+ All Categories
Home > Documents > Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV....

Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV....

Date post: 07-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
60
1 Wireless Communication Lab CCU-EE Physical-Layer RF Design of Dual-Band 802.11 WLAN The 13th Annual Wireless & Optical Communication The 13th Annual Wireless & Optical Communication Conference 2004 Conference 2004 Sheng-Fuh Chang, Associate Professor Center of Telecommunication Research Department of Electrical Engineering National Chung Cheng University (05)2720411-33218, Fax:(05)2720862, [email protected] March 8, 2004
Transcript
Page 1: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

1Wireless Communication LabCCU-EE

Physical-Layer RF Design of Dual-Band 802.11 WLAN

The 13th Annual Wireless & Optical Communication The 13th Annual Wireless & Optical Communication Conference 2004Conference 2004

Sheng-Fuh Chang, Associate ProfessorCenter of Telecommunication Research

Department of Electrical EngineeringNational Chung Cheng University

(05)2720411-33218, Fax:(05)2720862, [email protected] 8, 2004

Page 2: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

2Wireless Communication LabCCU-EE

Contents

I. Motivation of this research

II. RF Design Requirements from 802.11 PHY Clauses

III. Design Example: Dual-Band WLAN RF Module

IV. Conclusions

Page 3: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

3Wireless Communication LabCCU-EE

I. Motivation of the Research

How do we turn 802.11 WLAN RF written documentinto a physical module?

Page 4: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

4Wireless Communication LabCCU-EE

II. RF Requirements from 802.11 PHY Clauses

IEEE802.11a-Subclause 17.3 OFDM PLCP(Physical Layer Convergence Procedure) Sublayer

IEEE802.11b-Subclause 18.4High Rate PMD(physical medium dependent) Sublayer

IEEE802.11g-Subclause 19.4

Page 5: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

5Wireless Communication LabCCU-EE

(I) Operation Frequency Band and channel number

IEEE802.11a 17.3.8.3

Channel Center Frequency=5000 + 5nch (MHz), where nch=0,1,…,200

Lower Band Edge20 MHz

5725

Frequency(MHz)

IEEE802.11a

582551505180

Ch36

5200

40 44

5220

48

5240

52

5260

56

5280

60

5300

64

5320

Upper Band Edge20 MHz

Lower Band Edge 30 MHz Guardband

5350

Upper Band Edge30 MHz

5745

149

5765

153

5785

157

5805

161

Page 6: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

6Wireless Communication LabCCU-EE

1 3

1 6 11

5 7 9 11

Frequency(MHz)2483.52400 2412 2437 2462

• North American channel selection—non-overlapping

24622483.52400

2412 24422422 2432 2452 2472

• North American channel selection—overlapping

IEEE802.11b/g 18.4.6.7.2 Operating channels

Related to Transceiver architecture, VCO and Frequency Synthesizer Design

Page 7: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

7Wireless Communication LabCCU-EE

Straight-forward architecture: Two separated RF Transceiver

Q Data

I Data

I Out

Q OutVGC

090

/2

LPF∑

ADC

ADC

ADC

ADCPowerAmp

DriverAmp

LNA

T/RswitchRF filterAnt

switch

RFmixer

RFmixer

5.2 GHz

PLL

VCO

Q Data

I Data

I Out

Q OutVGC

090

/2

LPF∑

ADC

ADC

ADC

ADCPowerAmp

DriverAmp

LNA

T/RswitchRF filterAnt

switch

RFmixer

RFmixer

2.4 GHz

PLL

VCO

5.2 GHz

2.4 GHz

Page 8: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

8Wireless Communication LabCCU-EE

Cost-Effective architecture: Dualband RF Transceiver

Q Data

I Data

I Out

Q OutVGC

090

/2

LPF∑

ADC

ADC

ADC

ADC

Q Data

I Data

I Out

Q OutVGC

090

/2

LPF∑

ADC

ADC

ADC

ADC

PLL

VCO

5.2 GHz

PLL

VCO

2.4 GHz

PowerAmp

DriverAmp

LNA

T/RswitchRF filterAnt

switch

RFmixer

RFmixer

5.2 GHz

PowerAmp

DriverAmp

LNA

T/RswitchRF filterAnt

switch

RFmixer

RFmixer

2.4 GHz

PowerAmp

DriverAmp

LNA

T/RswitchRF filterAnt

switch

RFmixer

RFmixer

2.4/5.2 GHz

PLL

VCO

2.4/5.2 GHz

Page 9: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

9Wireless Communication LabCCU-EE

single PLL and VCO generates all RF channels in 2.4 and 5.2 GHz Band

LNA

RFfilter

GainAmp

Q Data

I Data

I Out

Q Out

VGC

LPF

0

90

0

902

LPF

RFMD RF2948

ADCADC

ADCADC

DACDAC

DACDAC

Ant

switchT/RswitchT/Rswitch

2400~2483.5MHz5150~5350 MHz

PowerAmpPowerAmpPowerAmp

DriverAmpDriverAmp

Ant

SAW

LCVariableGain Amp

Imageflter

LO1

LO2Fref

2÷2÷

PFD

PFD

5.2 GHz2.4 GHz

Page 10: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

10Wireless Communication LabCCU-EE

310 MHz Tuning Range

Phase Noise: -96 dBc/Hz @100kHz offset

VCO must have• adequate frequency tuning range•Low phase noise

Page 11: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

11Wireless Communication LabCCU-EE

PLL Loop filter design

Loop filter is designed with compromise among

•stability (phase margin),

• carrier frequency settling time (Lock time), and

• phase noise and interfering spurs.

Page 12: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

12Wireless Communication LabCCU-EE

-97.8 dBc/Hz phase noise at 100 kHz off 5693 MHz 124 µS settling time

Dual-Band Frequency Synthesizer

-67 dB spur level

Page 13: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

13Wireless Communication LabCCU-EE

(1) Concurrent Dual-Band LNA- Circuit 1

NE3210s01NE3210s01

+3.5V+3.5V -0.3V-0.3V

Frequency(GHz)

0 1 2 3 4 5 6 7 8 9

(dB)

-60

-40

-20

0

20

40

S21 simulationS21 measurement

Page 14: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

14Wireless Communication LabCCU-EE

(2) Dual-Band PA

Frequency(GHz)

1 2 3 4 5 6 7

dB

-30

-20

-10

0

10

20

30

S11

S21

S22

Page 15: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

15Wireless Communication LabCCU-EE

(3) Dual-Band Filter

Frequency (GHz)

0 2 4 6 8 10

dB

-60

-50

-40

-30

-20

-10

0

Return lossInsertion loss

Second-order SIR filter

Page 16: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

16Wireless Communication LabCCU-EE

(4) Dual-Band Switch

Frequency (GHz)

1 2 3 4 5 6 7 8 9 10

Inse

rtion

Los

s (d

B)

-12

-10

-8

-6

-4

-2

0

simulationmeasurement

Frequency (GHz)

1 2 3 4 5 6 7 8 9 10

Isol

atio

n (d

B)

-70

-60

-50

-40

-30

-20

-10

simulationmeasurementpost simulation

Rx

LA1

CA1

CA2

Vc1 LA2

Vc1

CA3

Vc1

CA4

QA1

QA2

QA3

Ant

LB1

CB1

CB2

Vc2LB2

Vc2

Tx

CB3

Vc2

CB4

QB1

QB2

QB3

Page 17: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

17Wireless Communication LabCCU-EE

(II) Transmit power levels and spectrum mask

A. Transmit power levels

IEEE802.11a - 17.3.9.1:

40 mW(16dBm)

5150-5250MHz

200 mW(23dBm)

5250-5350 MHz

800 mW(29dBm)

5725-5825 MHz

Frequency(MHz)5180

Ch36 52

52605745

149

582551505200

40 44

5220

48

5240

56

5280

60

5300

64

53205765

153

5785

157

5805

161

Page 18: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

18Wireless Communication LabCCU-EE

IEEE802.11b - 18.4.7.1:1000mW(USA)

100mW(Europe)

10mW/MHz(Japan)

IEEE802.11g - 19.4.7.1:same as 18.4.7.1

1 3 5 7 9 11

2462 2483.52400 2412 24422422 2432 2452 2472

• USA 1000mW • Europe

2483.52400 2412 2442 24622422 2432 2452 2472

1 3 5 7 9 1111 13

100 mW

Page 19: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

19Wireless Communication LabCCU-EE

B. Transmit Spectrum Mask

IEEE802.11b:18.4.7.3IEEE802.11a:17.3.9.2

-30 -20 -11-9 911 20 30Fc

Transmit spectrum mask

transmit spectrum mask

typical signal spectrum(an example)

* The transmitted bandwidth shall have not exceeding 18 MHz

-20dBr

-28dBr

-40dBr

* using 100KHz RBW and 30KHz VBW

Frequency(MHz)

Page 20: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

20Wireless Communication LabCCU-EE

Related to Power Amplifier, RF Filter, RF Switch

LNA

RFfilter

GainAmp

Q Data

I Data

I Out

Q Out

VGC

LPF

0

90

0

902

LPF

RFMD RF2948

ADCADC

ADCADC

DACDAC

DACDAC

Ant

switchT/RswitchT/Rswitch

2400~2483.5MHz5150~5350 MHz

PowerAmpPowerAmpPowerAmp

DriverAmpDriverAmp

Ant

SAW

LCVariableGain Amp

Imageflter

LO1

LO2Fref

2÷2÷

PFD

PFD

Page 21: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

21Wireless Communication LabCCU-EE

Example: 2.4 GHz Class-AB PA

Frequency 2400-2500 MHz

Output P1dB 24.5 dBm

Output IP3 39.5 dBm

Power gain 14dB

Input return loss >8dB

Output return loss >10dB

@ 24outPAE P dBm= 38%

DC bias 5V;150mA

Page 22: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

22Wireless Communication LabCCU-EE

EVM=4.1%(-13.8 dB)

2.35 2.36 2.37 2.38 2.39 2.4 2.41 2.42 2.43 2.44 2.45-90

-80

-70

-60

-50

-40

-30

-20

-10

0

freq(GHz)

dBm

ACPR< -35dBc

PA is driven to have 22.5 dBmoutput power

PA is driven to have 13.5 dBmoutput power

2.35 2.36 2.37 2.38 2.39 2.4 2.41 2.42 2.43 2.44 2.45-90

-80

-70

-60

-50

-40

-30

-20

-10

0

freq(GHz)

dBm

ACPR < -55dBc

EVM=1.3%(-18.8 dB)

Page 23: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

23Wireless Communication LabCCU-EE

(III) Allowed constellation error and modulation accuracy

A. Allowed relative constellation error

IEEE802.11a:17.3.9.6.3 IEEE802.11b:18.4.7.8

Worst-case vector error magnitude shall not exceeded 0.35 (-4.55dB) for the normalized sampled chip data.

Page 24: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

24Wireless Communication LabCCU-EE

B. Modulation Accuracy

17.3.9.6.1 Transmit Center Frequency Leakage <-15 dB relative to overall transmitted power

e.g. 23 dBm transmitted power, 8 dBm center leakage powerFFT Spectrum

Frequency / MHz1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

-111

-101

-91

-81

-71

-61

-51

-41

-31

-21

-11

<-15 dBr

Center frequency

subcarrierfrequencies

subcarrierfrequencies

Page 25: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

25Wireless Communication LabCCU-EE

Related to baseband IQ Mixer, RF mixer

LNA

RFfilter

GainAmp

Q Data

I Data

I Out

Q Out

VGC

LPF

0

90

0

9042

LPF

RFMD RF2948

ADCADC

ADCADC

DACDAC

DACDAC

Antswitch T/R

switchT/R

switch

2400~2483.5 MHz5150~5350 MHz

PowerAmpPowerAmpPowerAmp

DriverAmp

DriverAmp

Ant

SAW

LC VariableGain Amp

Imageflter

LO1

LO2Fref

2÷2÷

PFD

PFD

FFT Spectrum

Frequency / MHz1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 201

-111

-101

-91

-81

-71

-61

-51

-41

-31

-21

-11

FFT Spectrum

Frequency / MHz1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 201

-111

-101

-91

-81

-71

-61

-51

-41

-31

-21

-11

IQ MixerRF Mixer

Page 26: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

26Wireless Communication LabCCU-EE

(IV) Receiver Dynamic Range

A. Receiver minimum input level sensitivity

IEEE802.11a:17.3.10.1 IEEE802.11b:18.4.8.1Minimum Input Power at the Antenna Connector for Packet Error Rate < 10% at a PSDU length of 1000 bytes

-76 dBm at antenna port for frame error ratio (FER)<8% at a PSDU length of 1024 octets.This FER shall be specified for 11 Mbit/s CCK modulation

-6554-6648-7036-7423-7718-7912-819-826

Minimum power at antenna port (dBm)

Data Rate (bits/s)

Page 27: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

27Wireless Communication LabCCU-EE

B. Receiver Maximum Input level

IEEE802.11a:17.3.10.4

• –30 dBm measured at the antenna connector for a maximum Packet Error Rate < 10% at a PSDU length of 1000 bytes

IEEE802.11b:18.4.8.2

• –10 dBm measured at the antenna for a maximum FER of 8% at a

PSDU length of 1024 octets.

• This FER shall be specified for 11 Mbit/s CCK modulation.

IEEE802.11g:19.5.3

–20 dBm measured at the antenna connector for the PER less than 10% at a PSDU length of 1000 bytes for any supported modulation signal or data rate (i.e., 1, 2, 5.5, 6, 9, 11, 12, 18, 22, 24, 33, 36, 48, 54 Mbit/s).

Page 28: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

28Wireless Communication LabCCU-EE

EVM Measurement by HP89441

Input Power(dBm)

-90 -80 -70 -60 -50 -40 -30 -20 -10

EV

M(%

)

0

5

10

15

20

25

30

BPSK & Data Rate: 6Mbits/sBPSK & Data Rate: 9Mbits/sQPSK & Data Rate: 12Mbits/sQPSK & Data Rate: 18Mbits/s16QAM & Data Rate: 24Mbits/s16QAM & Data Rate: 36Mbits/s

65 dB dynamic range of 17% EVM

Page 29: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

29Wireless Communication LabCCU-EE

(V) Adjacent Channel Rejection

A. Adjacent Channel Rejection

IEEE802.11a:17.3.10.2

Interfering Signal Power at Adjacent Channel, referenced to the Desired Signal Level set at 3 dB above the Sensitivity, for Packet Error Rate < 10% at a PSDU length of 1000 bytes

Frequency (MHz)5150

5828M M+1M-1

For example:

Desired Signal :

-79 dBm, 6 Mbps OFDM

Adjacent Signal :

6 Mbps OFDM

> 16 dB

3 dB sensitivity

Page 30: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

30Wireless Communication LabCCU-EE

IEEE802.11b:18.4.8.3The adjacent channel rejection shall be equal to or better than 35 dB, with an FER of 8×10–2 using 11 Mbit/s CCK modulation and a PSDU length of 1024 octets.

adjacent Signal :

11 Mbps CCK

Frequency (MHz)2400

6 dB sensitivity

For example:

Desired Signal :

-70 dBm, 11 Mbps CCK

> 35 dB

2483.5≧25MHz

Page 31: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

31Wireless Communication LabCCU-EE

IEEE802.11g: 19.5 ERP operation specifications

19.5.2 Adjacent channel rejection

For an OFDM PHY the corresponding rejection shall be no less than specified in Table 91 of 17.3.10.(IEEE802.11a)

The adjacent channel rejection of the ERP-DSSS modes shall follow 18.4.8.3 (IEEE802.11b)

19.6 ER-PBCC operation specifications

19.6.2 Receiver adjacent channel rejection

The adjacent channel rejection shall be equal to or better than 35 dB, with an FER of 8×10 –2 using ER-PBCC modulation and a PSDU length of 1024 octets

Page 32: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

32Wireless Communication LabCCU-EE

B. Non-adjacent Channel Rejection

Interfering Signal Power at Non-adjacent Channel, referenced to the Desired Signal Level set at 3 dB above the Sensitivity, for Packet Error Rate < 10% at a PSDU length of 1000 bytes

Page 33: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

33Wireless Communication LabCCU-EE

Non-adjacent Signal :

6 Mbps OFDM

Frequency (MHz)5150 5828M M+1M-1

For example:

Desired Signal :

-79 dBm, 6 Mbps OFDM

> 32 dB

3 dB sensitivity

Page 34: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

34Wireless Communication LabCCU-EE

LNA

RFfilter

GainAmp

Q Data

I Data

I Out

Q Out

VGC

LPF

0

90

0

9042

LPF

RFMD RF2948

ADCADC

ADCADC

DACDAC

DACDAC

Antswitch T/R

switchT/R

switch

2400~2483.5 MHz5150~5350 MHz

PowerAmpPowerAmpPowerAmp

DriverAmp

DriverAmp

Ant

SAW

LC VariableGain Amp

Imageflter

LO1

LO2Fref

2÷2÷

PFD

PFD

Related to Channel Selection Filter(IF SAW, Baseband Digital Filter)

Page 35: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

35Wireless Communication LabCCU-EE

How do we achieve?

Page 36: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

36Wireless Communication LabCCU-EE

III. Design Example: Dual-Band WLAN RF Module

(A) RF Transceiver Architecture and Frequency Plan

(B) Transmitter Power Budget

(C) Receiver Gain Budget

(D) Key Components Design

(E) Module Integration

Page 37: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

37Wireless Communication LabCCU-EE

(A) RF Transceiver Architecture and Frequency Plan

LNA

RFfilter

GainAmp

Q Data

I Data

I Out

Q Out

VGC

LPF

0

90

0

902

LPF

RFMD RF2948

ADCADC

ADCADC

DACDAC

DACDAC

Ant

switchT/RswitchT/Rswitch

2400~2483.5MHz5150~5350 MHz

PowerAmpPowerAmpPowerAmp

DriverAmpDriverAmp

Ant

SAW

LCVariableGain Amp

Imageflter

LO1

LO2Fref

2÷2÷

PFD

PFD

Page 38: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

38Wireless Communication LabCCU-EE

Frequency Planning for 802.11a/b/g RF Transceiver(a) fixed IF or floating IF(b) LO frequency range

Share same frequency synthesizer to save component count and DC power consumption

802.11b/g RF802.11b/g LO

802.11a RF802.11a LO

fixed IF802.11b/g LO 802.11a LO

Page 39: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

39Wireless Communication LabCCU-EE

(B) Transmitter Power Budget

IEEE80211b/g Power Budget

VGA

BPF

Mix

1

Imag

e_fil

ter

Driv

er_A

mp

PA

Switc

h1

RF_

filte

r

Ant_

switc

h

Pow

er(d

Bm

)

-20

-10

0

10

20

30

40

Output P1dB

Pin=-2 dBm

(CW) 11 Mbps DQPSK

OFDM 54 Mbps 64QAM

Page 40: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

40Wireless Communication LabCCU-EE

IEEE802.11a Power Budget

VGA

BPF

Mix

1

Imag

e_fil

ter

Drive

r_Am

p

PA

Switc

h1

RF_f

ilter

Ant_

switc

h

Powe

r(dBm

)

-20

-10

0

10

20

30

40

Output P1dB

Pin=-2 dBm

OFDM 54 Mbps 64QAM

Page 41: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

41Wireless Communication LabCCU-EE

(C) Receiver Gain Budget

IEEE802.11b/g Power Budget

Ant_

Switc

h

RF_

filte

r

Sw

itch1

LNA

Imag

e_fil

ter

Mix

1

SAW

IF_a

mp

Pow

er(d

Bm

)

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Output P1dB

Pin=-76 dBm

Pin=-20 dBm

dynamic range

IEEE802.11a Power Budget

Ant_

Switc

h

RF_

filte

r

Switc

h1

LNA

Imag

e_fil

ter

Mix

1

SAW

IF_a

mp

Pow

er(d

Bm

)-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

Output P1dB

Pin=-30 dBm

Pin=-82 dBm

dynamic range

Page 42: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

42Wireless Communication LabCCU-EE

(D) Dual-Band RF Key Component Design

Concurrent Dual-band LNA

Concurrent Dual-band PA

Concurrent Dual-Band Filter

Concurrent Dual-Band Switch

VCO and Frequency Synthesizer

Page 43: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

43Wireless Communication LabCCU-EE

(1) Concurrent Dual-Band LNA- Circuit 1

NE3210s01NE3210s01

+3.5V+3.5V -0.3V-0.3V

Frequency(GHz)

0 1 2 3 4 5 6 7 8 9

(dB)

-60

-40

-20

0

20

40

S21 simulationS21 measurement

Page 44: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

44Wireless Communication LabCCU-EE

(1) Concurrent Dual-Band LNA- 0.18umCMOS

RF_in +

Vcc

Vg

Vcc

Vcc Vcc

Vg

RF_in -

RF_out + RF_out -

L1 L2

C1C2

M1 M2

M3 M4

C3 C4

L7L8L6

L5

C8 C9 C10

C7

Pad andbondwire

Freq. (GHz)

0 2 4 6 8 10

S21

(dB

)

-50

-40

-30

-20

-10

0

10

20

SimulationMeasurement

Page 45: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

45Wireless Communication LabCCU-EE

(2) Dual-Band PA

Frequency(GHz)

1 2 3 4 5 6 7

dB

-30

-20

-10

0

10

20

30

S11

S21

S22

Page 46: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

46Wireless Communication LabCCU-EE

(3) Dual-Band Filter

Frequency (GHz)

0 2 4 6 8 10

dB

-60

-50

-40

-30

-20

-10

0

Return lossInsertion loss

Second-order SIR filter

Page 47: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

47Wireless Communication LabCCU-EE

(4) Dual-Band Switch

Frequency (GHz)

1 2 3 4 5 6 7 8 9 10

Inse

rtion

Los

s (d

B)

-12

-10

-8

-6

-4

-2

0

simulationmeasurement

Frequency (GHz)

1 2 3 4 5 6 7 8 9 10

Isol

atio

n (d

B)

-70

-60

-50

-40

-30

-20

-10

simulationmeasurementpost simulation

Rx

LA1

CA1

CA2

Vc1 LA2

Vc1

CA3

Vc1

CA4

QA1

QA2

QA3

Ant

LB1

CB1

CB2

Vc2LB2

Vc2

Tx

CB3

Vc2

CB4

QB1

QB2

QB3

Page 48: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

48Wireless Communication LabCCU-EE

(5) Dual-Band VCO and Frequency Synthesizer

310 MHz Tuning Range

5.6 GHz VCO

VCO out

Vcc

V tune

Vcc

BFG425 BFG425

Colpitts

Phase Noise: -95.95dBc/Hz@100kHz offset

Page 49: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

49Wireless Communication LabCCU-EE

5.6 GHz 0.18um CMOS quadrature VCO

-113 dBc/Hz at 1 MHz off

3o phase imbalance

VDD

Vbias

VCNTL

IOUT+

MA1

VDD

MA2 MB2MB1MA3 MA4 MB4MB3

MA5 MB5

MA6 MA7

IOUT- QOUT+ QOUT-

VbiasVbiasVbias

VCNTL MB6 MB7

PAD

Page 50: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

50Wireless Communication LabCCU-EE

8 synthesized carriers

-67 dBC spur level

Page 51: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

51Wireless Communication LabCCU-EE

-97.8 dBc/Hz phase noise at 100 kHz off carrier

124 µS settling time

Page 52: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

52Wireless Communication LabCCU-EE

(E) 2.4/5.2-GHz RF Integration

IF IQ modemDualbandreceiver Frontend

Dualbandtransmitter frontend

Antenna diversity switch

Dualband frequency synthesizer

RF-BB inter-face

Page 53: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

53Wireless Communication LabCCU-EE

(I) 2.4/5.2-GHz RF receiver test

2.4 GHz CCK QPSK 11 Mbps:

EVM=6.86 % (-60dBm received power)

2.4 GHz 64QAM 54 Mbps:

EVM=6.2 % ( -60dBm received power)

Page 54: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

54Wireless Communication LabCCU-EE

5.2 GHz 64QAM 54 Mbps:EVM=4.05 % ( -60dBm received power)

Page 55: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

55Wireless Communication LabCCU-EE

EVM Measurement by HP89441

Input Power(dBm)

-90 -80 -70 -60 -50 -40 -30 -20 -10

EV

M(%

)

0

5

10

15

20

25

30

BPSK & Data Rate: 6Mbits/sBPSK & Data Rate: 9Mbits/sQPSK & Data Rate: 12Mbits/sQPSK & Data Rate: 18Mbits/s16QAM & Data Rate: 24Mbits/s16QAM & Data Rate: 36Mbits/s

5.2 GHz Band

65 dB dynamic range for 17% EVM

EVM Measurement by HP89441

Input Power(dBm)

-90 -80 -70 -60 -50 -40 -30 -20 -10

EV

M(%

)

0

5

10

15

20

25

30

35

40

BPSK & Data Rate: 6Mbits/sBPSK & Data Rate: 9Mbits/sQPSK & Data Rate: 12Mbits/sQPSK & Data Rate: 18Mbits/s16QAM & Data Rate: 24Mbits/s16QAM & Data Rate: 36Mbits/s

RX(with IF IQ modem) Dynamic Range Test

2.4 GHz Band

70 dB dynamic range for 17% EVM

Page 56: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

56Wireless Communication LabCCU-EE

(II) 2.4/5.2-GHz RF transmitter test

2.4 GHz 54 Mbps 64QAM:

EVM=5.1%=-25.9 dB

2.4 GHz 12 Mbps QPSK:

EVM=5.8%=-24.7 dB

Page 57: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

57Wireless Communication LabCCU-EE

5.2 GHz 64QAM 54 Mbps:

EVM=4.46 %=-27.0 dB

Page 58: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

58Wireless Communication LabCCU-EE

IV. Conclusion

Transform of a written document into a physical module

Page 59: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

59Wireless Communication LabCCU-EE

Examine 802.11a/b/g RF specifications

Determine RF transceiver architecture

Calculate and simulate RF transceiver link budget

Design RF key circuits-MMIC, HMIC

RF Module Integration and measurement

Page 60: Physical-Layer RF Design of Dual-Band 802.11 WLANDesign Example: Dual-Band WLAN RF Module IV. Conclusions. 3 Wireless Communication Lab CCU-EE I. Motivation of the Research How do

60Wireless Communication LabCCU-EE

Thank you

Sincerely appreciate ISSC for partial funding support


Recommended