyama, S., A. Matsumoto, et al. (2000). "Activation of nicotinic acetylcholine receptors induces long‐term potentiation in vivo in the intact mouse dentate gyrus." Eur J Neurosci 12(10): 3741‐3747. 

McCormick, D. A. (1989). "GABA as an inhibitory neurotransmitter in human cerebral cortex." J Neurophysiol 62(5): 1018‐1027. 

McCullumsmith, R. E., J. Hammond, et al. (2012). "Recent advances in targeting the ionotropic glutamate receptors in treating schizophrenia." Curr Pharm Biotechnol 13(8): 1535‐1542. 

McDonnell, M. N., Y. Orekhov, et al. (2006). "The role of GABA(B) receptors in intracortical inhibition in the human motor cortex." Exp Brain Res 173(1): 86‐93. 

McDonnell, M. N., Y. Orekhov, et al. (2007). "Suppression of LTP‐like plasticity in human motor cortex by the GABA(B) receptor agonist baclofen." Experimental Brain Research 180(1): 181‐186. 

McDonnell, M. N., Y. Orekhov, et al. (2007). "Suppression of LTP‐like plasticity in human motor cortex by the GABAB receptor agonist baclofen." Exp Brain Res 180(1): 181‐186. 

McEntee, W. J. and T. H. Crook (1993). "Glutamate: its role in learning, memory, and the aging brain." Psychopharmacology (Berl) 111(4): 391‐401. 

Meintzschel, F. and U. Ziemann (2006). "Modification of practice‐dependent plasticity in human motor cortex by neuromodulators." Cereb Cortex 16(8): 1106‐1115. 

Menzies, L., C. Ooi, et al. (2007). "Effects of gamma‐aminobutyric acid‐modulating drugs on working memory and brain function in patients with schizophrenia." Arch Gen Psychiatry 64(2): 156‐167. 

Mesulam, M. M. (1995). "Cholinergic pathways and the ascending reticular activating system of the human brain." Ann N Y Acad Sci 757: 169‐179. 

Mesulam, M. M., E. J. Mufson, et al. (1983). "Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1‐Ch6)." Neuroscience 10(4): 1185‐1201. 

Metherate, R. and J. H. Ashe (1993). "Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex." Synapse 14(2): 132‐143. 

Page 184: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

170  

Mineur, Y. S. and M. R. Picciotto (2008). "Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction." Biochem Pharmacol 75(1): 323‐333. 

Miyamoto, E. (2006). "Molecular mechanism of neuronal plasticity: induction and maintenance of long‐term potentiation in the hippocampus." J Pharmacol Sci 100(5): 433‐442. 

Mizukami, K., M. Ishikawa, et al. (2002). "Immunohistochemical localization of GABAB receptor in the entorhinal cortex and inferior temporal cortex of schizophrenic brain." Prog Neuropsychopharmacol Biol Psychiatry 26(2): 393‐396. 

Mizukami, K., M. Sasaki, et al. (2000). "Immunohistochemical localization of gamma‐aminobutyric acid(B) receptor in the hippocampus of subjects with schizophrenia." Neurosci Lett 283(2): 101‐104. 

Moghaddam, B. and D. Javitt (2012). "From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment." Neuropsychopharmacology 37(1): 4‐15. 

Mohammadi, B., K. Krampfl, et al. (2006). "Selective and nonselective benzodiazepine agonists have different effects on motor cortex excitability." Muscle Nerve 33(6): 778‐784. 

Moll, G. H., H. Heinrich, et al. (2003). "Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention‐deficit hyperactivity disorder." Acta Psychiatr Scand 107(1): 69‐72. 

Monte‐Silva, K., M. F. Kuo, et al. (2009). "Dose‐dependent inverted U‐shaped effect of dopamine (D2‐like) receptor activation on focal and nonfocal plasticity in humans." J Neurosci 29(19): 6124‐6131. 

Monte‐Silva, K., D. Liebetanz, et al. (2010). "Dosage‐dependent non‐linear effect of L‐dopa on human motor cortex plasticity." J Physiol 588(Pt 18): 3415‐3424. 

Morris, R. G. (1989). "Synaptic plasticity and learning: selective impairment of learning rats and blockade of long‐term potentiation in vivo by the N‐methyl‐D‐aspartate receptor antagonist AP5." J Neurosci 9(9): 3040‐3057. 

Mott, D. D., D. V. Lewis, et al. (1990). "Baclofen facilitates the development of long‐term potentiation in the rat dentate gyrus." Neurosci Lett 113(2): 222‐226. 

Mulkey, R. M. and R. C. Malenka (1992). "Mechanisms underlying induction of homosynaptic long‐term depression in area CA1 of the hippocampus." Neuron 9(5): 967‐975. 

Muller‐Dahlhaus, J. F., Y. Orekhov, et al. (2008). "Interindividual variability and age‐dependency of motor cortical plasticity induced by paired associative stimulation." Exp Brain Res 187(3): 467‐475. 

Mullins, P. G., H. Chen, et al. (2008). "Comparative reliability of proton spectroscopy techniques designed to improve detection of J‐coupled metabolites." Magn Reson Med 60(4): 964‐969. 

Musacchio, J. M., M. Klein, et al. (1989). "Dextromethorphan and sigma ligands: common sites but diverse effects." Life Sci 45(19): 1721‐1732. 

Naim‐Feil, J., J. L. Bradshaw, et al. (2015). "Cortical inhibition within motor and frontal regions in alcohol dependence post‐detoxification: A pilot TMS‐EEG study." World J Biol Psychiatry: 1‐10. 

Nakamura, H., H. Kitagawa, et al. (1997). "Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans." J Physiol 498 ( Pt 3): 817‐823. 

Nakanishi, S. (1992). "Molecular diversity of the glutamate receptors." Clin Neuropharmacol 15 Suppl 1 Pt A: 4A‐5A. 

Natsume, K. and K. Kometani (1997). "Theta‐activity‐dependent and ‐independent muscarinic facilitation of long‐term potentiation in guinea pig hippocampal slices." Neurosci Res 27(4): 335‐341. 

Nestler, E. J. and S. E. Hyman (2010). "Animal models of neuropsychiatric disorders." Nat Neurosci 13(10): 1161‐1169. 

Page 185: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

171  

Netzer, R., P. Pflimlin, et al. (1993). "Dextromethorphan blocks N‐methyl‐D‐aspartate‐induced currents and voltage‐operated inward currents in cultured cortical neurons." Eur J Pharmacol 238(2‐3): 209‐216. 

Neve, K. A., J. K. Seamans, et al. (2004). "Dopamine receptor signaling." J Recept Signal Transduct Res 24(3): 165‐205. 

Nitsche, M. A., M. F. Kuo, et al. (2009). "D1‐receptor impact on neuroplasticity in humans." J Neurosci 29(8): 2648‐2653. 

Nordstrom, A. L., L. Farde, et al. (1995). "No elevated D2 dopamine receptors in neuroleptic‐naive schizophrenic patients revealed by positron emission tomography and [11C]N‐methylspiperone." Psychiatry Res 61(2): 67‐83. 

Nozaki, S., M. Kato, et al. (2009). "Regional dopamine synthesis in patients with schizophrenia using L‐[beta‐11C]DOPA PET." Schizophr Res 108(1‐3): 78‐84. 

Nozaki, S., M. Kato, et al. (2009). "Regional dopamine synthesis in patients with schizophrenia using L‐[beta‐11C]DOPA PET." Schizophrenia research 108(1‐3): 78‐84. 

Nugent, F. S. and J. A. Kauer (2008). "LTP of GABAergic synapses in the ventral tegmental area and beyond." Journal of Physiology‐London 586(6): 1487‐1493. 

Ohrmann, P., A. Siegmund, et al. (2007). "Cognitive impairment and in vivo metabolites in first‐episode neuroleptic‐naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study." J Psychiatr Res 41(8): 625‐634. 

Ohrmann, P., A. Siegmund, et al. (2005). "Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first‐episode patients with schizophrenia: a proton magnetic resonance spectroscopy study." Schizophr Res 73(2‐3): 153‐157. 

Okereke, C. S. (2002). "Role of integrative pharmacokinetic and pharmacodynamic optimization strategy in the management of Parkinson's disease patients experiencing motor fluctuations with levodopa." Journal of Pharmacy and Pharmaceutical Sciences 5(2): 146‐161. 

Okereke, C. S. (2002). "Role of integrative pharmacokinetic and pharmacodynamic optimization strategy in the management of Parkinson"s disease patients experiencing motor fluctuations with levodopa." J Pharm Pharm Sci 5(2): 146‐161. 

Oki, T., Y. Takagi, et al. (2005). "Quantitative analysis of binding parameters of [3H]N‐methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice." Brain Res Mol Brain Res 133(1): 6‐11. 

Okubo, Y., T. Suhara, et al. (1997). "Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET." Nature 385(6617): 634‐636. 

Olney, J. W. and N. B. Farber (1995). "Glutamate receptor dysfunction and schizophrenia." Arch Gen Psychiatry 52(12): 998‐1007. 

Olney, J. W., J. W. Newcomer, et al. (1999). "NMDA receptor hypofunction model of schizophrenia." J Psychiatr Res 33(6): 523‐533. 

Olpe, H. R. and G. Karlsson (1990). "The effects of baclofen and two GABAB‐receptor antagonists on long‐term potentiation." Naunyn Schmiedebergs Arch Pharmacol 342(2): 194‐197. 

Olpe, H. R., W. Worner, et al. (1993). "Stimulation parameters determine role of GABAB receptors in long‐term potentiation." Experientia 49(6‐7): 542‐546. 

Olsen, R. W., H. J. Hanchar, et al. (2007). "GABAA receptor subtypes: the "one glass of wine" receptors." Alcohol 41(3): 201‐209. 

Ongur, D., A. P. Prescot, et al. (2010). "Elevated gamma‐aminobutyric acid levels in chronic schizophrenia." Biol Psychiatry 68(7): 667‐670. 

Otani, S. (2003). "Prefrontal cortex function, quasi‐physiological stimuli, and synaptic plasticity." J Physiol Paris 97(4‐6): 423‐430. 

Page 186: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

172  

Otani, S., H. Daniel, et al. (2003). "Dopaminergic modulation of long‐term synaptic plasticity in rat prefrontal neurons." Cereb Cortex 13(11): 1251‐1256. 

Parikh, V., J. Ji, et al. (2010). "Prefrontal beta2 subunit‐containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling." J Neurosci 30(9): 3518‐3530. 

Pascual‐Leone, A., A. Amedi, et al. (2005). "The plastic human brain cortex." Annu Rev Neurosci 28: 377‐401. 

Pascual‐Leone, A., D. S. Manoach, et al. (2002). "Motor cortical excitability in schizophrenia." Biol Psychiatry 52(1): 24‐31. 

Patil, M. M., C. Linster, et al. (1998). "Cholinergic agonist carbachol enables associative long‐term potentiation in piriform cortex slices." J Neurophysiol 80(5): 2467‐2474. 

Paulus, W., J. Classen, et al. (2008). "State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation." Brain Stimul 1(3): 151‐163. 

Paus, T., P. K. Sipila, et al. (2001). "Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study." J Neurophysiol 86(4): 1983‐1990. 

Pearlson, G. D., L. E. Tune, et al. (1993). "Quantitative D2 dopamine receptor PET and structural MRI changes in late‐onset schizophrenia." Schizophr Bull 19(4): 783‐795. 

Pearlson, G. D., D. F. Wong, et al. (1995). "In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder." Arch Gen Psychiatry 52(6): 471‐477. 

Pepeu, G. and M. G. Giovannini (2004). "Changes in acetylcholine extracellular levels during cognitive processes." Learn Mem 11(1): 21‐27. 

Perry, T. L., S. J. Kish, et al. (1979). "Gamma‐aminobutyric‐acid deficiency in brain of schizophrenic patients." Lancet 1(8110): 237‐239. 

Petroff, O. A. (2002). "GABA and glutamate in the human brain." Neuroscientist 8(6): 562‐573. Pettersson‐Yeo, W., P. Allen, et al. (2011). "Dysconnectivity in schizophrenia: where are we now?" 

Neurosci Biobehav Rev 35(5): 1110‐1124. Picciotto, M. R., M. J. Higley, et al. (2012). "Acetylcholine as a neuromodulator: cholinergic signaling 

shapes nervous system function and behavior." Neuron 76(1): 116‐129. Pierantozzi, M., M. G. Marciani, et al. (2004). "Effect of Vigabatrin on motor responses to transcranial 

magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans." Brain Res 1028(1): 1‐8. 

Pilowsky, L. S., R. A. Bressan, et al. (2006). "First in vivo evidence of an NMDA receptor deficit in medication‐free schizophrenic patients." Mol Psychiatry 11(2): 118‐119. 

Pilowsky, L. S., D. C. Costa, et al. (1994). "D2 dopamine receptor binding in the basal ganglia of antipsychotic‐free schizophrenic patients. An 123I‐IBZM single photon emission computerised tomography study." Br J Psychiatry 164(1): 16‐26. 

Player, M. J., J. L. Taylor, et al. (2013). "Neuroplasticity in Depressed Individuals Compared with Healthy Controls." Neuropsychopharmacology 38(11): 2101‐2108. 

Poels, E. M., L. S. Kegeles, et al. (2014). "Imaging glutamate in schizophrenia: review of findings and implications for drug discovery." Mol Psychiatry 19(1): 20‐29. 

Polinsky, R. J. (1998). "Clinical pharmacology of rivastigmine: A new‐generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease." Clinical Therapeutics 20(4): 634‐647. 

Polinsky, R. J. (1998). "Clinical pharmacology of rivastigmine: a new‐generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease." Clin Ther 20(4): 634‐647. 

Poornima, S., S. S. Ali, et al. (2013). "Median nerve somatosensory evoked potentials in medical students: Normative data." Adv Biomed Res 2: 56. 

Porter, J. T. and D. Nieves (2004). "Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex." J Neurophysiol 92(5): 2762‐2770. 

Page 187: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

173  

Premoli, I., D. Rivolta, et al. (2014). "Characterization of GABAB‐receptor mediated neurotransmission in the human cortex by paired‐pulse TMS‐EEG." Neuroimage 103: 152‐162. 

Priori, A., A. Berardelli, et al. (1994). "Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson's disease and drug‐induced parkinsonism." Brain 117 ( Pt 2): 317‐323. 

Radhu, N., L. Garcia Dominguez, et al. (2015). "Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia." Brain 138(Pt 2): 483‐497. 

Raedler, T. J., M. B. Knable, et al. (2003). "In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia." Am J Psychiatry 160(1): 118‐127. 

Ragozzino (2000). "The contribution of cholinergic and dopaminergic afferents in the rat prefrontal cortex to learning, memory and attention." Psychobiology 28(2): 238–247. 

Raiteri, M., M. Marchi, et al. (1990). "Presynaptic muscarinic receptors in the central nervous system." Ann N Y Acad Sci 604: 113‐129. 

Rajji, T. (2014). Theta‐Gamma Coupling Abnormalities in the Dorsolateral Prefrontal Cortex of Patients with Schizophrenia Society of Biological Psychiatry. New York City: 384S. 

Rajji, T. K., Z. Ismail, et al. (2009). "Age at onset and cognition in schizophrenia: meta‐analysis." Br J Psychiatry 195(4): 286‐293. 

Rajji, T. K., S. K. Liu, et al. (2011). "Exploring the effect of inducing long‐term potentiation in the human motor cortex on motor learning." Brain Stimul 4(3): 137‐144. 

Rajji, T. K., Y. Sun, et al. (2013). "PAS‐induced potentiation of cortical‐evoked activity in the dorsolateral prefrontal cortex." Neuropsychopharmacology 38(12): 2545‐2552. 

Reis, J., D. John, et al. (2006). "Modulation of human motor cortex excitability by single doses of amantadine." Neuropsychopharmacology 31(12): 2758‐2766. 

Roberts, E. and S. Frankel (1950). "gamma‐Aminobutyric acid in brain: its formation from glutamic acid." J Biol Chem 187(1): 55‐63. 

Rogasch, N. C., Z. J. Daskalakis, et al. (2014). "Cortical inhibition, excitation, and connectivity in schizophrenia: a review of insights from transcranial magnetic stimulation." Schizophr Bull 40(3): 685‐696. 

Rogasch, N. C., Z. J. Daskalakis, et al. (2015). "Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: a TMS‐EEG study." Cortex 64: 68‐77. 

Rogasch, N. C., R. H. Thomson, et al. (2014). "Removing artefacts from TMS‐EEG recordings using independent component analysis: importance for assessing prefrontal and motor cortex network properties." Neuroimage 101: 425‐439. 

Roggenhofer, E., P. Fidzinski, et al. (2010). "Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long‐term potentiation at hippocampal output synapses." Eur J Neurosci 32(4): 598‐605. 

Ross, C. A., R. L. Margolis, et al. (2006). "Neurobiology of schizophrenia." Neuron 52(1): 139‐153. Ross, R. G., S. Heinlein, et al. (2006). "High rates of comorbidity are found in childhood‐onset 

schizophrenia." Schizophr Res 88(1‐3): 90‐95. Rossi, S., M. Hallett, et al. (2009). "Safety, ethical considerations, and application guidelines for the use 

of transcranial magnetic stimulation in clinical practice and research." Clin Neurophysiol 120(12): 2008‐2039. 

Rothstein, J. D. (1995). "Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis." Adv Neurol 68: 7‐20; discussion 21‐27. 

Rowland, L. M., J. R. Bustillo, et al. (2005). "Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4‐T proton MRS study." Am J Psychiatry 162(2): 394‐396. 

Page 188: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

174  

Rowland, L. M., K. Kontson, et al. (2013). "In vivo measurements of glutamate, GABA, and NAAG in schizophrenia." Schizophr Bull 39(5): 1096‐1104. 

Rudolph, U. and H. Mohler (2014). "GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism." Annu Rev Pharmacol Toxicol 54: 483‐507. 

Ruiz, A., E. Campanac, et al. (2010). "Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses." Nat Neurosci 13(4): 431‐438. 

Rusjan, P. M., M. S. Barr, et al. (2010). "Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image‐guided neuronavigation." Hum Brain Mapp 31(11): 1643‐1652. 

Sailasuta, N., T. Ernst, et al. (2008). "Regional variations and the effects of age and gender on glutamate concentrations in the human brain." Magn Reson Imaging 26(5): 667‐675. 

Salavati, B., T. K. Rajji, et al. (2015). "Imaging‐based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long‐term potentiation." Schizophr Bull 41(1): 44‐56. 

Sale, M. V., M. C. Ridding, et al. (2007). "Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation." Exp Brain Res 181(4): 615‐626. 

Sanger, T. D., R. R. Garg, et al. (2001). "Interactions between two different inhibitory systems in the human motor cortex." J Physiol 530(Pt 2): 307‐317. 

Sarter, M., J. P. Bruno, et al. (2003). "Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory?" Neurobiol Learn Mem 80(3): 245‐256. 

Sawaguchi, T., M. Matsumura, et al. (1988). "Dopamine enhances the neuronal activity of spatial short‐term memory task in the primate prefrontal cortex." Neurosci Res 5(5): 465‐473. 

Sawaki, L., B. Boroojerdi, et al. (2002). "Cholinergic influences on use‐dependent plasticity." J Neurophysiol 87(1): 166‐171. 

Schieber, M. H. and L. S. Hibbard (1993). "How somatotopic is the motor cortex hand area?" Science 261(5120): 489‐492. 

Schmitt, G. J., S. Dresel, et al. (2012). "Dual‐isotope SPECT imaging of striatal dopamine: a comparative study between never‐treated and haloperidol‐treated first‐episode schizophrenic patients." Eur Arch Psychiatry Clin Neurosci 262(3): 183‐191. 

Schmitt, G. J., E. M. Meisenzahl, et al. (2009). "Increase of striatal dopamine transmission in first episode drug‐naive schizophrenic patients as demonstrated by [(123)I]IBZM SPECT." Psychiatry Res 173(3): 183‐189. 

Schultz, S. K. and N. C. Andreasen (1999). "Schizophrenia." Lancet 353(9162): 1425‐1430. Schwenkreis, P., J. Liepert, et al. (2000). "Riluzole suppresses motor cortex facilitation in correlation to 

its plasma level. A study using transcranial magnetic stimulation." Exp Brain Res 135(3): 293‐299. Schwenkreis, P., K. Witscher, et al. (1999). "Influence of the N‐methyl‐D‐aspartate antagonist 

memantine on human motor cortex excitability." Neurosci Lett 270(3): 137‐140. Seamans, J. K., D. Durstewitz, et al. (2001). "Dopamine D1/D5 receptor modulation of excitatory synaptic 

inputs to layer V prefrontal cortex neurons." Proc Natl Acad Sci U S A 98(1): 301‐306. Seamans, J. K. and C. R. Yang (2004). "The principal features and mechanisms of dopamine modulation 

in the prefrontal cortex." Prog Neurobiol 74(1): 1‐58. Sederberg, P. B., A. Schulze‐Bonhage, et al. (2007). "Hippocampal and neocortical gamma oscillations 

predict memory formation in humans." Cereb Cortex 17(5): 1190‐1196. Seeger, T., I. Fedorova, et al. (2004). "M2 muscarinic acetylcholine receptor knock‐out mice show 

deficits in behavioral flexibility, working memory, and hippocampal plasticity." J Neurosci 24(45): 10117‐10127. 

Seeman, P., H. C. Guan, et al. (1993). "Dopamine D4 receptors elevated in schizophrenia." Nature 365(6445): 441‐445. 

Page 189: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

175  

Seeman, P. and T. Lee (1975). "Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons." Science 188(4194): 1217‐1219. 

Seeman, P., D. Weinshenker, et al. (2005). "Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis." Proc Natl Acad Sci U S A 102(9): 3513‐3518. 

Seese, R. R., J. O'Neill, et al. (2011). "Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia." Schizophr Res 133(1‐3): 82‐90. 

Segovia, G., A. Del Arco, et al. (1997). "Endogenous glutamate increases extracellular concentrations of dopamine, GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study." J Neurochem 69(4): 1476‐1483. 

Sesack, S. R., V. A. Hawrylak, et al. (1998). "Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures." Cereb Cortex 8(7): 614‐622. 

Shannon, H. E., K. Rasmussen, et al. (2000). "Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic‐like activity in rats and mice." Schizophr Res 42(3): 249‐259. 

Siebner, H. R., J. Dressnandt, et al. (1998). "Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia." Muscle Nerve 21(9): 1209‐1212. 

Smucny, J., A. Olincy, et al. (2013). "Early sensory processing deficits predict sensitivity to distraction in schizophrenia." Schizophr Res 147(1): 196‐200. 

Smucny, J. and J. Tregellas (2013). "Nicotinic modulation of intrinsic brain networks in schizophrenia." Biochem Pharmacol 86(8): 1163‐1172. 

Snyder, S. H. (1972). "Catecholamines in the brain as mediators of amphetamine psychosis." Arch Gen Psychiatry 27(2): 169‐179. 

Soares, J. C. and R. B. Innis (1999). "Neurochemical brain imaging investigations of schizophrenia." Biol Psychiatry 46(5): 600‐615. 

Sohal, V. S., F. Zhang, et al. (2009). "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance." Nature 459(7247): 698‐702. 

Sokolov, B. P. (1998). "Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of "neuroleptic‐free" schizophrenics: evidence on reversible up‐regulation by typical neuroleptics." J Neurochem 71(6): 2454‐2464. 

Stagg, C. J., V. Bachtiar, et al. (2011). "The role of GABA in human motor learning." Curr Biol 21(6): 480‐484. 

Stagg, C. J., V. Bachtiar, et al. (2011). "What are we measuring with GABA magnetic resonance spectroscopy?" Commun Integr Biol 4(5): 573‐575. 

Stahl, S. M. (2007). "Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia." CNS Spectr 12(4): 265‐268. 

Stanley, J. A., P. C. Williamson, et al. (1996). "An in vivo proton magnetic resonance spectroscopy study of schizophrenia patients." Schizophr Bull 22(4): 597‐609. 

Stefan, K., E. Kunesch, et al. (2002). "Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation." J Physiol 543(Pt 2): 699‐708. 

Stefan, K., E. Kunesch, et al. (2000). "Induction of plasticity in the human motor cortex by paired associative stimulation." Brain 123 Pt 3: 572‐584. 

Stefan, K., M. Wycislo, et al. (2004). "Modulation of associative human motor cortical plasticity by attention." J Neurophysiol 92(1): 66‐72. 

Stetkarova, I. and M. Kofler (2013). "Differential effect of baclofen on cortical and spinal inhibitory circuits." Clin Neurophysiol 124(2): 339‐345. 

Page 190: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

176  

Stetson, D. S., J. W. Albers, et al. (1992). "Effects of age, sex, and anthropometric factors on nerve conduction measures." Muscle Nerve 15(10): 1095‐1104. 

Stone, J. M., F. Day, et al. (2009). "Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume." Biol Psychiatry 66(6): 533‐539. 

Strzelecki, D. and J. Rabe‐Jablonska (2011). "[Changes in positive and negative symptoms, general psychopathology in schizophrenic patients during augmentation of antipsychotics with glycine: a preliminary 10‐week open‐label study]." Psychiatr Pol 45(6): 825‐837. 

Suhara, T., Y. Okubo, et al. (2002). "Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia." Arch Gen Psychiatry 59(1): 25‐30. 

Sun, Y., F. Farzan, et al. (2016). "Indicators for Remission of Suicidal Ideation Following Magnetic Seizure Therapy in Patients With Treatment‐Resistant Depression." JAMA Psychiatry 73(4): 337‐345. 

Swartz, B. E. and E. S. Goldensohn (1998). "Timeline of the history of EEG and associated fields." Electroencephalogr Clin Neurophysiol 106(2): 173‐176. 

Talvik, M., A. L. Nordstrom, et al. (2006). "Dopamine D2 receptor binding in drug‐naive patients with schizophrenia examined with raclopride‐C11 and positron emission tomography." Psychiatry Res 148(2‐3): 165‐173. 

Talvik, M., A. L. Nordstrom, et al. (2003). "Decreased thalamic D2/D3 receptor binding in drug‐naive patients with schizophrenia: a PET study with [11C]FLB 457." Int J Neuropsychopharmacol 6(4): 361‐370. 

Tandon, N., N. R. Bolo, et al. (2013). "Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy." Schizophr Res 148(1‐3): 59‐66. 

Tayoshi, S., M. Nakataki, et al. (2010). "GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study." Schizophr Res 117(1): 83‐91. 

Teo, J. T., C. Terranova, et al. (2009). "Differing effects of intracortical circuits on plasticity." Exp Brain Res 193(4): 555‐563. 

Theberge, J., Y. Al‐Semaan, et al. (2003). "Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0‐T proton MRS." Am J Psychiatry 160(12): 2231‐2233. 

Theberge, J., R. Bartha, et al. (2002). "Glutamate and glutamine measured with 4.0 T proton MRS in never‐treated patients with schizophrenia and healthy volunteers." Am J Psychiatry 159(11): 1944‐1946. 

Theberge, J., K. E. Williamson, et al. (2007). "Longitudinal grey‐matter and glutamatergic losses in first‐episode schizophrenia." Br J Psychiatry 191: 325‐334. 

Thielscher, A. and T. Kammer (2004). "Electric field properties of two commercial figure‐8 coils in TMS: calculation of focality and efficiency." Clin Neurophysiol 115(7): 1697‐1708. 

Thirugnanasambandam, N., J. Grundey, et al. (2011). "Dose‐dependent nonlinear effect of L‐DOPA on paired associative stimulation‐induced neuroplasticity in humans." J Neurosci 31(14): 5294‐5299. 

Thompson, S. M. and B. H. Gahwiler (1992). "Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures." J Neurophysiol 67(6): 1698‐1701. 

Tibbo, P., C. Hanstock, et al. (2004). "3‐T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia." Am J Psychiatry 161(6): 1116‐1118. 

Torrey, E. F. (1987). "Prevalence studies in schizophrenia." Br J Psychiatry 150: 598‐608. Towers, S. K. and S. Hestrin (2008). "D1‐like dopamine receptor activation modulates GABAergic 

inhibition but not electrical coupling between neocortical fast‐spiking interneurons." J Neurosci 28(10): 2633‐2641. 

Page 191: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

177  

Tracy, J. I., C. Monaco, et al. (2001). "Anticholinergicity and cognitive processing in chronic schizophrenia." Biol Psychol 56(1): 1‐22. 

Tritsch, N. X. and B. L. Sabatini (2012). "Dopaminergic Modulation of Synaptic Transmission in Cortex and Striatum." Neuron 76(1): 33‐50. 

Tse, M. T., P. T. Piantadosi, et al. (2015). "Prefrontal cortical gamma‐aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research." Biol Psychiatry 77(11): 929‐939. 

Tseng, K. Y. and P. O'Donnell (2004). "Dopamine‐glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms." J Neurosci 24(22): 5131‐5139. 

Tsien, J. Z., P. T. Huerta, et al. (1996). "The essential role of hippocampal CA1 NMDA receptor‐dependent synaptic plasticity in spatial memory." Cell 87(7): 1327‐1338. 

Tune, L. E., D. F. Wong, et al. (1993). "Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C‐N‐methylspiperone." Psychiatry Res 49(3): 219‐237. 

Tuppurainen, H., J. Kuikka, et al. (2003). "Extrastriatal dopamine D 2/3 receptor density and distribution in drug‐naive schizophrenic patients." Mol Psychiatry 8(4): 453‐455. 

Tuppurainen, H., J. T. Kuikka, et al. (2006). "Midbrain dopamine D2/3 receptor binding in schizophrenia." Eur Arch Psychiatry Clin Neurosci 256(6): 382‐387. 

Udupa, K., Z. Ni, et al. (2009). "Interactions between short latency afferent inhibition and long interval intracortical inhibition." Exp Brain Res 199(2): 177‐183. 

Valeriani, M., D. Restuccia, et al. (2000). "Central scalp projection of the N30 SEP source activity after median nerve stimulation." Muscle Nerve 23(3): 353‐360. 

Valls‐Sole, J., A. Pascual‐Leone, et al. (1992). "Human motor evoked responses to paired transcranial magnetic stimuli." Electroencephalogr Clin Neurophysiol 85(6): 355‐364. 

van Os, J. and S. Kapur (2009). "Schizophrenia." Lancet 374(9690): 635‐645. Vickery, R. M., S. H. Morris, et al. (1997). "Metabotropic glutamate receptors are involved in long‐term 

potentiation in isolated slices of rat medial frontal cortex." J Neurophysiol 78(6): 3039‐3046. Vidal, C. and J. P. Changeux (1993). "Nicotinic and muscarinic modulations of excitatory synaptic 

transmission in the rat prefrontal cortex in vitro." Neuroscience 56(1): 23‐32. Vigot, R., S. Barbieri, et al. (2006). "Differential compartmentalization and distinct functions of GABAB 

receptor variants." Neuron 50(4): 589‐601. Volk, D. W., M. C. Austin, et al. (2000). "Decreased glutamic acid decarboxylase67 messenger RNA 

expression in a subset of prefrontal cortical gamma‐aminobutyric acid neurons in subjects with schizophrenia." Arch Gen Psychiatry 57(3): 237‐245. 

von Engelhardt, J., M. Eliava, et al. (2007). "Functional characterization of intrinsic cholinergic interneurons in the cortex." J Neurosci 27(21): 5633‐5642. 

Wallace, T. L. and D. Bertrand (2013). "Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex." Biochem Pharmacol 85(12): 1713‐1720. 

Wang, J. and P. O'Donnell (2001). "D(1) dopamine receptors potentiate nmda‐mediated excitability increase in layer V prefrontal cortical pyramidal neurons." Cereb Cortex 11(5): 452‐462. 

Wang, M. and A. F. Arnsten (2015). "Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates." Neurosci Bull 31(2): 191‐197. 

Wang, M., L. Pei, et al. (2010). "Schizophrenia, amphetamine‐induced sensitized state and acute amphetamine exposure all show a common alteration: increased dopamine D2 receptor dimerization." Mol Brain 3: 25. 

Wang, X. J. and G. Buzsaki (1996). "Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model." J Neurosci 16(20): 6402‐6413. 

Page 192: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

178  

Wei, J., E. A. Walton, et al. (1994). "m1‐m5 muscarinic receptor distribution in rat CNS by RT‐PCR and HPLC." J Neurochem 63(3): 815‐821. 

Weinberger, D. R., K. F. Berman, et al. (1986). "Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence." Arch Gen Psychiatry 43(2): 114‐124. 

Werhahn, K. J., E. Kunesch, et al. (1999). "Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans." J Physiol 517 ( Pt 2): 591‐597. 

Werhahn, K. J., E. Kunesch, et al. (1999). "Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans." J Physiol (Lond) 517(Pt 2): 591‐597. 

Whiteford, H. A., L. Degenhardt, et al. (2013). "Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010." Lancet 382(9904): 1575‐1586. 

Whittington, M. A., R. D. Traub, et al. (1995). "Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation." Nature 373(6515): 612‐615. 

Wigstrom, H. and B. Gustafsson (1983). "Facilitated induction of hippocampal long‐lasting potentiation during blockade of inhibition." Nature 301(5901): 603‐604. 

Williams, S. and D. Johnston (1988). "Muscarinic depression of long‐term potentiation in CA3 hippocampal neurons." Science 242(4875): 84‐87. 

Wobrock, T., D. Kadovic, et al. (2007). "[Cortical excitability in schizophrenia. Studies using transcranial magnetic stimulation]." Nervenarzt 78(7): 753‐754, 756‐763. 

Wobrock, T., T. Schneider‐Axmann, et al. (2009). "Motor circuit abnormalities in first‐episode schizophrenia assessed with transcranial magnetic stimulation." Pharmacopsychiatry 42(5): 194‐201. 

Wong, D. F., H. S. Singer, et al. (1997). "D2‐like dopamine receptor density in Tourette syndrome measured by PET." J Nucl Med 38(8): 1243‐1247. 

Wong, D. F., H. N. Wagner, Jr., et al. (1986). "Positron emission tomography reveals elevated D2 dopamine receptors in drug‐naive schizophrenics." Science 234(4783): 1558‐1563. 

Wong, S. T., J. Athos, et al. (1999). "Calcium‐stimulated adenylyl cyclase activity is critical for hippocampus‐dependent long‐term memory and late phase LTP." Neuron 23(4): 787‐798. 

Woo, T. U., J. P. Walsh, et al. (2004). "Density of glutamic acid decarboxylase 67 messenger RNA‐containing neurons that express the N‐methyl‐D‐aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder." Arch Gen Psychiatry 61(7): 649‐657. 

Woolf, N. J. and L. L. Butcher (2011). "Cholinergic systems mediate action from movement to higher consciousness." Behav Brain Res 221(2): 488‐498. 

Wu, Z. L., S. A. Thomas, et al. (1995). "Altered behavior and long‐term potentiation in type I adenylyl cyclase mutant mice." Proc Natl Acad Sci U S A 92(1): 220‐224. 

Wulff, P., A. A. Ponomarenko, et al. (2009). "Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin‐positive interneurons." Proc Natl Acad Sci U S A 106(9): 3561‐3566. 

Xu, T. X. and W. D. Yao (2010). "D1 and D2 dopamine receptors in separate circuits cooperate to drive associative long‐term potentiation in the prefrontal cortex." Proc Natl Acad Sci U S A 107(37): 16366‐16371. 

Yamada, M., T. Miyakawa, et al. (2001). "Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean." Nature 410(6825): 207‐212. 

Yamada, T., R. Kayamori, et al. (1984). "Topography of somatosensory evoked potentials after stimulation of the median nerve." Electroencephalogr Clin Neurophysiol 59(1): 29‐43. 

Yang, Y., C. D. Paspalas, et al. (2013). "Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex." Proc Natl Acad Sci U S A 110(29): 12078‐12083. 

Page 193: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

179  

Yang, Y. K., L. Yu, et al. (2004). "Associated alterations of striatal dopamine D2/D3 receptor and transporter binding in drug‐naive patients with schizophrenia: a dual‐isotope SPECT study." Am J Psychiatry 161(8): 1496‐1498. 

Yasuno, F., T. Suhara, et al. (2004). "Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia." Am J Psychiatry 161(6): 1016‐1022. 

Yoo, S. Y., S. Yeon, et al. (2009). "Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus." Schizophr Res 111(1‐3): 86‐93. 

Yoon, J. H., R. J. Maddock, et al. (2010). "GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation‐specific surround suppression." J Neurosci 30(10): 3777‐3781. 

Yuval‐Greenberg, S., O. Tomer, et al. (2008). "Transient induced gamma‐band response in EEG as a manifestation of miniature saccades." Neuron 58(3): 429‐441. 

Zhang, L. and R. A. Warren (2002). "Muscarinic and nicotinic presynaptic modulation of EPSCs in the nucleus accumbens during postnatal development." J Neurophysiol 88(6): 3315‐3330. 

Ziemann, U. (1999). "Intracortical inhibition and facilitation in the conventional paired TMS paradigm." Electroencephalogr Clin Neurophysiol Suppl 51: 127‐136. 

Ziemann, U., D. Bruns, et al. (1996). "Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation." Neurosci Lett 208(3): 187‐190. 

Ziemann, U., R. Chen, et al. (1998). "Dextromethorphan decreases the excitability of the human motor cortex." Neurology 51(5): 1320‐1324. 

Ziemann, U., M. Hallett, et al. (1998). "Mechanisms of deafferentation‐induced plasticity in human motor cortex." J Neurosci 18(17): 7000‐7007. 

Ziemann, U., T. V. Ilic, et al. (2004). "Learning modifies subsequent induction of long‐term potentiation‐like and long‐term depression‐like plasticity in human motor cortex." J Neurosci 24(7): 1666‐1672. 

Ziemann, U., S. Lonnecker, et al. (1996). "The effect of lorazepam on the motor cortical excitability in man." Exp Brain Res 109(1): 127‐135. 

Ziemann, U., S. Lonnecker, et al. (1996). "Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study." Ann Neurol 40(3): 367‐378. 

Ziemann, U., J. Reis, et al. (2015). "TMS and drugs revisited 2014." Clin Neurophysiol 126(10): 1847‐1868. 

Ziemann, U., F. Tergau, et al. (1997). "Changes in human motor cortex excitability induced by dopaminergic and anti‐dopaminergic drugs." Electroencephalogr Clin Neurophysiol 105(6): 430‐437. 

Ziemann, U., F. Tergau, et al. (1998). "Pharmacological control of facilitatory I‐wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study." Electroencephalogr Clin Neurophysiol 109(4): 321‐330. 

 

 

 

 

 

Page 194: Pharmacological Manipulation of Long-term Potentiation and ... · Yinming Sun designed figure 2. Neurochemicals and Receptors in Patients with Schizophrenia Relative to Healthy Controls

 

180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Recommended