+ All Categories
Home > Documents > Pipesim User Guide

Pipesim User Guide

Date post: 08-Nov-2014
Category:
Upload: chozha-rajan
View: 113 times
Download: 8 times
Share this document with a friend
Description:
Pipesim User Guide
Popular Tags:
196
PIPESIM Suite User Guide
Transcript

PIPESIM SuiteProprietary Notice Patent information Service mark information i iTrademark information trotter lm reportContact information Table of Contents Proprietary Notice ............................................................................ 2 Patent information............................................................................ 2 Service mark information ................................................................ 2 Trademark information .................................................................... 2 Contact information ......................................................................... 2 TABLE OF CONTENTS ....................................................... 3 DOCUMENT CONVENTIONS............................................ 10 PIPESIM HOT KEYS........................................................ 10 1 INTRODUCTION .......................................................... 15 1.1 Setting up............................................................................. 15 1.2 Documentation..................................................................... 17 1.2.1 PIPESIM 1.3 PIPESIM overview................................................................ 19 1.4 File Management.................................................................. 25 1.5 Security ................................................................................ 26 PIPESIM 1.6 New features ........................................................................ 28 1.7 Schlumberger Support Services........................................ 28 1.8 What to do next.................................................................... 28 2 MODEL OVERVIEW.................................................... 31 2.1 Steps in building a model ................................................... 31 2.2 Starting PIPESIM.................................................................. 31 2.3 Units System........................................................................ 31 2.4 Fluid data.............................................................................. 32 2.5 Model components overview.............................................. 35 2.6 Flow correlation................................................................... 40 2.7 Run an operation................................................................. 40 2.8 Saving & Closing PIPESIM.................................................. 41 2.9 How to build models............................................................ 41 3 FLUID & MULTIPHASE FLOW MODELING............... 52 3.1 Black Oil ............................................................................... 52 PIPESIM 3.2 Compositional...................................................................... 60 3.3 Pressure Drop Calculation.................................................. 65 3.4 References ........................................................................... 80 4 RESERVOIR, WELL & COMPLETION MODELING ... 87 4.1 Vertical Completions........................................................... 87 4.2 Horizontal Completions ...................................................... 91 PIPESIM 4.3 Multiple Layers / Completions.......................................... 103 4.4 Artificial Lift........................................................................ 104 4.5 Tubing................................................................................. 105 4.6 Chokes................................................................................ 106 4.7 Heat transfer....................................................................... 113 4.8 Reservoir Depletion........................................................... 113 4.9 References ......................................................................... 115 5 FIELD EQUIPMENT................................................... 119 5.1 Compressor........................................................................ 119 5.2 Expander ............................................................................ 120 5.3 Single Phase Pump ........................................................... 121 5.4 Multiphase Boosting ......................................................... 121 PIPESIM 5.5 Separator............................................................................ 135 5.6 Re-injection point .............................................................. 135 5.7 Heat Transfer...................................................................... 135 5.8 References ......................................................................... 135 6 OPERATIONS............................................................ 139 6.1 Check model ...................................................................... 139 6.2 No operation....................................................................... 139 6.3 Run model .......................................................................... 140 6.4 System Analysis ................................................................ 140 6.5 Pressure Temperature profile........................................... 140 6.6 Flow correlation matching................................................ 140 6.7 Wax Prediction................................................................... 141 6.8 Nodal Analysis................................................................... 141 6.9 Artificial Lift Performance................................................. 142 6.10 Gas Lift Design & Diagnostics ......................................... 145 6.11 Horizontal well analysis .................................................... 148 6.12 Reservoir tables................................................................. 148 6.13 Network analysis ............................................................... 149 6.14 Production Optimization................................................... 149 PIPESIM 6.15 Field Planning.................................................................... 150 6.16 Multi-lateral well analysis.................................................. 155 6.17 Post processor................................................................... 155 6.18 References ......................................................................... 156 7 CASE STUDIES ......................................................... 159 7.1 Pipeline & facilities Case Study Condensate Pipeline 161 7.2 Well Performance Case Study Oil Well Design............ 175 7.3 Network Analysis Case Study Looped Gas Gathering Network ...................................................................................... 7-184 PIPESIM 7.4 Optimization.................................................................... 7-194 7.5 Field Planning................................................................. 7-194 7.6 Multi-lateral...................................................................... 7-194 8 INDEX......................................................................8-194 PIPESIM Document conventions edit/copyPIPESIM PIPESIMTHIS PAGE LEFT BLANK INTENTIONALLY PIPESIM PIPESIM Hot Keys File PIPESIMSimulation Windows Tools Editing/General PIPESIM PIPESIM 1 Introduction Schlumbergers PIPESIM1.1 Setting up PIPESIMESI M 1.1.1.2 Check the PIPESIM package PIPESIM PIPESIM PIPESIM PIPESIM PIPESIM PIPESIM 1.1.1.3 Make backup copies 1.1.1.4 Read the additional notes document PIPESIM 2000 1.1.2 Running setup PIPESIM 1.1.3 Changing Options after quitting setup 1.2 Documentation 1.2.1 PIPESIM additional documentation PIPESIM1.2.1.1 Artificial lift Performance curve PIPESIM 2000 1.2.1.2 User Defined Multiphase flow correlation PIPESIM1.2.1.3 OpenLink PIPESIM1.2.1.4 PVT file format PIPESIM1.2.1.5 Sentinel LM Security PIPESIMPIPESIM1.2.2 Case Studies PIPESIM1.2.3 Online Help 1.2.3.1 Help contents PIPESIM 2000

PIPESIM1.3.1 Modules PIPESIM 1.3.1.1 Pipeline & Facilities 1.3.1.2 Well Performance analysis PIPESIM 2000 1.3.1.3 Network analysis module 1.3.1.4 Production Optimization (GOAL) PIPESIM 2000 1.3.1.5 Multi-lateral wells (HoSim) PIPESIM 2000 1.3.1.6 Field Planning (FPT) 1.3.2 Options 1.3.2.1 Compositional option PIPESIM 2000 1.3.2.2 OLGAS 2000 PIPESIM 2000 1.3.2.3 ECLIPSE 100 1.3.2.4 ECLIPSE 300 1.3.2.5 MBAL 1.4 File Management PIPESIM Input data (*.BPS, *.BPN, *.PGW, *.FPT,*.HSM) Output data (*.OUT, *.SUM) Transfer files (*.PLT, *.PLC, *.PWH, *.PBT, *.TNT, *.PST) PIPESIMPVT table (*.PVT) PIPESIM PIPESIM 2000 Database files (*.MDB) Units file (*.UMF) 1.5 Security PIPESIM1.5.1 Stand-alone security (dongle) Dongle Utility.PIPESIM 2000 PIPESIMPIPESIM1.6 New features Release Notes1.7 Schlumberger Support Services PIPESIMCenter Tel United Kingdom America 1.8 What to do next New users PIPESIM Existing users PIPESIM 2000 THIS PAGE LEFT BLANK INTENTIONALLY PIPESIM 2000 2 Model Overview 2.1 Steps in building a model PIPESIM 2.2 Starting PIPESIM PIPESIM .2.3 Units System PIPESIM PIPESIM PIPESIM2.4 Fluid data PIPESIMPIPESIM 2.4.1 Black Oil PIPESIM 2000 PIPESIMPIPESIM PIPESIM 2.4.2 Compositional PIPESIMPIPESIM 2000 Measured Properties; Critical Property PIPESIM2.4.3 Steam PIPESIM2.5 Model components overview PIPESIM PIPESIM Pipeline & facilities module Component Type Description PIPESIM 2000 Well Performance module Component Type Description PIPESIM Network module Component Type Description PIPESIM 2000 2.5.1 Model & Component limitations PIPESIM 2.6 Flow correlation 2.7 Run an operation PIPESIM 2000 2.8 Saving & Closing PIPESIM PIPESIM2.9 How to build models PIPESIMPIPESIMPIPESIM 2.9.1 Fluid calibration 2.9.1.1 Black Oil PIPESIM 2.9.1.2 Compositional 2.9.2 Pipeline & facilities PIPESIM 2.9.2.1 Correlation matching PIPESIM 2000 2.9.2.2 Pressure/Temperature profile 2.9.2.3 Equipment/Flowline sizing (1 parameter) 2.9.2.4 Equipment/Flowline sizing (Multiple parameter) PIPESIM 2.9.2.5 Multiphase booster design PIPESIM PIPESIM 2000 2.9.3 Well Performance PIPESIM2.9.3.1 Correlation matching 2.9.3.3 Pressure/Temperature profile 2.9.3.4 Equipment/Tubing sizing (1 parameter) 2.9.3.5 Equipment/Tubing sizing (Multiple parameter) PIPESIM 2000 2.9.3.6 Artificial Lift analysis 2.9.3.7 Well performance curves for GOAL 2.9.3.8 Well performance curves for Network Solver PIPESIM 2.9.3.9 Reservoir Tables 2.9.3.10 Horizontal completion length 2.9.3.11 Gas Lift Rate v's Casing head pressure 2.9.4 Network Analysis 2.9.4.1 Fluid properties PIPESIM 2000 2.9.4.2 Boundary Conditions PIPESIM 2.9.4.3 Network model 2.9.5 Production Optimization 2.9.6 Field c 2.9.7 Multi-lateral PIPESIM 3 Fluid & Multiphase Flow Modeling PIPESIM3.1 Black Oil Fluid properties can be predicted by black-oil correlations that have been developed by correlating gas/oil ratios for live crudes with various properties, such as oil and gas gravities. The selected correlation is used to predict the quantity of gas dissolved in the oil at a particular pressure and temperature. 3.1.1 Lasater 3.1.1.1 Bubble point pressure Step 1:Step 2:Step 3:PIPESIM 2000 Step 4:3.1.1.2 Solution gas 3.1.2 Standing 3.1.2.1 Bubble point pressure Step 1:Step 2:3.1.2.2 Solution gas 3.1.2.3 Oil formation volume factor - saturated systems Step 1:Step 2:3.1.3 Vazques and Beggs PIPESIM 3.1.3.1 Bubble point pressure 3.1.3.2 Solution gas 3.1.3.3 Oil formation volume factor - saturated systems 3.1.3.4 Oil formation volume factor - undersaturated systems 3.1.4 Glas PIPESIM 3.1.4.1 Bubble point pressure and solution gas 3.1.4.2 Oil formation volume factor - saturated systems 3.1.4.3 Oil formation volume factor - undersaturated systems 3.1.5 Coning PIPESIM 3.1.6 Liquid Viscosity 3.1.7.1 Beggs and Robinson method 3.1.7.2 Glas method 3.1.7.3 User's data method 3.1.8 Live Oil Viscosity PIPESIM 3.1.8.1 Chew and Connally 3.1.8.2 Beggs and Robinson 3.1.9 Undersaturated Oil Viscosity 3.1.9.1 Vasquez and Beggs PIPESIM 3.1.9.2 Kousel method 3.1.9.3 No calculation 3.1.10 Oil/Water Mixture Viscosity 3.1.10.1 Inversion method 3.1.10.2 Volume ratio method PIPESIM 3.1.10.3 Woelflin method 3.1.11 Gas Viscosity 3.1.11.1 Lee et al. Method 3.2 Compositional 3.2.1 EOS (Equations of State) 3.2.1.1 Soave-Redlich-Kwong PIPESIM 3.2.1.2 Peng-Robinson 3.2.1.3 SMIRK 3.2.2 Viscosity model PIPESIM 3.2.2.1 Lower Alkanes 3.2.2.2 Higher Alkanes 3.2.2.3 Petroleum Fractions 3.2.2.4 Water PIPESIM 3.2.2.5 Methanol 3.2.2.6 Emulsion 3.2.3 BIP (Binary Interaction Parameter) Set 3.2.4 Hydrates PIPESIM PIPESIM 3.3 Pressure Drop Calculation PIPESIM 3.3.1 Flow regimes Flow Regimes Classification for Vertical Two Phase Flow PIPESIM PIPESIM Flow Regimes Classification for Horizontal Two Phase Flow PIPESIM 3.3.2 Single Phase Flow Correlations 3.3.2.1 Moody 3.3.2.2 AGA PIPESIM 3.3.2.3 Panhandle 'A' 3.3.2.4 Panhandle 'B' 3.3.2.5 Hazen-Williams 3.3.2.6 Weymouth 3.3.3 Vertical Multiphase Flow Correlations 3.3.3.1 Ansari upward two-phase flow3.3.3.2 Baker Jardine Revised gas-condensate pipelines with a no-slip liquid volume fraction of lower than 0.1PIPESIM BJABJABJA3.3.3.3 Beggs & Brill Original horizontal and inclined pipes3.3.3.4 Beggs & Brill Original, Taitel Dukler map 3.3.3.5 Beggs & Brill Revised PIPESIM 3.3.3.6 Beggs & Brill Revised, Taitel Dukler map 3.3.3.7 Brill & Minami 3.3.3.8 Duns & Ros vertical flow3.3.3.9 Duns & Ros, Taitel Dukler map 3.3.3.10 Govier & Aziz gas and condensatePIPESIM 3.3.3.11 Gray vertical flow in gas and condensate systems which are predominantly gas phase3.3.3.12 Hagedorn & Brown small diameter vertical conduitsBJA3.3.3.13 Hagedorn & Brown, Duns & Ros map 3.3.3.14 Lockhart & Martinelli 3.3.3.15 Lockhart & Martinelli, Taitel Dukler map 3.3.3.16 Mukherjee & Brill: Note PIPESIM two-phase inclined flow3.3.3.17 NOSLIP Correlation NOSLIPMOODY Note3.3.3.18 OLGA-S 2000 Steady State PIPESIM 3.3.3.19 Orkiszewski in vertical pipe3.3.3.20 Shell SIEP Correlations 3.3.3.21 Shell SRTCA Correlations 3.3.3.22 GRE Mechanistic Model BP PIPESIM 3.3.4 Horizontal Multiphase Flow Correlations 3.3.4.1 Baker Jardine Revised gas-condensate pipelines with a no-slip liquid volume fraction of lower than 0.1BJABJABJA3.3.4.2 Beggs & Brill Original BBO BJAhorizontal and inclined pipes3.3.4.3 Beggs & Brill Original, Taitel Dukler map PIPESIM 3.3.4.4 Beggs & Brill Revised 3.3.4.5 Beggs & Brill Revised, Taitel Dukler map 3.3.4.6 Brill & Minami: 3.3.4.7 Dukler, AGA + Flanigan horizontal and inclined two phase flow of gas-condensate gathering systems3.3.4.8 Dukler , AGA + Flanigan (Eaton holdup) 3.3.4.9 Duns & Ros, Taitel Dukler map BJAvertical flow PIPESIM 3.3.4.10 Lockhart & Martinelli 3.3.4.11 Lockhart & Martinelli, Taitel Dukler map 3.3.4.12 Mukherjee & Brill Notetwo-phase inclined flow3.3.4.13 NOSLIP Correlation NOSLIPMOODY Note3.3.4.14 OLGA-S 2000 Steady-State: PIPESIM 3.3.4.15 Oliemans large diameter condensate pipelines3.3.4.16 Xiao two-phase flow in horizontal and near horizontal pipelines PIPESIM 3.3.4.17 Shell SIEP Correlations 3.3.4.18 Shell SRTCA Correlations 3.3.4.19 GRE Mechanistic Model BP 3.4 References J. Cdn. Pet. Tech.Oil & Gas JournalTrans. AIMEPIPESIM J. Pet. Tech.J. Pet. Tech.et al.SPEJTwo-Phase Flow in PipesThe Technology of Artificial MethodsTrans. 23et al.Trans.JPTOil and Gas J. 56 PIPESIM J. Pet. Tech.Well PerformanceJ. Pet. Tech.et al. Handbook of Natural Gas EngineeringTrans.et al. Trans.Chem. Eng. Prog. 45JPTInt. J. of Multiphase FlowSPE J. Prod. Eng.PIPESIM JPTThe Flow of Homogeneous Fluids Through Porous MediaJ. Pet. Tech. PIPESIM Volumetric and Phase Behavior of Oil Field Hydrocarbon SystemsDrill. and Prod. Prac.Trans.AICHE J.Drill. and Prod. Prac.PIPESIM THIS PAGE LEFT BLANK INTENTIONALLY PIPESIM 4 Reservoir, Well & Completion Modeling PIPESIM 4.1 Vertical Completions 4.1.1 Liquid Reservoirs 4.1.1.1 Fetkovich / Normalized back pressure 4.1.1.2 Jones PIPESIM 4.1.1.3 Pseudo-Steady state / Darcy 4.1.1.4 (Straight line) Well productivity Index 4.1.1.5 (Straight line) Well productivity Index (with Vogel correction below bubble point) 4.1.1.6 Vogel 4.1.1.7 Hydraulic Fracture PIPESIM 4.1.1.8 Multi-rate tests multi-point Isochronal 4.1.2 Gas and Gas Condensate Reservoirs 4.1.2.1 Back pressure / C and n 4.1.2.2 Forchheimer 4.1.2.3 Jones PIPESIM4.1.2.4 Pseudo-Steady state / Darcy 4.1.2.5 (Straight line) Well productivity Index 4.1.2.6 Hydraulic Fracture 4.1.2.7 Multi-rate tests PIPESIM 4.2 Horizontal Completions Thin reservoirs Heterogeneous reservoirs Reduce water/gas coning Vertical permeability4.2.1 Effect of Pressure Drop on Productivity toeheel PIPESIMFigure 4.1 PIPESIM Figure 4.2 PIPESIM4.2.2 Single Phase Pressure Drop p x f q Lm=( . ) / 114644 105 2 d5q p p dTZLgg=153201222 16 3( )/PIPESIM 4.2.3 Multiphase Pressure Drop 4.2.4 Inflow Production Profiles PIPESIM Figure 4.34.2.5 Steady-State Productivity PIPESIM Figure 4.4q = 0. 007078k h p ( B )ln[a + a LL h L)ln[ h2r ]hh o ow /( / )/| +( /2 222a = (L 0. 25+(2r L) ]4 0.5/ )|0. 5 + / 2 ehq = 0. 007078k h p ( B )ln[ r(L )]hh oeho //4k = k keff v h PIPESIMh = h kkhvq = 0. 007078k h p ( B )ln[a + a LL h L)ln[( h2r ]hh o o2 2 2 2w /( / )/| +( // ) +2 222 = kkhvr = r exp(-s)w,eff wr = r (La L a h rw,effehwh L)/ )|1+ 1( / ) | +|( / )|2 22 ( /PIPESIM 4.2.6 Pseudo-Steady State Productivity q kh p BA C R s s Dqv o oA w m v=+ + + / .ln [ . / ( )]14122 24582q = kh p . 2 Bln[( rr ) - 0. 75]vo oew /141 s = ln[ C CCA A,ref A/ ] PIPESIMq = 0. 007078b k k p ( B )ln[ Ar ]+ lnC - 0. 75+shx z o o1wH R / PIPESIM 4.2.7 Solution Gas-Drive IPR qq =[1- V(pp ) - (1- V)(pp ) ]oo,maxwfRwfR2 n4.2.8 Horizontal Gas Wells PIPESIM= pdpzpp m02 ) (q = 0. 007027k h(p - p )ln[ rr ] ZThhew,effe2wf2q = 0. 007027kh(p - p )[ln[ rr ]- 0. 75+s +s +s - c + Dq ] ZThewm ca hr2wf2D = 2. 222x10 ( k h )r h-15g apwf w p2 = 2. 73x10 k10a-1.1045 = 2. 33x10 k10a-1.201PIPESIM 4.3 Multiple Layers / Completions PIPESIM PIPESIMPIPESIM4.4 Artificial Lift PIPESIM4.4.1 Gas Lift PIPESIMPIPESIMPIPESIM 4.4.2 ESP Lift PIPESIM 4.5 Tubing PIPESIM4.6 Chokes 4.6.1 Ashford-Pierce q Cdo= 3512. e) ( = +B Fo wo12( ) ( )| |( )| | =|\

|.| |\

|.| +

((( + +`)+

((+ +nn T z R R e p e R FT zp R R e R Fsnng s wo ws ng wo w11 198 6 1 0 000217198 6 0 0002171 111 01 111012. .. .PIPESIM Assumptions: Choke size (64th in.) C 4.6.2 Omana N N N QqL Pl d D=02633 49 3 19 0 657 1 8.. . . N. PIPESIMN qqL Lo LL=|\

|.|1841 25..N GL=N PplL L= 174 10121. QRd=+111N DD c LL= 120872 .( ) ( ) ( ) ( ) ( ) ( ) q R DLoL L c G= +1953 10 131 245 1 54510 6571 8 3 4913 19.. ... . P.4.6.3 Gilbert, Ros, Baxendall, Achong and Pilehvari PIPESIM c b oL d GOR aP q= ) (1Correlation A B c 4.6.3.1 PDVSA modification e c b oL d GOR aP q = ) ) ( (1PIPESIM4.6.4 Poettmann-Beck ( )( )q AGOR PV m RRoo cLoG=++++

(((88992561 0 0765927361 050 4513 0 76605663011 11111. ...... ( . ). ( ) ( )( )R T z GOR RPB so111 10110 00504= . PIPESIMmR GL1111111=+V mL11=4.6.5 Mechanistic Correlation, p p pTP L L G G= + pg qC AL LcLL c=|\

|.|2 1442pg qYC AG LcGG c=|\

|.|2 1442PIPESIM ( ) Y dd K p pp= +|\

|.|

((( |\

|.| 10 041 035 12122 11. . . /C Cddd=|\

|.| 1124 p p CYCTP L G dLdG= +|\

|.||

(((

(((1 12p dd qd CL L mdL= |\

|.|

(((

(( 1808312412qLqGAcp1p2 PIPESIM4.6.6 API 14-B Formulation p p CYCTP L G dLdG= +|\

|.||

(((

(((1 12p dd qd CL N mdL= |\

|.|

(((

(( 1808312412 p pYtp L G= +

((

((1112112.p dd qdL N m= |\

|.|

(( 168705512412.PIPESIM qmN4.7 Heat transfer 4.8 Reservoir Depletion PIPESIM4.8.1 Volume Depletion Reservoirs p p pi= PIPESIMG GGEEpi= EpZT= 3537 .pZpZGGiip= |\

|.| 1PIPESIM 4.8.2 Gas Condensate Reservoirs 4.9 References JPTJournal of Petroleum Technology, SPE Reservoir Engineering PIPESIMFundamentals of Reservoir EngineeringJPTWorld OilPIPESIM J. Pet. Tech.Horizontal Well TechnologyChem. Eng. Prog. 45 PIPESIMJPTThe Flow of Homogeneous Fluids Through Porous MediaWorld OilPIPESIM 5 Field Equipment 5.1 Compressor Adiabatic RoutePolytropic RouteMollier Route (compositional cases only) PIPESIM5.2 Expander Adiabatic RoutePolytropic RouteMollier Route (compositional cases only)PIPESIM 5.3 Single Phase Pump 5.4 Multiphase Boosting PIPESIMPIPESIM Traditional ApproachThe incoming fluid is separated in itsconstituent gas and liquid phases.The separated liquids are pumped upto the required pressure and exportedvia the liquid export line.Separated gas is compressed up to therequired pressure and exported via thegas export line.Alternative ApproachThe incoming fluid is separated in itsconstituent gas and liquid phases.The separated liquids are pumped upto the required pressure and separatedgas is compressed up to the requiredpressure, before the two phases arerecombined and exported via amultiphase export line.Multiphase BoostingThe incoming fluid is directly boostedup to the required pressure withoutseparation of the gas and liquidphases, and exported via a multiphaseexport line. PIPESIM PIPESIM Outflow curveTHP curveProduction System Analysis PIPESIMOutflow curve - No boostingOutflow curve - Boosting 20 barTHP curveProduction System Analysis 5.4.1 Multiphase Boosters Positive Displacement Type PIPESIM 5.4.2 Twin Screw Type Multiphase Boosters PIPESIMTwin Screw Multiphase Pump - Performance Curve (valid for GVF=0%, p1=1 bara)Pump differential pressure [bar]Flow rate [m3/h]Shaft power [kW]Twin Screw Multiphase Pump - Performance Curve (valid for GVF=85%, p1=1 bara)Pump differential pressure [bar]Flow rate [m3/h]Shaft power [kW]PIPESIM 5.4.3 Progressing Cavity Type Multiphase Boosters PIPESIMPIPESIM5.4.4 Multiphase Boosters Dynamic Type PIPESIM 5.4.5 Helico-Axial Type Multiphase Boosters PIPESIMPIPESIM Maximum speedMinimum speed80% speed90% speedMax. DP lineMaximum booster differential pressureBooster differential pressureTotal volumetric flow rate at suctionBest efficiency lineHelico-axial type multiphase booster - Performance curve(valid for given GVF, p-suction and fluid density) 5.4.6 Contra-Rotating Axial Type Multiphase Booster PIPESIMFigure 5-11 Contra-rotating axial (CRA) compressor PIPESIM5.4.7 Alternative approach PIPESIM.PIPESIM 5.5 Separator 5.6 Re-injection point 5.7 Heat Transfer 5.8 References PIPESIMPIPESIM THIS PAGE LEFT BLANK INTENTIONALLY6 Operations PIPESIM 6.1 Check model 6.2 No operation ProdMan PIPESIM 2000 6.3 Run model 6.4 System Analysis Pressure/Temperature Profiles6.5 Pressure Temperature profile 6.6 Flow correlation matching PIPESIM 2000 6.7 Wax Prediction PIPESIM6.8 Nodal Analysis PIPESIMInflowOutflow PIPESIM 2000 6.9.1 Well Performance Curves 6.9.2 Optimization module performance curves GOALGOAL6.9.2.1 Well head chokes GOAL PIPESIM 2000 ManifoldFlowlineWellheadWellhead ChokeWell GOALGOAL GOALPIPESIM 2000 GOAL6.10 Gas Lift Design & Diagnostics PIPESIMPIPESIM6.10.1 Check for Gas Lift instability PIPESIM 2000 : C F rF rFvvvv c 1 1 3 12= |\

|.|+. . . C F r rFvvvc2 1 1 = |\

|.|+ . ( )F B g q JC A Y V qf goD p v a fo122=. . .. . ( )( )F q q Ag Pqfo go tf gtofo3=+... ( ) ( )( )( )( )F C A Y C A Y r rC A Y r rcD p ch D p v ch vchD p v ch vch=+

((|\

|.||

((2 2222.. r PPv toco= ( )( )v tczTzT= r PPch com= ( )( )ch cmzTzT= PIPESIM 2000 SUBSCRIPTS GOAL) PIPESIM 2000 i c e n s e d t o : B J A i n h o u s e ( K -0 0 0 1 )P I P E S I M P l o t A u g 01 9 9 6P I P E S I M f o r W i n d o w s B a k e r J a r d i n e & A s s o c i a t e sW e l l P A 1 3 - A l h a n a t iL 96.11 Horizontal well analysis PIPESIM's6.12 Reservoir tables PIPESIM 2000 6.13 Network analysis 6.14 Production Optimization PIPESIM 2000 PIPESIM. GOAL6.15 Field Planning 6.15.1 Dynamic Eclipse link PIPESIM 2000 PROS: CONS: Capabilities: Limitations: PIPESIM 2000 6.15.2 Look-up tables Sample decline curveCumulative liquid production [mmstb]PROS: CONS: PIPESIM 2000 PROS: CONS: Capabilities: Limitations: 6.15.4 Event handling PIPESIM 2000 FPT6.16 Multi-lateral well analysis HoSim6.17 Post processor PIPESIM PIPESIM6.17.1 Graphical plots PIPESIM. PIPESIM 2000 6.17.2 Tabular data PIPESIM6.17.3 Onscreen data 6.18 References PIPESIM 2000 THIS PAGE LEFT BLANK INTENTIONALLY PIPESIM 2000 7 Case Studies PIPESIM PIPESIM 7.1 Pipeline & facilities Case Study Condensate Pipeline 7.1.1 Task 1. Develop a Compositional Model of the Hydrocarbon Phases - PIPESIM

"Add>>" Petroleum FractionsAdd to composition>> PIPESIM Component SelectionPhase Envelope7.1.2 Task 2. Identify the Hydrate Envelope - - Add>>Phase EnvelopePIPESIM 7.1.3 Task 3. Select a Pipeline Size - PIPESIM operations/pressure-temperature profilesPIPESIM 7.1.4 Task 4. Determine the Pipeline Insulation Requirement - - operations/pressure-temperature profiles PIPESIM PIPESIM 7.1.5 Task 5. Screen the Pipeline for Severe Riser Slugging - setup/define output... PIPESIM operations/pressure-temperature profilesreports/view outputPIPESIM PIPESIM 7.1.6 Task 6. Size a Slug Catcher - PIPESIM reports/view summary PIPESIM 7.1.7 Data Available Layout: Boundary Conditions: Pure Hydrocarbon Components: Petroleum Fraction: PIPESIM Aqueous Component: Pipeline Sizes Available: Pipeline Data:Pipeline Insulation Study Data: Data for Risers 1 and 2:- PIPESIM PIPESIM 7.2 Well Performance Case Study Oil Well Design 7.2.1 Task 1. Develop a Calibrated Blackoil Model - - - PIPESIM PIPESIM

OK plot PVT data

PIPESIM PIPESIM PIPESIM PIPESIM 7.2.2 Task 2. Develop a Well Inflow Performance Model - 7.2.3 Task 3. Select a Tubing Size for the Production String - PIPESIM - operations/systems analysis PIPESIM 7.2.4 Data Available Reservoir Conditions: Stock Tank Oil Properties: Bubble Point Properties: Blackoil Calibration Data: PIPESIM Deviation Survey: Minimum Pressure Allowed at the Wellhead: Multiphase flow correlation Production Strings Available: Drill String Test: Production plan obtained from reservoir simulation: PIPESIM 7.3 Network Analysis Case Study Looped Gas Gathering Network 7.3.1 Task 1. Build a Model of the Network - PIPESIM PIPESIM edit/copy edit/paste PIPESIMsetup/compositional...> exportsetup/compositional...>importPIPESIM edit/copy edit/paste PIPESIM PIPESIM 7.3.2 Task 2. Specify the Network Boundary Conditions - PIPESIMPIPESIM - Setup/boundary conditions7.3.3 Task 3. Solve the Network and Establish the deliverability - - - - setup/options/network iterations PIPESIM7.3.4 Data Available Layout: Completion and Tubing Data: Pure Hydrocarbon Components (Wells 1 & 2): PIPESIM PIPESIMPetroleum Fraction (Wells 1 & 2): Aqueous Component (Wells 1 & 2): Pure Hydrocarbon Components (Well 3): Petroleum Fraction (Wells 3): Aqueous Component (Well 3): Data for Looped Gathering Lines (B1, B2, B3, and B4): Data for Deliver Line (B5): Boundary Conditions:7.4 Optimization 7.5 Field Planning 7.6 Multi-lateral PIPESIM 8 Index Analyse artificial lift requirementsCreate GOAL curvesCreate reservoir tables Back pressure IPRSeeFind the optimal completion length C and n IPRPerform a Nodal AnalysisDarcy IPRSeeSet boundary conditionsFetkovich,liquid IPRJones gas, IPRJones liquid, IPRForchheimer gas, IPRMulti-rate testsgas IPR PIPESIMliquid IPRPseudo-Steady state IPRPseudo-Steady state, IPRStraight line PI liquid, IPRVogel, IPRWell PI, IPR PIPESIM


Recommended