+ All Categories
Home > Documents > Physics 2101 Scit 3nSection 3 Apr 12 - LSUjzhang/Lecture28_2101.pdf · Physics 2101 Scit 3nSection...

Physics 2101 Scit 3nSection 3 Apr 12 - LSUjzhang/Lecture28_2101.pdf · Physics 2101 Scit 3nSection...

Date post: 30-Apr-2018
Category:
Upload: lenguyet
View: 214 times
Download: 0 times
Share this document with a friend
13
Physics 2101 Physics 2101 S cti n 3 S cti n 3 Section 3 Section 3 Apr 12 Apr 12 th th Announcements: Announcements: Finish Ch. 15 today Finish Ch. 15 today Finish Ch. 15 today Finish Ch. 15 today Start Ch. 16 today too Start Ch. 16 today too Class Website : http://www.phys.lsu.edu/classes/spring2010/phys2101 http://www.phys.lsu.edu/classes/spring2010/phys21013/ 3/ http://www.phys.lsu.edu/~jzhang/teaching.html http://www.phys.lsu.edu/~jzhang/teaching.html
Transcript

Physics 2101 Physics 2101 S cti n 3S cti n 3Section 3Section 3Apr 12Apr 12thth

Announcements:Announcements:•• Finish Ch. 15 today Finish Ch. 15 today Finish Ch. 15 today Finish Ch. 15 today

•• Start Ch. 16 today tooStart Ch. 16 today too

Class Website:  

http://www.phys.lsu.edu/classes/spring2010/phys2101http://www.phys.lsu.edu/classes/spring2010/phys2101‐‐3/3/

http://www.phys.lsu.edu/~jzhang/teaching.htmlhttp://www.phys.lsu.edu/~jzhang/teaching.html

Torsion Pendulum Spring ma = −kx

a = −km

x

ω 2 =km

Torque

What is period of torsion pendulum? 

Torque

τ = Iα = −κθ “kappa” is torsion spring constant

α = −κI

θ

⇒ ω =κI

ω 2 =κI ⇒ T = 2π I

κ

Simple Pendulum

2)  Simple Pendulum : gravity is “restoring force” 

⇒ α ≅ −mgL

Iθτ = Iα = −L mgsinθ( )

⇒ ω =mgL

I=

mgLL2( )

=gL

I

SHM : θ(t) = θmax cos ωt + ϕ( ) I mL2( ) L( ) max ϕ( )

•• Independent of amplitude and mass Independent of amplitude and mass (in small angle approximation) (in small angle approximation) !!n p n n f mp u n mn p n n f mp u n m ( n m ng pp m n)( n m ng pp m n)

•• Dependent only on L and gDependent only on L and g

Clicker QuestionClicker Question Question 10‐4

A bowling ball and a ping‐pong ball are each tied to a string and hung from the ceiling.  The distance from the ceiling to the CM of each object is the same Which object would have a longer period ofobject is the same. Which object would have a longer period of motion if they were set swinging?  Neglect air  resistance and frictional effects.

1. Bowling ball

2 Ping‐pong ball2. Ping‐pong ball

3. Both have the same period 

ω = √(g/L)

Physical PendulumS i i d itSwinging mass under gravity

“spring” restoring force is gravity 

mgh

τ pivot pt . = rF⊥ = −h mgsinθ( )

⇒ τ = Irotα ⇒ α ≅ −mghrot−com

Irot

θ

SHM θ( ) θ ( )SHM : θ(t) = θmax cos ωt + ϕ( )

⇒ ω =mghrot−com

Irot

⇒ T = 2π Irot

mghrot−com

15‐49: A stick of length L oscillates as a physical pendulum. (a) What value of distance x between the stick’s COM ant is pivot point O gives p p gthe least period?  (b) What is the least period?

General Solution of 15‐49

h L2

ω =mgh

II = ICOM + mh2 =

mL2

12+ mx2

ω =gx

L2

+ x2 T = 2π

L2

12+ x2

12+ x T 2π

gx

12gT 2 L2

12Find the minimal T Find the minimal T g

2π( )2 =x

+ 12x

d 12 T 2⎛ ⎞ d L2⎛ ⎞ L2Take derivativeTake derivative d

dx12gT 2

2π( )2

⎝⎜

⎠⎟ =

ddx

L2

x+ 12x

⎛⎝⎜

⎞⎠⎟

= −L2

x2 + 12 = 0

x =L12

ProblemProblem 16‐53:  In an overhead view, a long uniform rod of length L and mass m is free to rotate in a horizontal axis through its center.  A spring with force constant k is connected  ˆg p gto the rod and the fixed wall.  When the rod is in equilibrium, it is parallel to the wall.  What is the period of small oscillations that results when the rod is rotated slightly and released? 

ˆ x

TEST QUESTION LAST YEAR

τ = rF =L⎛

⎜ ⎞ ⎟ F( )=

L⎛ ⎜

⎞ ⎟ kx( )τ pivot pt . = rF⊥ = −

2⎝ ⎜

⎠ ⎟ Fspring( )= −

2⎝ ⎜

⎠ ⎟ kx( )

= −Lk2

x = −Lk2

L2( )θ[ ]= −

L2k4

θ

τ = Irotα =1

12mL2⎛

⎝ ⎜

⎞ ⎠ ⎟ α

2 2 2( )[ ] 4

⇒1

12mL2⎛

⎝ ⎜

⎞ ⎠ ⎟ α = −

L2k4

θ 12⎝ ⎠

SHM : θ(t) = θmax cos ωt + ϕ( )

12⎝ ⎠ 4

⇒α = −L2k4

12mL2

⎛ ⎝ ⎜

⎞ ⎠ ⎟ θ = −

3km

⎛ ⎝ ⎜

⎞ ⎠ ⎟ θ ⇒ ω =

3 km

Problem: The pendulum consists of a uniform disk with radius R and mass M attached to a uniform rod of length L and mass m.(a) what is the rotational inertia of the pendulum?(b) What is the distance between the pivot and the COM?(c)  What is the period?

(a) The disc has an I=MR2/2 about the COM so.

I(Di )MR2

Mh2 MR2

M L( )2I(Disc) =2

+ Mh2 =2

+ M r + L( )2

I (Rod) =mL2

+ mh2 =nL2

+ mL⎛

⎜⎞⎟

2

=mL

I (Rod) =12

+ mh =12

+ m2⎝⎜ ⎠⎟

=3

(b) COM dCOM =Mld + mlr

M +With ld and lr being the the COM of the disc and rod. M + m d r g

(c) The period  IT = 2π

I(M + m)gd

15-106: A solid Cylinder attached to a horizontal spring (k=3.0 N/m) rolloswithout slipping along a horizontal surface. If the system is released from rest

h h i i h d b d 0 2 fi dwhen the spring is stretched by d=0.25 m, find(a) The translational kinetic energy(b) The rotational kinetic energy of the cylinder as it passes through x=0.(c) Show that under these conditions the COM is SHM with(c) Show that under these conditions the COM is SHM with

T = 2π3M2k2k

Solution:Solution:(a) E U

Mv2 ICM2 ω 2

(a) Emech = Us +2

+ CM

222 2 2 22 21CMMv I Mv vkd MRω ⎛ ⎞⎛ ⎞

⎜ ⎟

222 2 2

12 2 2 2 2 2

3 1 1; so that 6 25 10

cm CM cm cm

cm

Mv I Mv vkd MRR

Mvkd KE Mv kd J

ω

⎛ ⎞⎛ ⎞= + = + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= = = = ×; so that 6.25 102 4 2 3tran cmKE Mv kd J= = = = ×

(b) 2 2 2 2m

1 1 1 3.13 10rot comKE I Mv kx Jω −= = = = ×

( )2 23 3hdE Mv Mv ad kx⎛ ⎞

m 3. 3 02 4 6rot comv kx Jω

(c)  3 3 04 2 2

mech cm cm cmcm

dE Mv Mv ad kx kxvdt dt

⎛ ⎞= + = + =⎜ ⎟

⎝ ⎠

2k⎛ ⎞ 2kacm = −2k3M

⎛⎝⎜

⎞⎠⎟

x ω =2k3M

Chap. 15: Oscillations

2ω = 2πf → T =2πω

→ ωT = 2π

( )x ( t ) = x max cos ω t + ϕ( ) Position

v( t ) =dxdt

= − x max ω sin ω t + ϕ( ) Velocitydt

a ( t ) =dvdt

= − x max ω 2 cos ω t + ϕ( ) Acceleration

( ) 2 ( )a ( t ) = −ω 2 x ( t )In SHM, the acceleration is proportional to the displacement but opposite sign.  The proportionality is the square of the angular frequency.

ω spring =km

ω torsion pendulum =κIrot

ω simple pendulum =gL

ω physical pendulum =mghrot−com

Irot

“Phase Diagram” of SHOKnowing:

U (t) = 12 kx 2 = 1

2 kxmax2 cos2 ωt + ϕ( )

KE(t) = 1 mv2 = 1 mω 2 x 2 sin 2 ωt + ϕ( )

⇒x 2

xmax2 = cos2 ωt + ϕ( )

v2

i 2 t( )KE(t) = 2 mv = 2 mω xmax sin ωt + ϕ( )

Emech = U (t) + KE(t)

⇒ω 2 xmax

2 = sin 2 ωt + ϕ( )

2 ( ) 2 ( )mech

= 12 kxmax

2 = 12 mvmax

2 sin 2 ωt + ϕ( )+ cos2 ωt + ϕ( )= 1

x 2 x 2

x 2

2Emechk

⎛ ⎝ ⎜ ⎞

⎠ ⎟

+v2

2Emechm

⎛ ⎝ ⎜ ⎞

⎠ ⎟

= 1

xmax2 = 2Emech

kv2

ω 2 xmax2 =

v2

2ω 2Emech

=v2

2Emech

k⎝ ⎠ m⎝ ⎠

vmax mech

k 2mech

m

x

v(t) = vmax 1−x 2

xmax2


Recommended